首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

2.
Detailed seismic stratigraphic analysis of 2D seismic data over the Faroe‐Shetland Escarpment has identified 13 seismic reflection units that record lava‐fed delta deposition during discrete periods of volcanism. Deposition was dominated by progradation, during which the time shoreline migrated a maximum distance of ~44 km in an ESE direction. Localised collapse of the delta front followed the end of progradation, as a decrease in volcanic activity left the delta unstable. Comparison with modern lava‐fed delta systems on Hawaii suggests that syn‐volcanic subsidence is a potential mechanism for apparent relative sea level rise and creation of new accommodation space during lava‐fed delta deposition. After the main phase of progradation, retrogradation of the delta occurred during a basinwide syn‐volcanic relative sea level rise where the shoreline migrated a maximum distance of ~75 km in a NNW direction. This rise in relative sea level was of the order of 175–200 m, and was followed by the progradation of smaller, perched lava‐fed deltas into the newly created accommodation space. Active delta deposition and the emplacement of lava flows feeding the delta front lasted ~2600 years, although the total duration of the lava‐fed delta system, including pauses between eruptions, may have been much longer.  相似文献   

3.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   

4.
5.
Abstract Simple elastic plate models have been used to determine the stratigraphic patterns that result from prograding sediment loads. The predicted patterns, which include coastal offlap/onlap and downlap in a basinward direction, are generally similar to observations of stratal geometry from Cenozoic sequences of the U.S. Atlantic and Gulf Coast margins. Coastal offlap is a feature of all models in which the water depth and elastic thickness of the lithosphere, T e (which is a measure of the long-term strength of the lithosphere), are held constant, and is caused by a seaward shift in the sediment load and its compensation as progradation proceeds. The coastal offlap pattern is reduced if sediments prograde into a subsiding basin, since subsidence causes an increase in the accommodation space and loading landward of a prograding wedge. The stratal geometry that results is complex, however, and depends on the sediment supply, the amount of subsidence, and T e. If the sediment supply to a subsiding basin proceeds in distinct 'pulses' (due, say, to different tectonic events in a source region) then it is possible to determine the relationship between stratal geometry and T e. Coastal offlap and downlap are features of most models where the lithosphere either has a constant T e slowly increases Te with time, or changes T e laterally; however, in the case where sediments prograde onto lithosphere that rapidly increases T e with rime, the offlap can be replaced by onlap. Lithospheric flexure due to prograding sediment loads is capable of producing a wide variety of stratal geometries and may therefore be an important factor to take into account when evaluating the relative role of tectonics and eustatic sea-level changes in controlling the stratigraphic record.  相似文献   

6.
New seismic reflection profiles from the Tugrug basin in the Gobi‐Altai region of western Mongolia demonstrate the existence of preserved Mesozoic extensional basins by imaging listric normal faults, extensional growth strata, and partially inverted grabens. A core hole from this region recovered ca. 1600 continuous meters of Upper Jurassic – Lower Cretaceous (Kimmeridgian–Berriasian) strata overlying Late Triassic volcanic basement. The cored succession is dominated by lacustrine and marginal lacustrine deposits ranging from stratified lacustrine, to subaqueous fan and delta, to subaerial alluvial‐fluvial environments. Multiple unconformities are encountered, and these represent distinct phases in basin evolution including syn‐extensional deposition and basin inversion. Prospective petroleum source and reservoir intervals occur, and both fluid inclusions and oil staining in the core provide evidence of hydrocarbon migration. Ties to correlative outcrop sections underscore that, in general, this basin appears to share a similar tectono‐stratigraphic evolution with petroliferous rift basins in eastern Mongolia and China. Nevertheless, some interesting contrasts to these other basins are noted, including distinct sandstone provenance, less overburden, and younger (Neogene) inversion structures. The Tugrug basin occupies an important but perplexing paleogeographic position between late Mesozoic contractile and extensional provinces. Its formation may record a rapid temporal shift from orogenic crustal thickening to extensional collapse in the Late Jurassic, and/or an accommodation zone with a Mesozoic strike‐slip component.  相似文献   

