首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Effective evaluation, management and abstraction of groundwater resources of any aquifer require accurate and reliable estimates of its hydraulic parameters. This study, therefore, looks at the determination of hydraulic parameters of an unconfined aquifer using both analytical and numerical approaches. A long-duration pumping test data obtained from an unconfined aquifer system within the Tailan River basin in Xinjiang Autonomous Region in the northwest of China is used, in this study, to investigate the best method for estimating the parameters of the aquifer. The pumping test was conducted by pumping from a radial collector well and measuring the response in nine observation wells; all the wells used in the test were partially penetrating. Using two well-known tools, namely AquiferTest and MODFLOW, as an aid for the analytical and numerical approaches, respectively, the parameters of the aquifer were determined and their outputs compared. The estimated horizontal hydraulic conductivity, vertical hydraulic conductivity, and specific yield for the analytical approach are 38.1–50.30 m/day, 3.02–9.05 m/day and 0.204–0.339, respectively, while the corresponding numerical estimates are 20.50–35.24 m/day, 0.10–3.40 m/day, and 0.27–0.31, respectively. Comparing the two, the numerical estimates were found to be more representative of the aquifer in the study area since it simulated the groundwater flow conditions of the pumping test in the aquifer system better than the analytical solution.  相似文献   

2.
Groundwater in karstic aquifers can be dangerously sensitive to contamination. In this paper, DRASTIC assessment was modified and applied, for the first time, to address the intrinsic vulnerability for karst aquifers. The theoretical weights of two of DRASTIC’s parameters (aquifer media and hydraulic conductivity) were modified through sensitivity analysis. Two tests of sensitivity analyses were carried out: the map removal and the single parameter sensitivity analyses. The modified assessment was applied for the karst aquifers underlying Ramallah District (Palestine) as a case study. The aquifer vulnerability map indicated that the case study area is under low, moderate and high vulnerability of groundwater to contamination. The vulnerability index can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. The modified DRASTIC assessment has proven to be effective because it is relatively straightforward, use data that are commonly available or estimated and produces an end product that is easily interpreted.  相似文献   

3.
Coastal aquifers can become polluted due to natural and human activities, such as intrusion of saline water, discharge of effluents in industrial areas and chemical weathering of natural geological deposits. The present study is aimed mainly at understanding the geophysical and chemical characteristics of groundwater near Tuticorin, Tamilnadu, India by studying the electrical resistivity distribution of the subsurface groundwater by applying the Schlumberger vertical electrical sounding (VES) technique followed by chemical analysis of water samples. A total of 20 VES soundings were carried out to understand the resistivity distribution of the area and 21 water samples were collected to analyze the chemical quality. The interpretation and analysis of the results have identified different hydrogeologic behaviors, a highly saline coastal aquifer and freshwater locations. The results obtained from geophysical and geochemical sampling are in good agreement with each other. The approach shows the efficacy of the combination of geophysical and geochemical methods to map groundwater contamination zones in the study area.  相似文献   

4.
文章以北京市东南郊大兴迭隆起隐伏岩溶水子系统内的两个水源地(大兴念坛水源地与通州龙旺庄水源地)为例,研究数值模拟方法在隐伏岩溶地下水水源地保护区划分中的应用。研究基础为基于GMS建立的包括第四系与岩溶含水层在内的三维非稳定流地下水数值模拟模型,采用的主要技术手段为质点追踪技术,结合溶质质点迁移100 d与1 000 d的距离划分水源地的一级与二级保护区,并提出相应的污染防控措施。研究得出,对于隐伏岩溶水大部分来自上覆第四系松散孔隙水越流补给的情况,岩溶水源地保护区即是上覆松散含水层的保护区范围,应加强第四系孔隙含水层地下水污染的防治,以保护岩溶水不受污染。   相似文献   

5.
在地下水扩散方程中,压力传导系数是描述地下水运动的重要参数。传统的方法是通过抽水或注水给地下水系统一个扰动,监测地下水水位的响应,由此计算含水层的压力传导系数。文章提出用潮汐衰减率方法识别含水层压力传导系数,其适用于滨海区承压含水层的参数识别。在推导出解析解的基础上,通过数值拟合、最小二乘法、牛顿迭代法求得含水层的压力传导系数,提出潮汐衰减率的概念,建立余切函数与潮汐衰减率的线性关系,用线性关系中的斜率和截距识别压力传导系数。用潮汐衰减率方法识别出的压力传导系数与其实际值相等,说明该方法是正确有效的。潮汐信号衰减率与海水振荡的余切函数线性相关。数值仿真表明,该方法可以准确地估算出含水层的压力传导系数。潮汐衰减率方法具有少打井,经济高效等优点。潮汐衰减率方法为实际工程应用提供了可靠的理论基础,它可以用于部分实际工程中。该方法的局限性在于需要提供含水层的部分参数,如含水层的长度、海水波动振幅、频率等。  相似文献   

