首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
利用2020年6月1日—2022年5月31日CMA GD模式2 m气温预报产品(预报时效为13—36 h)和同期江西省智能网格预报区域内地面站气温观测资料,计算气温预报准确率、平均误差和均方根误差,并统计分析其时空分布特征。结果表明: 1)模式预报准确率在不同月份、起报时次存在差异,暖季总体较高,冷季总体较低;暖季08时起报产品的月准确率总体高于20时,冷季反之;秋、冬季旬准确率分布更离散。模式预报产品其准确率明显低于中央气象台和江西省气象台订正产品,需订正后使用。08时起报产品对寒潮的预报效果优于20时。2)气温预报年误差分布存在日变化,最大值出现在08时,最小值出现在15时;年均方根误差峰值出现在15时和06时,白天大于夜间。3)冬季平均误差多为正值,夏季为负值,春、秋季平均误差大小界于冬、夏季之间;白天时段夏季均方根误差最大,夜间时段冬季最大。4)气温预报年误差地理分布特征明显,平原地区预报值偏低,年均方根误差最小;丘陵和山区22 h时效预报值偏高,31 h时效偏低;高山站预报值偏高,年均方根误差最大。丘陵地区负误差最大,平原地区最小;山区正误差最大。  相似文献   

2.
利用2014—2019年咸阳地区13个地面气象观测自动站风场数据、NCEP/NCAR 1°×1°再分析资料、西安探空资料及多普勒雷达产品、陕西智能网格逐小时格点化预报风场产品,对2014—2019年发生在咸阳地区的大风天气过程进行统计及分型处理,对比2017—2019年大风过程中陕西智能网格预报风场产品与实况风场差异,提炼出基于陕西智能网格预报风场产品的订正指标,利用2020年大风个例进行检验评估来验证订正指标的可靠性。结果表明:发生在咸阳地区的大风分为系统性大风和雷雨大风,其中系统性大风包括高压后部偏东大风和冷锋后部偏北大风,雷雨大风分为高空冷槽型、西风槽型、副高影响型、冷涡后部型以及低涡型;陕西智能网格预报可提前72 h准确预报出2类系统性大风天气过程,提前12 h预报的平均风速最大值与实况最大风速之间差值最小,可参考该预报时次的结果增加4 m/s进行订正,检验得到6级以上风速预报准确率提高约1831%左右;对于雷雨大风,最大小时增幅在2 m/s以上对雷雨大风的发生时段预报有一定的指示意义,结合25百分位的实况极大风速阈值、陕西智能网格预报极大风速阈值,与各个环境参量和雷达产品参数进行概率匹配,订正预报可在一定程度上提高此类大风极大风速预报准确率。  相似文献   

3.
4.
基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及滑动训练、最优融合等技术对模式误差序列进行时频处理,实现了对模式系统误差和局地误差的订正,发展了西北区智能网格气温客观预报方法(northwest intelligent grid temperature objective prediction method,NWTM)。以2017年3月—2018年2月数据作为训练样本,对2018年3月—2019年1月西北区239个国家基本站进行检验。结果表明:1)NWTM对CMA和ECMWF两种模式产品的气温预报能力有显著的提升;随着预报时效增长,两种模式订正产品的误差增大。2)NWTM对ECMWF西北区最高气温的订正效果要明显优于CMA,但就最低气温而言,NWTM对CMA的订正效果更为显著。其中,就24 h最高气温而言,ECMWF在宁夏的订正效果最好,CMA在青海的订正效果最好;而对于24 h最低气温的预报,CMA在西北4省的订正效果相差不大,ECMWF在陕西的订正效果最好。3)空间误差检验表明:针对最高气温的预报,ECMWF订正产品的订正能力明显优于CMA,特别是在甘肃河西走廊和中东部、陕西北部和南部、宁夏中南部及青海大部。就最低气温的预报而言,ECMWF和CMA对甘肃河东和陕西南部的订正能力较好;ECMWF订正产品在宁夏中南部及青海南部的订正能力高于CMA,而CMA订正产品在陕西中部的订正能力更优。  相似文献   

