首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite warming regional conditions and our general understanding of the deglaciation, a variety of data suggest glaciers re‐advanced on Svalbard during the Lateglacial–early Holocene (LGEH). We present the first well‐dated end moraine formed during the LGEH in De Geerbukta, NE Spitsbergen. This landform was deposited by an outlet glacier re‐advancing into a fjord extending 4.4 km beyond the late Holocene (LH) maximum. Comparing the timing of the De Geerbukta glacier re‐advance to a synthesis of existing data including four palaeoclimate records and 15 other proposed glacier advances from Svalbard does not suggest any clear synchronicity in glacial and climatic events. Furthermore, we introduce six additional locations where glacier moraines have been wave‐washed or cut by postglacial raised marine shorelines, suggesting the landforms were deposited before or during high relative sea‐level stands, thus exhibiting a similar LGEH age. Contrary to current understanding, our new evidence suggests that the LGEH glaciers were more dynamic, exhibited re‐advances and extended well beyond the extensively studied LH glacial expansion. Given the widespread occurrence of the LGEH glacier deposits on Svalbard, we suggest that the culmination of the Neoglacial advances during the Little Ice Age does not mark the maximum extent of most Svalbard glaciers since deglaciation; it is just the most studied and most visible in the geological record.  相似文献   

2.
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

4.
An integrated interpretation of on‐ and offshore stratigraphical records at Leirfjorden, north Norway, reveals new aspects of the area's palaeoenvironmental history. The study is based on marine sparker data and well‐exposed sections on land that were analysed for their sediment facies, mineralogy and fossil assemblages. Existing research and new radiocarbon dates provide a chronological framework for the interpretation. The late Younger Dryas Nordli substage type locality in the Leirfjorden catchment is revised and found to reflect local glacial activity, maybe a collapse of stagnant ice rather than glacier advance, while late Younger Dryas to Preboreal glacier re‐advances south of Leirfjorden and near Ranfjorden are here named the Bardal substage. The stratigraphical record includes pre‐Younger Dryas, valley‐crossing, glacial striae and old till with provenance of resistant bedrock typical of more elevated mountain areas. It differs from younger till units representing topographically controlled glacier movement. Part of the Leirfjorden fjord‐valley system is located between the main glacial and fluvial drainage paths affecting the sediment supply. As a result, highstand deposits are indistinct and fluvial sediments form only a minor part of the forced‐regressive systems tract. Instead, the valley fill overlying till and subtill sediments is dominated by the deglacial transgressive tract and a forced‐regressive systems tract with composite marine deposits and various marine erosion surfaces. A special event bed is interpreted as a possible tsunami deposit caused by seismicity and/or mass‐wasting in the fjord following glacier retreat. The study highlights the stratigraphical complexity of interconnected fjord and sound systems in a low accretion setting.  相似文献   

5.
Exceptionally high sedimentation rates in Arctic fjords provide the possibility to reconstruct environmental conditions in high temporal resolution during the (pre‐)Holocene. The unique geographical location of Svalbard at the intersection of Arctic and Atlantic waters offers the opportunity to estimate local (mainly glacier‐related) vs. regional (hydrographic) variabilities. Sedimentological, micropalaeontological and geochemical data from the very remote, glacier‐surrounded Wahlenbergfjord in eastern Svalbard provides information on glacier dynamics, palaeoceanographic and sea‐ice conditions during the Holocene. The present study illustrates a high meltwater discharge during the summer insolation maximum (c. 11.3–7.7 ka) when the intrusion of upwelled relatively warm Atlantic‐derived waters led to an almost open fjord situation with reduced sea ice in summer. Around 7.7 ka, a rapid hydrographic shift occurred: the dominance of inflowing Atlantic‐derived waters was replaced by a stronger influence of Arctic Water reflecting regional palaeoceanographic conditions evident in the benthic foraminiferal fauna also at Svalbard's margins. Neoglacial conditions characterized the late Holocene (c. 3.1–0.2 ka), when glaciers probably advanced as cold atmospheric temperatures were decoupled from the advection of relatively warm intermediate waters probably caused by an extending sea‐ice coverage. Accordingly, our data show that even a remote, glacier‐proximal study site reflects rapid as well as longer‐term regional changes.  相似文献   