6.
In this paper, the hydraulic characteristics of the fracture-karst aquifer and the distribution patterns of petrochemical contaminants are studied. Then, a numerical model using the mixed Eulerian-Lagrangian approach is constructed to predict the distribution and transport of petrochemical compounds in groundwater. The results of numerical modelling and sensitivity analysis show that it may be a workable way for aquifer remediation to combine contamination sources control and capture zone establishment.  相似文献   

7.
Anthropogenic pollution of shallow groundwater resources due to industrial activities is becoming a cause of concern in the east coastal belt of the state of Tamil Nadu, India. Integrated hydrogeological, geophysical and tracer studies were carried out in the coastal region encompassing an industrial complex. The objective has been to gain knowledge of aquifer characteristics, ascertaining groundwater movement and its flow direction, which would in turn reveal the possibility of contamination of groundwater regime and its better management. The results of multi-parameters and model study indicate that the velocity of groundwater flow ranges from 0.013 m/d to 0.22m/d in and around the industrial complex in upstream western part of the catchment and 0.026 m/d to 0.054m/d in the downstream eastern part, near the coast. These parameters are vital for the development of groundwater management scheme.  相似文献   

8.
Groundwater resources in the semi-arid regions of southern India are under immense pressure due to large-scale groundwater abstraction vis-à-vis meager rainfall recharge. Therefore, understanding and evaluating the spatial distribution of groundwater is essential for viable utilization of the resource. Here, we assess groundwater potential at the watershed scale, in a semi-arid environment with crystalline aquifer system without a perennial surface water source using remote sensing, geophysical, and GIS-based integrated multi-parameter approach. GIS-based weighed overlay analysis is performed with input parameters, viz., geology, geomorphology, lineament density, land use, soil, drainage density, slope, and aquifer thickness. The watershed is categorized into four zones, namely, “very good” (GWP4), “good” (GWP3), “moderate” (GWP2), and “low” (GWP1) in terms of groundwater potential. Overall, ~?70% of the study area falls under moderate to low groundwater potential, indicating a serious threat to the future availability of the resource. Therefore, serious measures are required for maintaining aquifer resilience in this over-exploited aquifer (e.g., restricting groundwater withdrawal from GWP1 and GWP2 zones). Further, as the aquifer is under tremendous anthropogenic pressure, rainwater harvesting and artificial recharge during monsoon are advocated for sustainable aquifer management. Due to the direct dependence of crop production vis-à-vis farmer economy on groundwater, this study is an important step towards sustainable groundwater management and can be applied in diverse hydrological terrains.  相似文献   

9.
The subsurface data are a basic requirement for the set up of hydrogeological framework. Geographic information systems (GIS) tools have proved their usefulness in hydrogeology over the years which allow for management, synthesis, and analysis of a great variety of subsurface data. However, standard multi-layered systems are quite limited for modeling, visualizing, and editing subsurface data and geologic objects and their attributes. This paper presents a methodology to support the implementation of hydrogeological framework of the multi-layered aquifer system in Nabeul–Hammamet (NH) coastal region (NE, Tunisia). The methodology consists of (1) the development of a complete and generally accepted hydrogeological classification system for NH aquifer system (2) the development of relational databases and subsequent GIS-based on geological, geophysical and hydrogeological data, and (3) the development of meaningful three-dimensional geological and aquifer models, using GIS subsurface software, RockWorks 2002. The generated 3-D geological models define the lithostratigraphy and the geometry of each depositional formation of the region and delineate major aquifers and aquitards. Where results of the lithologic model revealed that there is a wide range of hydraulic conductivities in the modeled area, which vary spatially and control the groundwater flow regime. As well, 17 texturally distinct stratigraphic units were identified and visualized in the stratigraphic model, while the developed aquifer model indicates that the NH aquifer system is composed of multi-reservoir aquifers subdivided in aquifers units and separated by sandy clay aquitards. Finally, this study provides information on the storing, management and modeling of subsurface spatial database. GIS has become a useful tool for hydrogeological conceptualization and groundwater management purposes and will provide necessary input databases within different groundwater numerical models.  相似文献   