7.
The composition, volume and stratigraphic organisation of submarine fan systems deposited along continental margins are expected to reflect the landscape from which the sediment was derived. During the Late Cretaceous, the Møre‐Trøndelag margin, Norwegian North Sea was dominated by the deposition of deep‐marine fines; the emplacement of 11 sand‐rich submarine fan systems occurred only during a c. 3 Myr period in the Turonian‐Coniacian. The systems were fed by sediment that was routed through submarine canyons incised into the basin margin; the canyons are underlain by angular unconformities and are interpreted to have resulted from tectonically induced changes in slope physiography and erosion by gravity flows. The areal extent of the onshore drainage catchments that supplied sediment to the fans has been estimated based on scaling relationships derived from modern source‐to‐sink systems. The results of our study suggest that the Turonian fans were sourced by drainage catchments that were up to ca.3600 km2, extending more than ca.100 km inland from the palaeo‐shoreline. The estimated inboard catchment extent correlates with the innermost structures of a large, long‐lived, basement‐involved, normal fault complex. On the basis of our analysis, we conclude that increased sediment supply to the Turonian fan systems reflects tectonic rejuvenation of the landscape, rather than eustatic sea‐level or climate fluctuations. The duration of fan deposition is thus interpreted to reflect the ‘relaxation time’ of the landscape following tectonic perturbation, and fan system retrogradation and abandonment is interpreted to reflect the eventual depletion of the onshore sediment source. We demonstrate that a better understanding of the stratigraphic variability in deepwater depositional systems can be gained by taking a complete source‐to‐sink view of ancient sediment dispersal systems.  相似文献   

8.
The Triassic Moenkopi Formation in the Salt Anticline Region, SE Utah, represents the preserved record of a low‐relief ephemeral fluvial system that accumulated in a series of actively subsiding salt‐walled mini‐basins. Development and evolution of the fluvial system and its resultant preserved architecture was controlled by the following: (1) the inherited state of the basin geometry at the time of commencement of sedimentation; (2) the rate of sediment delivery to the developing basins; (3) the orientation of fluvial pathways relative to the salt walls that bounded the basins; (4) spatially and temporally variable rates and styles of mini‐basin subsidence and associated salt‐wall uplift; and (5) temporal changes in regional climate. Detailed outcrop‐based tectono‐stratigraphic analyses demonstrate how three coevally developing mini‐basins and their intervening salt walls evolved in response to progressive sediment loading of a succession of Pennsylvanian salt (the Paradox Formation) by the younger Moenkopi Formation, deposits of which record a dryland fluvial system in which flow was primarily directed parallel to a series of elongate salt walls. In some mini‐basins, fluvial channel elements are stacked vertically within and along the central basin axes, in response to preferential salt withdrawal and resulting subsidence. In other basins, rim synclines have developed adjacent to bounding salt walls and these served as loci for accumulation of stacked fluvial channel complexes. Neighbouring mini‐basins exhibit different styles of infill at equivalent stratigraphic levels: sand‐poor basins dominated by fine‐grained, sheet‐like sandstone fluvial elements, which are representative of nonchannelised flow processes, apparently developed synchronously with neighbouring sand‐prone basins dominated by major fluvial channel‐belts, demonstrating effective partitioning of sediment route‐ways by surface topography generated by uplifting salt walls. Reworked gypsum clasts present in parts of the stratigraphy demonstrate the subaerial exposure of some salt walls, and their partial erosion and reworking into the fill of adjoining mini‐basins during accumulation of the Moenkopi Formation. Complex spatial changes in preserved stratigraphic thickness of four members in the Moenkopi Formation, both within and between mini‐basins, demonstrates a complex relationship between the location and timing of subsidence and the infill of the generated accommodation by fluvial processes.  相似文献   