6.
Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961–1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250–1900) as representing the most extensive ice margins since early Holocene deglaciation, with temperature depressions of 1–2 °C compared to the AD 1961–1990 average. Steep north–south and west–east temperature gradients are reconstructed in the Holocene records of Iceland, suggesting a strong maritime influence on the terrestrial climate of Iceland.  相似文献   

7.
Alpine glacier fluctuations provide important paleoclimate proxies where other records such as ice cores, tree rings, and speleothems are not available. About 20 years have passed since a special issue of Quaternary Science Reviews was published to review the worldwide evidence for Holocene glacier fluctuations. Since that time, numerous sites have been discovered, new dating techniques have been developed, and refined climatic hypotheses have been proposed that contribute to a better understanding of Earth's climate system. This special volume includes 12 papers on Holocene and latest Pleistocene alpine glacier fluctuations that update the seven review papers from 1988.Major findings of these 12 papers include the following: many, but certainly not all, alpine areas record glacier advances during the Younger Dryas cold interval. Most areas in the Northern Hemisphere witnessed maximum glacier recession during the early Holocene, with some glaciers disappearing, although a few sites yield possible evidence for advances during the 8.2 ka cooling event. In contrast, some alpine areas in the Southern Hemisphere saw glaciers reach their maximum post-glacial extents during the early to middle Holocene. In many parts of the globe, glaciers reformed and/or advanced during Neoglaciation, beginning as early as 6.5 ka. Neoglacial advances commonly occurred with millennial-scale oscillations, with many alpine glaciers reaching their maximum Holocene extents during the Little Ice Age of the last few centuries. Although the pattern and rhythm of these glacier fluctuations remain uncertain, improved spatial coverage coupled with tighter age control for many events will provide a means to assess forcing mechanisms for Holocene and latest Pleistocene glacial activity and perhaps predict glacier response to future impacts from human-induced climate change.  相似文献   

8.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

9.
A high-resolution record of Holocene deglacial and climate history was obtained from a 77 m sediment core from the Firth of Tay, Antarctic Peninsula, as part of the SHALDRIL initiative. This study provides a detailed sedimentological record of Holocene paleoclimate and glacial advance and retreat from the eastern side of the peninsula. A robust chronostratigraphy was derived from thirty-three radiocarbon dates on carbonate material. This chronostratigraphic framework was used to establish the timing of glacial and climate events derived from multiple proxies including: magnetic susceptibility, electric resistivity, porosity, ice-rafted debris content, organic carbon content, nitrogen content, biogenic silica content, and diatom and foraminiferal assemblages. The core bottomed-out in a stiff diamicton interpreted as till. Gravelly and sandy mud above the till is interpreted as proximal glaciomarine sediment that represents decoupling of the glacier from the seafloor circa 9400 cal. yr BP and its subsequent landward retreat. This was approximately 5000 yr later than in the Bransfield Basin and South Shetland Islands, on the western side of the peninsula. The Firth of Tay core site remained in a proximal glaciomarine setting until 8300 cal. yr BP, at which time significant glacial retreat took place. Deposition of diatomaceous glaciomarine sediments after 8300 cal. yr BP indicates that an ice shelf has not existed in the area since this time.The onset of seasonally open marine conditions between 7800 and 6000 cal. yr BP followed the deglacial period and is interpreted as the mid-Holocene Climatic Optimum. Open marine conditions lasted until present, with a minor cooling having occurred between 6000 and 4500 cal. yr BP and a period of minor glacial retreat and/or decreased sea ice coverage between 4500 and 3500 cal. yr BP. Finally, climatic cooling and variable sea ice cover occurred from 3500 cal. yr BP to near present and it is interpreted as being part of the Neoglacial. The onset of the Neoglacial appears to have occurred earlier in the Firth of Tay than on the western side of the Antarctic Peninsula. The Medieval Warm Period and Little Ice Age were not pronounced in the Firth of Tay. The breadth and synchroneity of the rapid regional warming and glacial retreat observed in the Antarctic Peninsula during the last century appear to be unprecedented during the Holocene epoch.  相似文献   

