首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mt Anne massif is characterised by spectacular erosional landforms of glacial origin. Evidence of at least two separate Pleistocene glaciations is preserved in valleys that extend east and south of the massif, and also on nearby Schnells Ridge. There is evidence of a much older glaciation beneath the western slopes of the Mt Anne massif. Dense vegetation in the eastern valleys has inhibited mapping of the Quaternary geology there. These glaciations have influenced postglacial evolution of the landscape, including the advent of prominent karst features and Holocene landslip activity.  相似文献   

2.
3.
Despite more than 40 yr of research attributing temporal changes in streambank erosion rates to subaerial processes, little quantitative information is available on the relationships between streambank erodibility (kd) and critical shear stress (τc) and the environmental conditions and processes that enhance streambank erosion potential. The study goal was to evaluate temporal changes in kd and τc from soil desiccation and freeze–thaw cycling. Soil erodibility and τc were measured monthly in situ using a multiangle, submerged jet test device. Soil moisture, temperature, and bulk density as well as precipitation, air temperature, and stream stage were measured continuously to determine changes in soil moisture content and state. Pairwise Mann–Whitney tests indicted kd was 2.9 and 2.1 times higher (p < 0.0065) during the winter (December–March) than in the spring/fall (April–May, October–November) and the summer (June–September), respectively. Regression analysis showed 80% of the variability in kd was explained by freeze–thaw cycling alone. Study results also indicated soil bulk density was highly influenced by winter weather conditions (r2 = 0.86): bulk density was inversely related to both soil water content and freeze–thaw cycling. Results showed that significant changes in the resistance of streambank soils to fluvial erosion can be attributed to subaerial processes. Water resource professionals should consider the implications of increased soil erodibility during the winter in the development of channel erosion models and stream restoration designs.  相似文献   

4.
Seismic and stratigraphic data of the inland Volterra Basin and of the Tuscan Shelf (Northern Tyrrhenian Sea) have been analysed to determine the tectono-sedimentary evolution of this part of the Northern Apennines from the early Miocene (about 20 Ma) to the present. The area is a good example for better understanding the evolution of postcollisional related basins. The study area is characterized by a series of sedimentary basins separated by tectonic ridges. Similar environmental conditions existed both onshore and offshore as indicated by the occurrence of similar seismic units. The units are separated by major unconformities. The cross-sectional geometries of the deposits of these basins, as defined through seismic reflection profiles, change in a quasi-regular manner through time and space. Early stages (late Burdigalian to early Tortonian) of evolution of the basins are marked by either flat-lying deposits, quasi-uniform in thickness, probably remnants of originally wider and shallow settings, or, in places, by relatively small bowl-shaped basins. The latter may have been strongly affected by the pre-existing topography and tectonics, as they developed at or near the leading edges of pre-Neogene substrate thrusts. These early deposits represent sedimentation during a transitional period from the end of compressional tectonics to the start of an extensional phase and represent a pre-narrow rift stage of evolution of the region. The subsequent stage of tectonic evolution (late Tortonian to early Messinian), where preserved, is recorded by fault-bounded triangular-shaped basins interpreted as half-grabens. This is one of the periods of major development of narrow rifts in the area. The following stage (late Messinian to Early Pliocene) is marked by variable types of basins, showing wide and deep bowl-shaped geometries persistent in the offshore, whereas inshore (Volterra Basin) they alternate with half-graben, synrift deposits. This period thus represents a transitional stage where part of the system is still affected by synrift sedimentation and part is developing into incipient post-rift conditions. This stage was followed in early to middle Pliocene times by wide bowl-shaped to blanket-type deposits both in offshore and in inshore areas, indicating regional post-rifting conditions. The pre-, syn- and post-rift stages have followed each other through time and space, starting first in the westernmost offshore area and shifting later toward the east, inshore.  相似文献   