9.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

10.
Morphological scaling relationships between source‐to‐sink segments have been widely explored in modern settings, however, deep‐time systems remain difficult to assess due to limited preservation of drainage basins and difficulty in quantifying complex processes that impact sediment dispersals. Integration of core, well‐logs and 3‐D seismic data across the Dampier Sub‐basin, Northwest Shelf of Australia, enables a complete deep‐time source‐to‐sink study from the footwall (Rankin Platform) catchment to the hanging wall (Kendrew Trough) depositional systems in a Jurassic late syn‐rift succession. Hydrological analysis identifies 24 drainage basins on the J50.0 (Tithonian) erosional surface, which are delimited into six drainage domains confined by NNE‐SSW trending grabens and their horsts, with drainage domain areas ranging between 29 and 156 km2. Drainage outlets of these drainage domains are well preserved along the Rankin Fault System scarp, with cross‐sectional areas ranging from 0.08 to 0.31 km2. Corresponding to the six drainage domains, sedimentological and geomorphological analysis identifies six transverse submarine fan complexes developing in the Kendrew Trough, ranging in areas from 43 to 193 km2. Seismic geomorphological analysis reveals over 90‐km‐long, slightly sinuous axial turbidity channels, developing in the lower topography of the Kendrew Trough which erodes toe parts of transverse submarine fan complexes. Positive scaling relationships exist between drainage outlet spacing and drainage basin length, and drainage outlet cross‐sectional area and drainage basin area, which indicates the geometry of drainage outlets can provide important constraints on source area dimensions in deep‐time source‐to‐sink studies. The broadly negative bias of fan area to drainage basin area ratios indicates net sediment losses in submarine fan complexes caused by axial turbidity current erosion. Source‐to‐sink sediment balance studies must be done with full evaluating of adjacent source‐to‐sink systems to delineate fans and their associated up‐dip drainages, to achieve an accurate tectonic and sedimentologic picture of deep‐time basins.  相似文献   

11.
It has been observed that the distance between the outlets of transverse basins in orogens is typically half of the distance between the main divide and the range front irrespective of mountain range size or erosional controls. Although it has been suggested that this relationship is the inherent expression of Hack's law, and/or possibly a function of range widening, there are cases of notable deviations from the typical half‐width average spacing. Moreover, it has not been demonstrated that this general relationship is also true for basins in morphologically similar nonorogenic settings, or for those that do not extend to the main drainage divide. These issues are explored by investigating the relationship between basin outlet spacing and the 2‐dimensional geometric properties of drainage basins (basin length, main valley length and basin area) in order to assess whether the basin outlet spacing‐range width ratio is a universal characteristic of fluvial systems. We examined basins spanning two orders of magnitude in area along the southern flank of the Himalayas and the coastal zone of southeast Africa. We found that the spacing between basin outlets (Los) for major transverse basins that drain the main divide (range‐scale basins) is approximately half of the basin length (Lb) for all basins, irrespective of size, in southeast Africa. In the Himalayas, while this ratio was observed for eastern Himalayan basins (a region where the maximum elevations coincided with the main drainage divide), it was only observed in basins shorter than ~30 km in the western and central Himalayas. Our analysis indicates that basin outlet spacing is consistent with Hack's law, apparently because the increase in basin width (represented by outlet spacing) with basin area occurs at a rate similar to the increase in main stream length (Lv) with basin area. It is suggested that most river systems tend towards an approximately diamond‐shaped packing arrangement, and this applies both to the nonorogenic setting of southeast Africa as well as most orogenic settings. However, in the western Himalayas shortening associated with localised rock uplift appears to have occurred at length scales smaller than most the basins examined. As a result rivers in basins longer than ~30 km have been unable to erode in a direction normal to the range front at a sufficiently high rate to sustain this form and have been forced into an alternative, and possibly unstable, packing arrangement.  相似文献   