10.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

11.
Lyså, A., Hjelstuen, B. O. & Larsen, E. 2009: Fjord infill in a high‐relief area: Rapid deposition influenced by deglaciation dynamics, glacio‐isostatic rebound and gravitational activity. Boreas, 10.1111/j.1502‐3885.2009.00117.x. ISSN 0300‐9483. Seismic profiles and gravity cores have been collected from the previously glaciated Nordfjord system on the west coast of Norway. The results give new information about the deglaciation history of the area and contribute to our understanding of fjord fill in high relief areas. During the last deglaciation, up to 360 m of sediments was deposited in the 135 km long fjord system. Shortly after the coastal area became ice‐free, ~12 300 14C years BP, the first ice‐marginal deposits were formed, probably due to a minor glacier re‐advance. The greatest volume of sediments in the fjord was deposited during the Allerød ice recession period, the Younger Dryas re‐advance and the succeeding ice retreat period until the ice disappeared from the fjord in early Preboreal. During the Allerød, the fjord was ice‐free and glaciomarine stratified sediments were deposited. The ice margin is suggested to have been located just west of Lake Strynevatnet before the advance during the Younger Dryas. In the late phase of the Younger Dryas, and within the succeeding ~1000 years, the glacio‐isostatic rebound was rapid, and extensive re‐sedimentation took place. Slide activities continued into mid‐Holocene, albeit with less intensity and were followed by normal and calm marine conditions that prevailed until the present. One huge rock avalanche into the fjord took place between 2200 and 1800 14C yr BP, probably triggering a tsunami and several slides in the fjord. Even though glacigenic sediments totally dominate in terms of sediment volume, the present study underlines the importance of re‐sedimentation and other gravitational processes in such fjord settings.  相似文献   

12.
Here we provide three new Holocene (11–0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50–53°S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past ~ 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5°C and a cooling centered at ~ 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at ~ 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords.  相似文献   

13.
In spite of a widespread distribution, the way in which plateau icefields affect the glaciation and deglaciation of adjacent terrains is not particularly well‐known. This paper aims to identify how the deglaciation of the fjord and plateau terrain of north Norway has influenced the glacial geomorphology and relative sea‐level history of both local and adjacent areas and so serve as a model for interpreting similar areas along the continental margins of northwest Europe and elsewhere. The identification of moraines and their relationships with the Main shoreline of northern Norway allows the margins of the Øksfjordjøkelen, Svartfjelljøkelen and Langfjordjøkelen plateau icefields to be identified in the adjacent terrains. In locations where ice margins are uncertain, it is also possible to reconstruct ice limits by means of glacier models appropriately constrained by known local conditions and dates. Earlier glacier margins, characterised in north Norway by ice shelves floating in the local inlets of major fjords, also can be related to known regional shorelines. The distribution of high shoreline fragments, augmented by radiocarbon dates, helps show the extent to which inter‐island channels and outermost parts of fjords can become deglaciated relatively early in comparison with published maps of regional deglaciation. Plateau‐icefield‐centred glaciation became important sometime after 14 000 14C yr BP and was characterised by glacier readvances up to, and in some locations beyond, earlier moraines and raised marine features. Although overlooked until recently, the identification of the influence of plateau icefields on local glaciation, and their interaction with local and regional marine limits, is of great importance in accurate palaeoenvironmental reconstruction. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The Skagafjörður fjord in northern Iceland is located between the Tröllaskagi Peninsula in the east and the Skagi Peninsula in the west. The tributary valleys of the fjord originate in the highland area about 15 km north of the Hofsjökull icecap. The results of this work improve the knowledge of the deglaciation pattern in Skagafjörður and explore the adequacy of the 36Cl cosmic ray exposure dating method in an Icelandic environment, where this method has rarely been applied to deglaciated surfaces. The 36Cl dating method was applied to 13 rock samples taken on a transect from the coastal areas towards the highlands. All samples were obtained from rock outcrops with glacier‐polished surfaces from the Last Glaciation and from one of the few well‐preserved erratic boulders. The cosmogenic results, combined with previous radiocarbon results, indicate that the ice margin was situated in the outermost sector of Skagafjörður at approximately 17–15 ka BP. Subsequently, it retreated and occupied the central part of the fjord between 15 and 12 ka BP and then the innermost sector of the fjord about 11 ka BP. The samples collected between this position and the highlands show an average age of approximately 11 ka, indicating rapid deglaciation after the early Preboreal. These results agree with earlier studies of the deglaciation history of northern Iceland, reinforce previous deglaciation models in the area and enable a better understanding of glacial evolution in the North Atlantic from the Late Pleistocene to Holocene transition.  相似文献   