5.
6.
《Basin Research》2018,30(5):895-925
Kilometre‐scale geobodies of diagenetic origin have been documented for the first time in a high‐resolution 3D seismic survey of the Upper Cretaceous chalks of the Danish Central Graben, North Sea Basin. Based on detailed geochemical, petrographic and petrophysical analyses, it is demonstrated that the geobodies are of an open‐system diagenetic origin caused by ascending basin fluids guided by faults and stratigraphic heterogeneities. Increased amounts of porosity‐occluding cementation, contact cement and/or high‐density/high‐velocity minerals caused an impedance contrast that can be mapped in seismic data, and represent a hitherto unrecognized, third type of heterogeneity in the chalk deposits in addition to the well‐known sedimentological and structural features. The distribution of the diagenetic geobodies is controlled by porosity/permeability contrasts of stratigraphic origin, such as hardgrounds associated with formation tops, and the feeder fault systems. One of these, the Top Campanian Unconformity at the top of the Gorm Formation, is particularly effective and created a basin‐wide barrier separating low‐porosity chalk below from high‐porosity chalk above (a Regional Porosity Marker, RPM). It is in particular in this upper high‐porosity unit (Tor and Ekofisk Formations) that the diagenetic geobodies occur, delineated by “Stratigraphy Cross‐cutting Reflectors” (SCRs) of which eight different types have been distinguished. The geobodies have been interpreted as the result of: (i) escaping pore fluids due to top seal failure, followed by local mechanical compaction of high‐porous chalks, paired with (ii) ascension of basinal diagenetic fluids along fault systems that locally triggered cementation of calcite and dolomite within the chalk, causing increased contact cements and/or reducing porosity. The migration pathway of the fluids is marked by the SCRs, which are the outlines of high‐density bodies of chalk nested in highly porous chalks. This study, thus, provides new insights into the 3D relationship between fault systems, fluid migration and diagenesis in chalks and has important applications for basin modelling and reservoir characterization.  相似文献   

7.
The platform limestones of Apulia are usually too weakly magnetic for precise measurement. The East Gargano basin is an autochthonous extension of Apulia and incorporates deeper water limestones which, though weakly magnetic ( J NRM ≃ 50 nG), can be reliably measured using a cryogenic magnetometer. The magnetization is attributed to the presence of detrital magnetite and the pelagic limestones yield a mean magnetic direction for the Late Cretaceous (Dec. = 335°, Inc. = 38°, α95= 6.5°). The circle of confidence associated with this direction overlaps with those associated with Late Cretaceous magnetic directions from Iblei (Sicily) and from the Vicentinian (Southern) Alps. Palaeomagnetic pole positions for Iblei, Gargano/Apulia and the Southern Alps indicate that these three autochthons need not have rotated significantly relative to each other since the Late Cretaceous. An inferred Late Cretaceous pole position for Africa coincides with the pole positions obtained from these Italian data.  相似文献   

8.
9.
王欢  高江波  侯文娟 《地理学报》2018,73(9):1674-1686
土壤侵蚀形成机制与影响因素识别是当前研究的核心与前沿议题,然而从多因素综合作用的角度进行定量归因仍需加强。以喀斯特典型峰丛洼地流域为研究区,基于GIS手段和RUSLE模型模拟土壤侵蚀,综合土地利用、坡度、降雨、高程、岩性、植被覆盖度等影响因子,应用地理探测器方法针对喀斯特不同地貌形态类型区进行土壤侵蚀的定量归因研究。结果表明,各影响因子对土壤侵蚀的解释力及因子间耦合作用程度在不同地貌形态类型区差异显著,其中土地利用和坡度是决定土壤侵蚀空间异质的主导因子,但在山地丘陵区,随着地形起伏度的升高,坡度的控制作用下降,即地理探测器q值表现为中海拔丘陵>小起伏中山>中起伏中山;生态探测器显示土地利用对土壤侵蚀的影响相比于其他因子有显著差异;双因子交互作用有助于增强对土壤侵蚀的解释力,土地利用与坡度的协同作用对土壤侵蚀的解释力达到70%以上;对于土壤侵蚀空间分布的差异性检验,风险探测器显示在小起伏中山、中起伏中山等地貌形态类型中,具有显著差异的影响因子分层组合数占比至少55%。因而,喀斯特地区土壤侵蚀的治理应综合考虑不同地貌形态类型区土壤侵蚀影响机制的空间异质性。  相似文献   

10.
The construction of a dam between the Small and Large Aral Sea in 1993 has had an effect on biological communities. From field and laboratory investigations and analysis of the literature, the structure and function of the main plant and animal communities in the northern (Small) Aral Sea are described and discussed, first, for the period before 1985, and, second, between 1985 and 1994. A prognosis for future changes is provided.  相似文献   