10.
In this paper, groundwater aquifer vulnerability map has been developed by incorporating the major geological and hydro-geological factors that affect and control the groundwater contamination using GIS based DRASTIC model. This work demonstrates the potential of GIS to derive a map by overlying various spatially referenced digital data layers that portrays cumulative aquifer sensitivity ratings across the Kathmandu Valley, Nepal, providing a relative indication of groundwater vulnerability to contamination. In fact, the groundwater is the major natural resources in Kathmandu for drinking purpose. The decline in groundwater levels due to the over exploitation and thus extracted water from shallow aquifer has been contaminated by the infiltration of pollutants from polluted river and land surface is continuous and serious. As the demand for water for human and industrial use has escalated and at the same time, the engineering and environmental costs are much higher for new water supplies than maintaining the existing sources already in use. Management of groundwater source and protecting its quality is therefore essential to increase efficient use of existing water supplies. Aquifer vulnerability maps developed in this study are valuable tools for environmental planning and predictive groundwater management. Further, a sensitivity analysis has been performed to evaluate the influence of single parameters on aquifer vulnerability assessment such that some subjectivity can be reduced to some extent and then new weights have been computed for each DRASTIC parameters.  相似文献   

11.
12.
In an aquifer, heterogeneity plays an important role in governing groundwater flow. Hence, aquifer characterization should involve both the pattern and values of the hydrogeological parameters. A new analytical solution describing the one-dimensional groundwater flow in a multi-zone unconfined aquifer is presented, and a methodology developed from the analytical solution and a heuristic approach for determining the pattern and values of the aquifer parameters are proposed. The analytical solution demonstrates that the hydraulic head varies spatially and is influenced by aquifer heterogeneity. Simulated annealing, a heuristic approach, is incorporated with the solution to simultaneously identify the pattern and values of the hydraulic conductivity for a horizontal multi-zone unconfined aquifer. This approach may be used to give an approximate result for a two-dimensional problem by dividing the model area into a number of transects along the transverse direction, identifying the parameter values along the longitudinal direction for each transect, and then smoothing the identified results.  相似文献   

13.
The 1996 reauthorization of the Safe Drinking Water Act required that each state in the US addresses the protection of public drinking water sources, including the development and implementation of a source-water assessment program. Such a program includes delineating source-water assessment areas, inventorying potential contaminant sources within this area, and determining the water system's susceptibility to contamination. The public was also involved in various phases of the program. Hawaii’s groundwater source assessment program is presented, along with an approach for implementation, which is consistent with federal requirements. The approach integrates groundwater models, aquifer databases, and a geographic information system. Source assessment areas were delineated by using numerical groundwater-flow models that used site-specific data to their fullest availability. The proposed approach is flexible enough to allow easy future updates as more sources are identified or as new information becomes available. The final product includes numerical scores that quantify the relative source susceptibility to contamination. Aquifer models developed in this study are potentially useful for future site-specific protection efforts or for other modeling purposes.  相似文献   

14.
Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.  相似文献   

15.
Groundwater flow in the Leon-Chinandega aquifer was simulated using transient and steady-state numerical models. This unconfined aquifer is located in an agricultural plain in northwest Nicaragua. Previous studies were restricted to determining groundwater availability for irrigation, overlooking the impacts of groundwater development. A sub-basin was selected to study the groundwater flow system and the effects of groundwater development using a numerical groundwater flow model (Visual MODFLOW). Hydrological parameters obtained from pumping tests were related to each hydrostratigraphic unit to assign the distribution of parameter values within each model layer. River discharge measurements were crucial for constraining recharge estimates and reducing the non-uniqueness of the model calibration. Steady-state models have limited usefulness because of the major variation of recharge and agricultural pumping during the wet and dry seasons. Model results indicate that pumping induces a decrease in base flow, depleting river discharge. This becomes critical during dry periods, when irrigation is highest. Transient modeling indicates that the response time of the aquifer is about one hydrologic year, which allows the development of management strategies within short time horizons. Considering further development of irrigated agriculture in the area, the numerical model can be a powerful tool for water resources management.  相似文献   