15.
A Schmidt hammer was used in conjunction with lichenometry to examine the relative age of the outermost Neoglacial moraines in front of glaciers in the Jotunheimen mountains of southern Norway. Particular attention was directed at (1) the magnitude of the 'Little Ice Age' glacier expansion episode relative to any others of Neoglacial age, and (2) the potential and limitations of the Schmidt hammer in the context of Holocene glacial chronologies. Schmidt hammer R-values were measured at 34 glaciers and the sizes of the lichen Rhizocarpon geographicum agg. at 80 glaciers. Unusually low R-values and large lichens suggest the occurrence of pre- 'Little lee Age' Neoglacial moraines at only a small minority (< 10 %) of the sampled glaciers. The traditional model of relatively large southern Norwegian glaciers during the 'Little Ice Age' is substantiated and it is tentatively suggested that differences in climate or glacier type may account for a regional difference in the status of the 'Little Ice Age' between northern and southern Scandinavia. The incorporation of weathered boulders into 'Little Ice Age' moraines by glacier push mechanisms, and the altitudinally-related variation in boulder surface textures, are identified as major sources of potential error in the use of the Schmidt hammer R-values for relative-age determination of Neoglacial surfaces.  相似文献   

16.
Dortch, J. M., Owen, L. A., Caffee, M. W. & Brease, P. 2009: Late Quaternary glaciation and equilibrium line altitude variations of the McKinley River region, central Alaska Range. Boreas, 10.1111/j.1502‐3885.2009.00121.x. ISSN 0300‐9483 Glacial deposits and landforms produced by the Muldrow and Peters glaciers in the McKinley River region of Alaska were examined using geomorphic and 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating (SED) methods to assess the timing and nature of late Quaternary glaciation and moraine stabilization. In addition to the oldest glacial deposits (McLeod Creek Drift), a group of four late Pleistocene moraines (MP‐I, II, III and IV) and three late Holocene till deposits (‘X’, ‘Y’ and ‘Z’ drifts) are present in the region, representing at least eight glacial advances. The 10Be TCN ages for the MP‐I moraine ranged from 2.5 kyr to 146 kyr, which highlights the problems of defining the ages of late Quaternary moraines using SED methods in central Alaska. The Muldrow ‘X’ drift has a 10Be TCN age of ~0.54 kyr, which is ~1.3 kyr younger than the independent minimum lichen age of ~1.8 kyr. This age difference probably represents the minimum time between formation and early stabilization of the moraine. Contemporary and former equilibrium line altitudes (ELAs) were determined. The ELA depressions for the Muldrow glacial system were 560, 400, 350 and 190 m and for the Peters glacial system 560, 360, 150 and 10 m, based on MP‐I through MP‐IV moraines, respectively. The difference between ELA depressions for the Muldrow and Peters glaciers likely reflects differences in supraglacial debris‐cover, glacier hypsometry and topographic controls on glacier mass balance.  相似文献   