11.
Soil erosion by water (WSE) has become a relevant issue at the Mediterranean level. In particular, natural conditions and human impact have made the Calabria (southern Italy) particularly prone to intense WSE. The purpose of this investigation is to identify areas highly affected by WSE in Calabria by comparing the scenarios obtained by assuming control and preventive measures and actions, as well as actual conditions generated by forest fires, also in the presence of conditions of maximum rainfall erosion.Geographic Information System techniques have been adopted to treat data of reasonable spatial resolution obtained at a regional scale for application to the RUSLE model. This work is based on the comparison of such data with a basic scenario that has been defined by the present situation (present scenario). In this scenario: (i) R has been assessed by means of an experimental relation adjusted to Calabria on the basis of 5-min observations; (ii) K has been drawn from the soil map of Calabria including 160 soilscapes; (iii) LS has been estimated according to the RUSLE2 model by using (among other subfactors) a 40-m square cell DTM; (iv) C has been derived by processing the data inferred from the project Corine Land Cover, whose legend includes 35 different land uses on three levels; and (v) P has been hypothesized as equal to 1.For the remaining three hypothesized scenarios, the RUSLE factors have been adjusted according to experimental data and to data in the literature. In particular, forest areas subject to fire have been randomly generated as far as fire location, extension, structure, and intensity are concerned.The values obtained by the application of the RUSLE model have emphasized that land management by means of measures and actions for reducing WSE causes a notable reduction of the erosive rate decreasing from ~30 to 12.3 Mg ha− 1 y− 1. On the other hand, variations induced by hypothetical wildfires in forests on 10% of the regional territory bring WSE over the whole region to values varying from 30 to 116 Mg ha− 1 y− 1.This study can be offered to territorial planning authorities as an evaluation instrument as it highlights the merits and limitations of some territorial management actions. In fact, in Calabria no observations exist concerning the implications of these actions.  相似文献   

12.
Preserving soils is a major challenge in ensuring sustainable agriculture for the future. Soil erosion by water is a critical issue in the Mediterranean regions and usually occurs when high-erosive precipitation is in temporal association with poor vegetation cover and density. Modelling soil erosion risks over large spatial scales suffers from the scarcity of accurate information on land cover, rainfall erosivity and their intra-annual dynamics. We estimated the soil erosion risk on arable land in a Mediterranean area (Grosseto Province, southern Tuscany, Italy) and investigated its potential reduction as a response to the change in intra-annual distribution of land cover due to the increase of perennial forage crops. A GIS-based (R)USLE model was employed and a scenario analysis was performed by setting criteria for raising the performance of perennial forage crops. Statistical data on agricultural crops provided an insight into current intra-annual land cover dynamics. Rainfall erosivity was computed on the basis of 22-year hourly precipitation data. The model was used to: i) quantify the potential soil losses of arable land in the study area, ii) identify those areas highly affected by erosion risks iii) explore the potential for soil conservation of perennial crops, thereby enabling appropriate preventive measures to be identified. The erosion rates, averaged over an area of about 140’000 ha, are estimated to 33.42 Mg ha−1 y−1. More than 59% of the study area was subjected to soil losses higher than 11 Mg ha−1 y−1 (from moderate to severe erosion) and the highest rates are estimated for steep inland areas. Arable land with severe soil erosion rates (higher than 33 Mg ha−1 y−1) represent about 35% of the whole study area. The risk of soil loss by water erosion in the study area is estimated to be reduced on average by 36% if perennial crops are increased in terms of 35% of the total arable land. The soil erosion data produced compared well with the published local and regional data. This study thus provides useful preliminary information for landscape planning authorities and can be used as a decision support tool in quantifying the implications of management policies.  相似文献   

13.
A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochronological techniques.The correlation and response analysis displays a high correlation between the standard tree ring-width chronology and observed annual mean precipitation series during the period 1961-2008.Based on a linear regression model,an annual(prior August to current July) precipitation for the past 229 years was reconstructed.This is the first well-calibrated precipitation reconstruction for the Nanggarze region,south Tibet.The results show that relatively wet years with above-average precipitation occurred in 1780-1807,1854-1866,1886-1898,1904-1949,1967-1981 and 2000-2008,whereas relatively dry years with below-average precipitation prevailed during 1808-1853,1867-1885,1899-1903,1950-1966 and 1982-1999.Common dry/wet periods during 1890s,1910s,1940s-1960s and 1980s were also identified from other moisture reconstructions of nearby regions,indicating a synchronous climatic variation in south Tibet.Abrupt change beginning in 1888 was detected,revealing a transition from wet to dry conditions in south Tibet.Power spectrum analysis reveals significant cycles of 28-year,5.5-5.6-year and 3.3-year during the past 200 years.  相似文献   

14.
A simple new model for sudden lithospheric thinning that considers the crust to be stretched and the lower layer of the lithosphere to be partially stretched and partially mechanically eroded is proposed. This model allows calculation of the thermal field of the lithosphere during the initial warming phase and the surface uplift.
Application of this model to the Tuscan Basin explains the high regional heat flux density values (>100 mW m−2 ), the tectonic subsidence (about 1 km) and the average uplift (>400 m) observed in this region well.  相似文献   