16.
There is an increasing demand for groundwater vulnerability maps which illustrate the exposure of aquifers against pollution. These maps show areas of greatest potential for groundwater contamination on the basis of local subsurface conditions. Parameters affecting vulnerability are mainly permeability and thickness of each protective layer. For unconsolidated sediments, the permeability is strongly related to the clay content, which can be deduced from indirect resistivity methods, like electrical-imaging. Such geophysical methods can be of great help in groundwater vulnerability studies because they disturb neither the structure nor the dynamics of the soil. Sensibility analysis was performed of the electrical resistivity tomography method for accurately mapping soil media. Managers and public administrators may effectively use this method for assessing the potential risk of groundwater contamination. In the studied zone, electrical resistivity exhibits a wide range of variability that can be easily correlated to soil parameters, such as clay content and hydraulic conductivity. A numerical index of protection has been assessed from the geophysical information derived from 2D electrical resistivity tomography. This work represents a preliminary approach on the natural vulnerability evaluation of shallow aquifers at the Empordà basin (NE Spain) that is highly affected by diffuse pollution by nitrates.  相似文献   

17.
This article presents the analysis of the temporal changes in water chemistry in a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland) during one decade of water exploitation. It is shown that the groundwater contamination, as documented in a previous work, still persists and has lead to steady groundwater quality deterioration. The most intensive changes in water chemistry due to contamination are observed in the regions recognized earlier as the most vulnerable parts of the aquifer. The influence of contamination is effective despite implementation of groundwater protection activities. The travails of groundwater quality protection of the confined or semi-confined aquifers were accented.  相似文献   

18.
Analysis of tidal effects on aquifer systems plays an important role in coastal aquifer management owing to various hydrological, engineering and environmental problems in coastal areas. Using the real-world data of unconfined and confined aquifers, a data-driven approach is presented in this study for the analysis of tide–aquifer interaction in coastal aquifers. Six analytical tide–aquifer interaction models were selected which take into account the effects of vertical beach, sloping beach, tidal loading, aquifer leakage, outlet capping, and combined leakage and outlet capping on tide-induced groundwater fluctuations. The tide–aquifer interaction datasets were obtained from the Konan groundwater basin (unconfined aquifer) of Japan and the Dridrate groundwater basin (confined aquifer) of Morocco. The analysis of the results obtained by the sloping beach model revealed that for a given beach slope, the amplitude of groundwater level increases with an increase in aquifer diffusivity and a decrease in aquifer thickness. However, no significant effect of beach slope was observed in this study at unconfined sites for all the datasets. The influence of tidal loading was found to be considerably less for all the three confined sites. Further, the analysis of the results of the leakage model indicated that with an increase in leakage into the aquifer, the amplitude of groundwater level as well as the phase shift (time lag) decreases. Of all the confined and unconfined datasets, only two confined sites were found to be affected by outlet capping. Overall, it is concluded that the coastal beach bordering the Konan basin is not significantly sloping, the contribution of tidal loading to tide-induced groundwater fluctuations in the Dridrate aquifer is not appreciable, and that the aquifer leakage and outlet capping do not exist at the unconfined sites under investigation.  相似文献   

19.
Papers presented at a two-day jointly sponsored IAHS/AGU symposium on groundwater contamination are briefly summarized. This international symposium was held 11–12 May, 1989, in Baltimore, Maryland. Presentations encompassed recent research developments in three general areas: abiotic and biotic processes governing contaminant transport; aquifer rehabilitation; and the influence of agricultural practices and nonpoint sources on aquifer quality. Contributions offered an interesting mixture of theoretical, mathematical, laboratory, and field studies. In the first session, transport processes explored ranged from dispersion and fingering to nonequilibrium sorption, metals complexation, and bacteria migration. The use of optimization modeling in the design of remediation strategies was the focus of another session. Here theoretical studies were presented alongside case histories of aquifer rehabilitation. In a final session, a number of models for agricultural management were described. These presentations were complemented by case studies of actual aquifer degradation resulting from land-use and management practices.  相似文献   

20.
Groundwater management requires complete visualization of aquifer characteristics to understand scientific aspects and hence remains a challenge, especially in hard rock terrains. In the present research paper, a comprehensive approach using 3D stratigraphic model, fence diagrams and numerical modeling has been proposed to understand the groundwater status for effective recharge. The stratigraphy, groundwater flow, and groundwater fluctuations for the period 1999–2010 were analyzed. The total volume of formations, volume of voids, storage capacity, and quantities of recharge of unconfined aquifer system in the Nagpur urban area were estimated. The steady state groundwater flow model of Basalt formation was calibrated to evaluate the subsurface system using Processing Modflow (PMWIN 5.3.2). The calibrated hydraulic head is compared with field observed head. The comparative spatial analysis presents a simple integrated approach in identifying zones with falling groundwater trends suitable for groundwater recharge in hard rock terrain in Nagpur urban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号