17.
High‐resolution chirp sonar profiling in the northeastern Skagerrak shows acoustically stratified sediments draping a rough‐surfaced substratum. A 32 metre long sediment core retrieved from the survey area encompasses the entire Holocene and latest Pleistocene. The uppermost seismo‐acoustic units in the chirp profiles represent Holocene marine sediments. The lowermost unit is interpreted as ice‐proximal glacial‐marine sediments rapidly deposited during the last deglaciation. The end of ice‐proximal sedimentation is marked by a strong reflector, interpreted to have been formed during latest Pleistocene time as a consequence of rapid ice retreat and drastically lowered sedimentation rate. The subsequent distal glacial‐marine sediments were deposited with initially high sedimentation rates caused by an isostatic rebound‐associated sea‐level fall. Based on correlation between the core and the chirp sonar profiles using measured sediment physical properties and AMS 14C dating, we propose a revised position for the Pleistocene/Holocene boundary in the seismo‐acoustic stratigraphy of the investigated area. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The sedimentary record from the Ugleelv Valley on central Jameson Land, East Greenland, adds new information about terrestrial palaeoenvironments and glaciations to the glacial history of the Scoresby Sund fjord area. A western extension of a coastal ice cap on Liverpool Land reached eastern Jameson Land during the early Scoresby Sund glaciation (≈the Saalian). During the following glacial maximum the Greenland Ice Sheet inundated the Jameson Land plateau from the west. The Weichselian also starts with an early phase of glacial advance from the Liverpool Land ice cap, while polar desert and ice‐free conditions characterised the subsequent part of the Weichselian on the Jameson Land plateau. The two glaciation cycles show a repeated pattern of interaction between the Greenland Ice Sheet in the west and an ice cap on Liverpool Land in the east. Each cycle starts with extensive glacier growth in the coastal mountains followed by a decline of the coastal glaciation, a change to cold and arid climate and a late stage of maximum extent of the Greenland Ice Sheet. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Holocene glacier variations pre‐dating the Little Ice Age are poorly known in the western Alps. Studied for two centuries, the Miage morainic amphitheatre (MMA) is composed of three subconcentric sets of c. 25 moraines. Because of its location and of a dominant mode of morainic accretion, the MMA is a well‐preserved marker of the glacier dynamics during the Neoglacial. Radiocarbon dates were obtained by digging and coring in inter‐ morainic depressions of the MMA and through a deep core drilling in a dammed‐lake infill (Combal); complementary data for the inner MMA were obtained by lichenometry and dendrochronology. Radiocarbon chronology shows that (i) the MMA not only pre‐dates the Little Ice Age (LIA), but was built at least since 5029–4648 cal. yr BP (beginning of the Neoglacial); (ii) outer sets of moraines pre‐date 2748–2362 cal. yr BP; (iii) the MMA dammed the Lake Combal from 4.8 to 1.5 cal. kyr BP, while lakes/ponds formed inside the moraines (e.g. from 2147–1928 to 1506–1295 cal. yr BP). The ‘Neoglacial model’ proposed here considers that the MMA formed during the whole Neoglacial by a succession of glacier advances at 4.8–4.6 cal. ky BP (early Neoglacial), around 2.5 cal. ky BP (end of Göschener I), at AD 600–900 (end of Göschener II) and during the LIA, separated by raising phases of the right‐lateral moraine by active dumping because of the Miage debris cover.  相似文献   

20.
High-arctic fan delta recording deglaciation and environment disequilibrium   总被引:1,自引:0,他引:1  
Study of a Holocene fan delta in Adventfjorden, Spitsbergen, provides new insight into the nature of high‐arctic coastal sedimentation and deglaciation dynamics. The fjord‐side, gravelly Gilbert‐type fan delta began to form at the local marine limit c. 10 ka BP, supplied seasonally with sediment by meltwater from a cirque glacier left behind by the retreating Late Weichselian ice sheet. Relative sea level had fallen by 63 m, and the fan delta reached a radius of c. 1 km by 6 ka BP, when the relic glacier eventually melted down and fluvial activity declined. A strong influence of marine processes is recorded by the fan‐delta foreset facies, overlain by alluvium. Supplied with sediment by longshore drift, the fan‐delta front continued to advance at a lower rate, while relative sea level fell further by 5 m and ceased to fall around 5·4 ka BP. The following transgression was countered by longshore sediment supply until 4·7 ka BP, when the delta‐front beach aggraded and a spit platform began to climb onto the delta plain, recording a relative sea‐level rise of 4 m. The subsequent regression was initially non‐depositional, with the relative sea level falling by > 4 m in 200 years, outpacing fluvial supply, and the re‐emerging fan delta being swept by longshore currents. A regressive beach began to form c. 4·3 ka BP, while relative sea level gradually reached its present‐day position. The feeder braided stream was wandering across the delta plain during this time, but incised once the fan‐delta shoreline began to retreat by wave erosion and turned into a receding modern escarpment. The stream has since been adjusting its profile by gradually eroding the pre‐existing alluvium and distributing the coarse sediment supplied from catchment slopes by debrisflows and snow avalanches. Modern snowflows have also spread debris onto the abandoned fan surface. The erosional retreat of the fan delta has been accompanied by lateral shoreline accretion on both its sides. The study has important regional implications and demonstrates that Holocene fan deltas can provide a valuable record of the deglaciation history in high‐arctic terrains, where glacial deposits are scarcely preserved on land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号