12.
Seismic and stratigraphic data of the inland Volterra Basin and of the Tuscan Shelf (Northern Tyrrhenian Sea) have been analysed to determine the tectono-sedimentary evolution of this part of the Northern Apennines from the early Miocene (about 20 Ma) to the present. The area is a good example for better understanding the evolution of postcollisional related basins. The study area is characterized by a series of sedimentary basins separated by tectonic ridges. Similar environmental conditions existed both onshore and offshore as indicated by the occurrence of similar seismic units. The units are separated by major unconformities. The cross-sectional geometries of the deposits of these basins, as defined through seismic reflection profiles, change in a quasi-regular manner through time and space. Early stages (late Burdigalian to early Tortonian) of evolution of the basins are marked by either flat-lying deposits, quasi-uniform in thickness, probably remnants of originally wider and shallow settings, or, in places, by relatively small bowl-shaped basins. The latter may have been strongly affected by the pre-existing topography and tectonics, as they developed at or near the leading edges of pre-Neogene substrate thrusts. These early deposits represent sedimentation during a transitional period from the end of compressional tectonics to the start of an extensional phase and represent a pre-narrow rift stage of evolution of the region. The subsequent stage of tectonic evolution (late Tortonian to early Messinian), where preserved, is recorded by fault-bounded triangular-shaped basins interpreted as half-grabens. This is one of the periods of major development of narrow rifts in the area. The following stage (late Messinian to Early Pliocene) is marked by variable types of basins, showing wide and deep bowl-shaped geometries persistent in the offshore, whereas inshore (Volterra Basin) they alternate with half-graben, synrift deposits. This period thus represents a transitional stage where part of the system is still affected by synrift sedimentation and part is developing into incipient post-rift conditions. This stage was followed in early to middle Pliocene times by wide bowl-shaped to blanket-type deposits both in offshore and in inshore areas, indicating regional post-rifting conditions. The pre-, syn- and post-rift stages have followed each other through time and space, starting first in the westernmost offshore area and shifting later toward the east, inshore.  相似文献   

13.
14.
15.
Recent scientific work has highlighted the presence of an up to 12 km thick Cenozoic siliclastic and carbonate infill in the Levant Basin. Since the Late Eocene, several regional geodynamic events affecting Afro‐Arabia and Eurasia (collision and strike slip deformation) induced marginal uplifts. The initiation of local and long‐lived regional drainage systems in the Oligo‐Miocene period (e.g., Lebanon, Arabia and Nile) provoked a change in the depositional pattern along the Levant region from carbonate‐dominated to mixed clastic‐rich systems. Herein, we explore the importance of multi‐scale constraints (i.e., seismic, well and field data) in the quantification of subsidence history, sediment transport and deposition of a Middle to Upper Miocene “multi‐source” to sink system along the northern Levant frontier region. Through a comprehensive 4D forward stratigraphic modelling workflow, we suggest that the contribution to basin infill is split between proximal and more distal clastic sources as well as in situ carbonate and hemipelagic deposition. The results show that single‐source scenarios could not reasonably satisfy the basin‐scale constraints. The worldwide application of such new multi‐disciplinary workflows in frontier regions highlights the additional data constraints that are needed to de‐risk highly uncertain geological models in the hydrocarbon exploration phase.  相似文献   

16.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

17.
We present a new lithostratigraphy and chronology for the Miocene on central Crete, in the Aegean forearc. Continuous sedimentation started at ~10.8 Ma in the E–W trending fluvio‐lacustrine Viannos Basin, formed on the hangingwall of the Cretan detachment, which separates high‐pressure (HP) metamorphic rocks from very low‐grade rocks in its hangingwall. Olistostromes including olistoliths deposited shortly before the Viannos Basin submerged into the marine Skinias Basin between 10.4 and 10.3 Ma testifies to significant nearby uplift. Uplift of the Skinias Basin between 9.7 and 9.6 Ma, followed by fragmentation along N–S and E–W striking normal faults, marks the onset of E–W arc‐parallel stretching superimposed on N–S regional Aegean extension. This process continued between 9.6 and 7.36 Ma, as manifested by tilting and subsidence of fault blocks with subsidence events centred at 9.6, 8.8, and 8.2 Ma. Wholesale subsidence of Crete occurred from 7.36 Ma until ~5 Ma, followed by Pliocene uplift and emergence. Subsidence of the Viannos Basin from 10.8 to 10.4 Ma was governed by motion along the Cretan detachment. Regional uplift at ~10.4 Ma, followed by the first reworking of HP rocks (10.4–10.3 Ma) is related to the opening and subsequent isostatic uplift of extensional windows exposing HP rocks. Activity of the Cretan detachment ceased sometime between formation of extensional windows around 10.4 Ma, and high‐angle normal faulting cross‐cutting the detachment at 9.6 Ma. The bulk of exhumation of the Cretan HP‐LT metamorphic rocks occurred between 24 and 12 Ma, before basin subsidence, and was associated with extreme thinning of the hangingwall (by factor ~10), in line with earlier inferences that the Cretan detachment can only explain a minor part of total exhumation. Previously proposed models of buyoant rise of the Cretan HP rocks along the subducting African slab provide an explanation for extension without basin subsidence.  相似文献   