15.
M. Moro  M. Saroli  C. Tolomei  S. Salvi 《Geomorphology》2009,112(3-4):261-276
Small meandering channels of about 1 m wide on an intertidal mudflat in the Westerschelde estuary the Netherlands) were studied with the aim to improve understanding of the effect of highly cohesive bed and bank sediment on channel inception and meander geometry and dynamics. The study is supported by experiments and modelling. The estuarine meandering channels are less dynamical than alluvial meandering rivers, and the dynamics are more localised. Moreover, the high thresholds for bed sediment erosion and for bank failure lead to two processes, uncommon in larger rivers, that cause most of the morphological change. First, the beds of the channels are eroded by backward migrating steps under hydraulic jumps, while the remainder of the bed surface along the channel is hardly eroded. Second, channel banks erode i) where eroding steps locally cause undercutting of otherwise stable channel banks and ii) in very sharp bends where the flow separates from the inner-bend channel boundary and impinges directly on the bank on the opposite side of the channel. Further morphological change is probably induced by rainfall splash erosion and by storm waves that weaken the mud, and by large mud fluxes from the estuary. The steps were successfully reproduced in laboratory flume experiments. An existing model for step migration predicted celerities consistent with field and laboratory observations and demonstrated a strong dependence on the threshold for erosion. Bank stability models confirm that banks and steps only fail when undercut and weakened by waves, rain or excess pore pressure in agreement with observations. The effects of a high threshold for bank erosion was implemented in an existing meander simulation model that reproduced the observed locations of bank erosion somewhat better than without the threshold, but flow separation and its effect on meander bends remains poorly understood.  相似文献   

16.
The chemical composition of the bulk deposition into Lake Kinneret, Israel was determined for the three hydrological years from 1992 to 1995. The fluxes of the elements and ions in the bulk deposition around the lake are fairly uniform although some local effects due to anthropogenic activity are observed; temporal effects are more pronounced. Na and Cl fluxes are greatly affected by rainfall that has passed over the Mediterranean Sea whilst Ca fluxes increase during dust storm episodes. The amount of each of the determined constituents entering the lake was calculated. The major chemical constituent entering the lake (except Ca) is SO4 whose main source is long-range transport from Europe. Enrichment factor analysis shows that the insoluble portion of the bulk deposition has the same characteristics as regional (and Saharan) dust storms, whilst the soluble portion is strongly affected by the marine environment. Significant additions to the previously known input of nitrogen and phosphorous enter the lake due to bulk deposition: 10% for nitrogen and 40% for phosphorous. The Pb content of the lake sediments correlates with Pb usage in petrol. Full experimental results are given in the electronic appendices.  相似文献   

17.
This integrated study (field observations, micropalaeontology, magnetostratigraphy, geochemistry, borehole data and seismic profiles) of the Messinian–Zanclean deposits on Zakynthos Island (Ionian Sea) focuses on the sedimentary succession recording the pre‐evaporitic phase of the Messinian salinity crisis (MSC) through the re‐establishment of the marine conditions in a transitional area between the eastern and the western Mediterranean. Two intervals are distinguished through the palaeoenvironmental reconstruction of the pre‐evaporitic Messinian in Kalamaki: (a) 6.45–6.122 Ma and (b) 6.122–5.97 Ma. Both the planktonic foraminifer and the fish assemblages indicate a cooling phase punctuated by hypersalinity episodes at around 6.05 Ma. Two evaporite units are recognized and associated with the tectonic evolution of the Kalamaki–Argassi area. The Primary Lower Gypsum (PLG) unit was deposited during the first MSC stage (5.971–5.60 Ma) in late‐Messinian marginal basins within the pre‐Apulian foreland basin and in the wedge‐top (<300 m) developed over the Ionian zone. During the second MSC stage (5.60–5.55 Ma), the PLG evaporites were deeply eroded in the forebulge–backbulge and the wedge‐top areas, and supplied the foreland basin's depocentre with gypsum turbidites assigned to the Resedimented Lower Gypsum (RLG) unit. In this study, we propose a simple model for the Neogene–Pliocene continental foreland‐directed migration of the Hellenide thrusting, which explains the palaeogeography of the Zakynthos basin. The diapiric movements of the Ionian Triassic evaporites regulated the configuration and the overall subsidence of the foreland basin and, therefore, the MSC expression in this area.  相似文献   