5.
随着我国智能网格预报业务的开展,海量高分辨率客观数据需要便捷的分析显示及产品制作平台高效处理。该文基于MICAPS4(Meteorological Information Comprehensive Analysis and Processing System Version 4.0,人机交互气象信息处理和天气预报制作系统)设计并实现智能网格预报平台,采用MVVM(模型-视图-视图模型,model-view-viewmodel)设计模式,实现业务逻辑与视图的分离,通过对各子功能模块的划分,降低模块之间的耦合度,具有良好的可扩展性。平台实现了高分辨率网格预报数据的显示分析和产品输出,开发了基于等值线、网格、关键点等智能化预报制作工具,集成了降水时间拆分、温度极值订正等客观预报方法,开发了降水、温度、相对湿度等要素一致性处理方法,可有效帮助预报员提高工作效率,同时能够确保产品之间的一致性。平台继承MICAPS4的微内核组件服务、高性能渲染引擎和开放式插件扩展管理等优良特性,实现面向智能网格预报的业务编排、智能编辑和算法集成。目前,该平台已经实现业务应用,为全国智能网格预报业务提供重要支撑。  相似文献   

6.
本文利用MICAPS4.1平台上的高空、地面、智能网格预报、集合预报等数值预报产品,对2018年10月26-28日发生在黑龙江省大兴安岭地区的一次区域性暴雪天气过程形成机制进行探讨。结果表明:高空槽后强冷空气与槽前西南暖湿气流在大兴安岭上空交汇,导致暖锋锋生,地面暖锋与低空暖式切变相互作用形成暴雪天气。暴雪的主要触发系统就是超极地冷空气促使高空槽强烈发展切涡,≥20m·s^-1的西南低空急流作为水汽输送带,为暴雪区提供了充足的水汽来源;垂直上升运动中心和散度辐合辐散中心耦合且加强,为暴雪提供了强有力的动力抬升条件,有利于上升运动的增强发展。智能网格预报产品对这次大兴安岭暴雪天气的落区、降水量级以及强降雪的时段,都预报的比较准确。  相似文献   

7.
为满足智能网格天气预报业务的应用需求,设计并搭建NAS网络存储方案。方案基于Debian Linux操作系统,通过搭建虚拟机环境,使用Open MediaVault软件等技术开发而成。使用该网络存储方案可以将存储设备与服务器彻底分离,集中管理和共享数据,从而释放带宽,提高性能,大大降低存储成本,提高重要天气预报业务系统运行效率。  相似文献   

8.
利用MICAPS常规数据,陕西现代气象一体化智能网格预报平台预报检验数据,以及陕西天气业务实时评估平台预报评分数据,选取2017年1—6月省级预报员综合主观预报结果与智能网格平台的多模式集成结果进行对比分析,同时选取2017年8月11—14日在西安周边发生的一次分散性强对流天气的预报服务作为个案分析,研究在智能预报发展前景下,预报员在预报业务体系中的位置与作用。研究结果表明,智能预报体系中预报员的作用是不可取代的,但是,预报员的职能将根据气象业务现代化的推进实现角色的转变,常规精细化预报产品将越来越不需要预报员的人工干预,预报员需要更加快速准确地进行灾害性天气的精细化订正,制作针对性服务产品,深入研究灾害性天气的机理,总结预报经验,改进数值预报模型的算法,为提高人工智能的效果提出建议和方法;对预报员的评价体系应该从预报准确率评分转变为灾害性天气订正技巧评分,以订正技巧来衡量一个预报员的业务水平。  相似文献   