18.
Sedimentary basins are affected by a large number of forcing factors during their evolution and as a result, it is often difficult to isolate the contribution of each individual factor. Many forcing factors are temporally and spatially heterogeneous; they do not affect all parts of the basin in the same way and at the same time. We show that this heterogeneity can be used to identify the contributions of forcing factors by comparing various parts of a basin. This approach is applied to the Pannonian Basin, a back‐arc basin located in Central Europe. In the basin, the amounts of crustal extension, tectonic inversion and sediment influx varied in space and time, while the connection with the marine realm fluctuated. In this study we focus on two currently unresolved issues: firstly, we establish by what processes and from what directions the basin was filled in, and secondly, we investigate whether the basin was affected by the Messinian Salinity Crisis. The analysis of seismic and well data in the previously less studied SE part of the basin demonstrate that progradation occurred from the southern and eastern basin margins, complementing the previously described progradation from the northwestern and northern basin margins. Elsewhere in the basin, an unconformity observed in the progradational basin infill is intensely debated to be the result of either the Messinian Salinity Crisis (MSC) or basin inversion. Having the advantage of minor Pliocene–Quaternary amounts of inversion in the studied part of the basin we show that no regional unconformity is present in the studied stratigraphic interval, which implies that the effects of the MSC on the basin were minor. We infer that being aware of the fact that the effects of relative sea/lake‐level fluctuations may vary significantly across a basin is critical for understanding the evolution of semi‐enclosed basins.  相似文献   

19.
Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia–Eurasia collision zone offer the unique possibility to study middle–late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long‐term evolution of the Iranian Plateau, including the regional spatio‐temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle–late Miocene crustal shortening and thickening processes led to the growth of a basement‐cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland‐basin (Great Pari Basin) to the east between 16.5 and 10.7 Ma. By 10.7 Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement‐cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle‐flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.  相似文献   

20.
In this study, we use seismic reflection, well and core data to investigate the role that basin physiography and sediment routing systems played on the distribution, geometry and stratigraphic architecture of Upper Cretaceous submarine fans (SF) offshore Norway. The Late Cretaceous Møre‐Trøndelag margin of western Norway was characterised by steep submarine slopes (gradient of ~0.3°–3°). Mudstones dominate the Upper Cretaceous slope succession, although a few regionally extensive, sandstone‐dominated units are developed. We focus on the most regionally extensive sandstone unit, which is of Late Turonian‐to‐Early Coniacian age. Mapping and visualisation of 2D and 3D seismic reflection data and analysis of well data indicates that the sandstone unit comprises a total of 11 SF, which were fed by sand‐rich sediment gravity flows routed through multiple upper slope canyons. Based on the internal organisation of seismic facies, four fan types have been identified: (i) Type Ia fans, which are characterised by <10 erosional channel complexes at their bases and aggradational to landward‐stepping lobes in their upper parts; (ii) Type Ib fans, which are characterised by >10 erosional channel complexes at their bases and aggradational to landward‐stepping lobe and mass‐transport deposits near the fan apex in their upper parts; (iii) Type II fans, which are dominated by aggradational lobe deposits; and (iv) Type III fans, which are dominated by a single channel complex that passes downdip into a small terminal lobe. The different fan types are interpreted to reflect variable stratigraphic responses to source proximity and basin physiography, which is principally related to the degree of local fault reactivation and differential compaction. This variability highlights the diversity of fan types that may occur over short distances along continental margins, and demonstrates the importance of local controls in understanding the internal stratigraphic variability that may be present in deep‐marine successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号