18.
《Geomorphology》2007,83(1-2):183-192
Wind-splash is a process in which wind and rain combine to cause soil erosion. In upland Britain, the conditions necessary for wind-splash erosion are relatively common and frequently occur in locations where blanket peat is an important land cover. A typical location is Moss Flats (North Pennines, northern England, UK). Wind-splash processes were monitored intensively at this site over 3 months using a circular configuration of mass flux sediment samplers, and meteorological data logged from an on-site automatic weather station. Maximum peat flux rates were measured between south-southwest and west-northwest directions in association with relatively moderate intensity, frontal rainfall, typically 4–6 mm h 1. Wind-splash processes operate in any direction due to changeable synoptic weather patterns. Windward peat fluxes were typically 2–13 times greater than those recorded at leeward orientations. Spatial patterns of erosion are reflected in the wider landscape through the development of small-scale, erosional landforms (peat hags), which frequently display preferred orientations within the range of maximum peat flux. It is suggested that wind-splash may be a more important process of peat erosion than hitherto reported in UK upland areas.  相似文献   

19.
We analysed modern mass‐accumulation patterns on the western Adriatic mud wedge (Italy), an elongated belt of shelf mud formed by coalesced prodeltas of the Adige, Po, and Apennine rivers, as part of an integrated strategy aimed at producing a quantitative sediment budget model for muddy continental shelves sourced by multiple compositionally distinct fluvial systems. Sediment provenance and source‐specific accumulation rates of surface sediments were quantified by combining results of grain‐size analysis and geochemical analysis of specific size fractions with bulk mass accumulation rates. Statistical classification algorithms adapted to compositional data were used to partition the total (geochemical) variation of sediment properties into size‐related and provenance‐specific factors. We identified geochemically distinct fluvial end‐member sediment types in two different grain‐size fractions, which were grouped into sediments derived from the Apennine rivers, and sediments derived from the Po and Adige rivers. Compositional fingerprints (end‐member compositions) of each source area were estimated by taking into account relative rates of fluvial sediment supply from rivers as predicted by numerical modelling. The end members allow us to explain geochemical compositional variation of mud‐wedge surface sediments in terms of provenance and size‐selective dispersal, and map mass accumulation rates of sediments from individual source areas (grain size<63 μm), as well as bulk sand accumulation rates (grain size>63 μm) across the western Adriatic mud wedge. The source‐specific rates of fine‐grained sediment supply derived from geostatistical estimates of mass‐accumulation rates were used to calibrate the numerical model of sediment supply to present‐day conditions.  相似文献   

20.
We analyse a regional 2D seismic section of the Mexican Ridges foldbelt (MRFB), western Gulf of Mexico, and construct excess‐area diagrams for each of the structures comprising the foldbelt to estimate shortening, the onset of folding and the degradation of the folded seafloor. From the chronostratigraphy, we derive rates of tectonic and superficial mass transport and illustrate how they change across the MRFB. The resulting tectonic transport in the MRFB is 11.8 km forming a train of twelve buckle folds above a detachment at a depth of ca. 6 s of two‐way travel time, with an average strain of ca. 10%. The fold train grew at a mean uplift rate of ca. 0.21 mm year?1. Cross‐sectional balancing demonstrates that shortening balances the down‐slip motion of the Quetzalcoatl extensional system (QES), suggesting that horizontal compaction, volume loss and other penetrative deformation mechanisms are negligible. By assuming steady‐state denudation, we are able to distinguish sediments derived locally from sediments transported from distant sources. The constant of mass diffusivity, a parameter controlling the degradation rate, is ca. 0.42 m2 year ?1, which is characteristic of rapid, episodic, superficial mass movements. The combined sedimentation rate from both, local and distal sources is ca. 0.23 mm year ?1. Those values are not constant; structures proximal to the continental shelf are rising rapidly and are being degraded more intensely than those in the distal part of the MRFB, where sedimentation outweighs tectonic uplift. Our results indicate deformation initiated up to 3 Myr earlier than estimated from stacking patterns. Moreover, we find deformation started synchronously during the Late Miocene throughout the MRFB and not in two episodes as the stacking relations suggest. The discrepancy can be explained by a delay in the sedimentary response to folding. During early fold growth, nearly constant thickness strata are deposited before a progressive unconformity and other converging geometries develop. The development of growth strata is fast in the folds near the QES, which are being uplifted rapidly and degraded vigorously. Under these conditions, the stratigraphic relations give only a broad estimate of the pretectonic/syntectonic limit when compared to the excess‐area method. On the other hand, the development of growth strata took twice as much time for folds near the abyssal plain, which are being uplifted at a slower rate and where degradation is less intense. Consequently, the delay takes more time, and the use of stratigraphic relations introduces an even more pronounced bias towards younger ages in the identification of the onset of folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号