9.
为提高智能网格的订正能力及预报水平,基于中央台客观指导产品的甘肃省切片数据和中国气象局陆面数据同化系统(Chinese Land Data Assimilation System Version 2.0,CLDAS-V2.0)日网格实况产品,采用卡尔曼滤波和滑动训练订正两种方法,对河西走廊东部地区(101.0°E—104.5°E,36.0°N—40.0°N)0.05°×0.05°格点最高、最低气温进行订正、检验和评估。结果表明:(1)季节对比,卡尔曼滤波和滑动训练订正产品对四季最高、最低气温的平均绝对误差均小于中央台客观指导产品,均小于2.00℃;卡尔曼滤波和滑动训练订正产品对四季最高、最低气温的预报准确率均大于70%,其中最高气温偏高6%~13%,最低气温偏高8%~24%。(2)空间对比,卡尔曼滤波和滑动训练订正产品对最高、最低气温的平均绝对误差绝大部分地区在1.00~2.00℃,个别地区大于2.00℃;卡尔曼滤波和滑动训练订正产品对最高(最低)气温的预报准确率大部分地区大于70%(60%~70%),个别地区大于80%(70%)。(3)总体上,卡尔曼滤波和滑动训练订正产品对最高、最低...  相似文献   

10.
在智能网格气象预报产品的基础上,采用B/S+C/S混合架构,建立了"环广西"赛道气象服务产品共享平台。通过共享平台,快速完成精细化气象服务产品的制作和发布,为做好重大活动气象服务保障提供借鉴和参考。  相似文献   

11.
基于2017—2018年中国气象局高分辨率数值预报产品、甘肃实时城镇预报产品和国家级地面观测站数据,利用小波分析、滑动训练、最优融合等技术,研发出甘肃省智能网格高低温客观订正产品。检验分析表明:城镇预报产品、滑动训练订正产品、最优融合产品3种订正产品对CMA预报均有订正能力,3种客观订正产品的最高气温订正能力强于最低气温订正能力;滑动训练法与最优融合法产生的高低温订正产品,在系统误差明显地区(甘南、陇南等)的预报结果要好于模式客观预报,而高低温城镇预报产品在气温局地性强或者模式客观预报能力差的区域有优势;最优融合预报方法生成的高低温产品预报能力略高于滑动训练订正产品且与现有预报员制作城镇预报产品基本持平,初步具备了替代主观预报的能力。  相似文献   

12.
通过智能物联网技术实时获取积水监测实况数据,利用天津市气象精细化格点预报产品和城市自动雨量观测站实况数据,以机器学习、神经网络模型和天津市城市内涝风险等级划分原理为基础,研究基于用户实时位置的城市内涝预报预警技术,研发天津市城市自动化积水监测预警系统。结果表明,该系统具备一定的城市内涝风险监测预警预报能力,并在2018—2020年多次重大天气过程中应用,积水深度预报结果与监测结果基本一致,应用数据表明验证结果良好,系统可以为政府防灾减灾决策、指挥调度提供精准、及时的气象数据支撑。  相似文献   

13.
由于能见度具有局地性和复杂的非线性变化特征,一直是精细化预报的难点。人工神经网络对复杂变化过程的模拟能力较高,为解决这一难题提供了可能性。本文采用循环神经网络,利用福州气象观测站地面观测数据,建立了福州单站能见度短临预报模型,并就预报能力进行了评估。随机检验结果表明,在1 h、3 h、6 h时效上,循环神经网络的预报与观测的变化趋势一致性较好;均方根误差比基于实况的预报分别减小15.75%、31.66%、41.26%,说明具备较好的预报能力;平均绝对值误差比传统BP神经网络分别减小12.90%、24.45%、 38.99%,表明循环神经网络对能见度预报具有优势,为能见度的精细化短临预报提供了新途径。  相似文献   

14.
通过对2021年中国气象局气象干部培训学院湖北分院举办的气象预警预报培训的107名学员进行问卷调查,使用层次分析法对调查数据进行分析,得出学员的学习态度、学习能力、学习意愿、单位领导的支持和培训教师的授课水平是影响气象预警预报培训效果的主要因素。其中,属培训对象的因素有5项,属培训组织的有3项,属培训环境的有2项。在培训教育中应充分调动培训学员的主观能动性,从师资水平和培训设计上提升培训效果,并创造良好的培训环境以保障培训效果。  相似文献   

15.
基于中国气象局陆面数据同化系统(Land surface Data Assimilation System of China Meteorological Administration,CLDAS)逐小时气温实况融合数据,检验评估了ECMWF、CMA-MESO-3km不同尺度模式对甘肃省逐小时气温的预报性能,并利用低频滑动平均订正算法(LPSC)对模式的系统性误差进行订正;同时对SCMOC和订正后两种模式的逐小时气温预报效果进行了统计对比。结果表明:1)ECMWF、CMA-MESO-3km模式对甘肃省逐小时气温的预报具有相对稳定的系统性误差,夜间预报准确率明显低于白天,主要表现为夜间预报显著偏高,白天为小的负偏差。2)LPSC算法能够有效改善ECMWF和CMA-MESO-3km对甘肃省逐小时气温预报的系统性误差,订正效果显著。订正后ECMWF、CMA-MESO-3km的预报准确率分别较模式本身提高了20.24%、20.25%,平均误差减小至±0.3 ℃之内;空间分布亦表明,订正后全省平均误差均明显降低至±2 ℃之内。3)同类产品对比检验表明:订正后ECMWF、CMA-MESO-3km两种逐小时气温预报产品的预报效果整体上均优于SCMOC,预报准确率分别较SCMOC高20.65%、13.55%,平均绝对误差在各个时次也明显低于SCMOC。技巧评分的空间分布表明,订正后ECMWF在全省大部分地方均为正技巧,其中酒泉南部山区可达80%以上;而订正后CMA-MESO-3km的预报效果各个季节分布存在差异,主要体现在陇中和陇东南地区,冬春季以弱的正技巧为主,夏秋季基本为负技巧。另外,业务应用结果表明,对于转折性天气过程,使用该方法需要特别注意。  相似文献   

16.
A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.  相似文献   

17.
根据1980—2006年长三角地区6个站点累计27a的雾资料,分析了长江三角洲地区雾的时间、空间分布特征。结果表明,秋末、冬季和春季长江三角洲地区雾频次较多,夏季较少,年平均雾日数呈缓慢减少趋势;雾区域分布不均匀,总体说来是东多西少。在此基础上,用时间序列方法建立了雾频次预测模型,并对2007年1—12月各月的雾频次进行预测检验,结果表明预测值与实际值误差较小,该模型具备较好的预测能力。  相似文献   

18.
选取中国东北区域162个气象站1961—2015年地面气温资料,采用多种统计方法分析了近55 a东北地区气温的一致性和局地性演变特征。结果表明:东北地区年平均气温存在较为良好的空间一致性,"全区一致型"气候类型为东北地区最主要气候形态;第一旋转载荷向量时间系数呈上升趋势亦存在较明显2—7 a的周期,说明北部地区气温受全球变暖、ENSO等大尺度气候背景影响显著; 1961—2015年北部区域以0. 34℃/10 a的升温率高于南部区域的0. 26℃/10 a,但1980年后增温趋势减慢;年平均气温的概率曲线随年代整体向高值区移动,北部区域冬季增暖较为显著,南部区域冬夏均较为明显,春秋季节可能有缩短趋势。  相似文献   

19.
段旭 《气象》1996,22(7):30-32
从物理量因子场与云南盛夏(7-8月)大雨作为预报量之间的相关系数计算入手,通过相关场分析来提取因子信息,经过不同组合试验,选出新的预报因子。检验表明,新的组合因子与预报量之间的相关性有明显提高。由此而建立的预报方程有较好的历史拟合率和较稳定的实际预报能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号