首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea–land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air–sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1–5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.  相似文献   

2.
Heat balance and eddies in the Peru-Chile current system   总被引:2,自引:1,他引:1  
The Peru-Chile current System (PCS) is a region of persistent biases in global climate models. It has strong coastal upwelling, alongshore boundary currents, and mesoscale eddies. These oceanic phenomena provide essential heat transport to maintain a cool oceanic surface underneath the prevalent atmospheric stratus cloud deck, through a combination of mean circulation and eddy flux. We demonstrate these behaviors in a regional, quasi-equilibrium oceanic model that adequately resolves the mesoscale eddies with climatological forcing. The key result is that the atmospheric heating is large (>50 W m?2) over a substantial strip >500 km wide off the coast of Peru, and the balancing lateral oceanic flux is much larger than provided by the offshore Ekman flux alone. The atmospheric heating is weaker and the coastally influenced strip is narrower off Chile, but again the Ekman flux is not sufficient for heat balance. The eddy contribution to the oceanic flux is substantial. Analysis of eddy properties shows strong surface temperature fronts and associated large vorticity, especially off Peru. Cyclonic eddies moderately dominate the surface layer, and anticyclonic eddies, originating from the nearshore poleward Peru-Chile Undercurrent (PCUC), dominate the subsurface, especially off Chile. The sensitivity of the PCS heat balance to equatorial intra-seasonal oscillations is found to be small. We demonstrate that forcing the regional model with a representative, coarse-resolution global reanalysis wind product has dramatic and deleterious consequences for the oceanic circulation and climate heat balance, the eddy heat flux in particular.  相似文献   

3.
Previously validated model results were used to characterize the wave climate over the Southern Brazilian Shelf (SBS). The low mean significant wave height over the western South Atlantic shelves was shown together with examples of cyclone-induced extreme wave fields and other typical wave conditions. The mean offshore spectra showed a bimodal shape with a predominance of S/SSW and ENE/E waves with distinctive interannual rising periods in wave energy density. Along-shelf wave energy gradients were seen near the coast with higher energy located off capes and coastal projections and energy minima between them. A considerable drop in wave energy suggests the 40 m depth as the mean wave base and consequently the lower limit of the SBS shoreface. The upper shoreface mean wave energy density varied abruptly along the shelf in response to differences in bottom declivities. The large and shallow shoreface was responsible for an intense refraction of the waves and hence very small angles of attack. Additionally, it was shown the sheltering effect caused by capes and coastal projections and a remarkable north/south energy asymmetry between them, caused by a windowing on the wave propagation to the shore. Altogether, it was possible to state that bottom friction plays a major role in wave differentiation along the SBS shoreface, thus suggesting that shelf morphology might indeed be more important to generate wave variability than the offshore wave variation itself.  相似文献   

4.
Fetch Limited Drag Coefficients   总被引:5,自引:1,他引:5  
Measurements made at a tower located 2 km off the coast of Denmark inshallow water during the Risø Air Sea Experiment (RASEX) are analyzedto investigate the behaviour of the drag coefficient in the coastal zone.For a given wind speed, the drag coefficient is larger during conditions ofshort fetch (2-5 km) off-shore flow with younger growing waves than it isfor longer fetch (15-25 km) on-shore flow. For the strongest on-shorewinds, wave breaking enhances the drag coefficient. Variation of the neutral drag coefficient in RASEX is dominated byvariation of wave age, frequency bandwidth of the wave spectra and windspeed. The frequency bandwidth is proportional to the broadness of the waveheight spectra and is largest during conditions of light wind speeds. Usingthe RASEX data, simple models of the drag coefficient and roughness length are developed in terms of wind speed, wave age and bandwidth. An off-shoreflow model of the drag coefficient in terms of nondimensional fetch isdeveloped for situations when the wave state is not known.  相似文献   

5.
The Gulf of Tehuantepec air–sea interaction experiment (intOA) took place from February to April 2005, under the Programme for the Study of the Gulf of Tehuantepec (PEGoT, Spanish acronym for Programa para el Estudio del Golfo de Tehuantepec). PEGoT is underway aiming for better knowledge of the effect of strong and persistent offshore winds on coastal waters and their natural resources, as well as performing advanced numerical modelling of the wave and surface current fields. One of the goals of the intOA experiment is to improve our knowledge on air–sea interaction processes with particular emphasis on the effect of surface waves on the momentum flux for the characteristic and unique conditions that occur when strong Tehuano winds blow offshore against the Pacific Ocean long period swell. For the field campaign, an air–sea interaction spar (ASIS) buoy was deployed in the Gulf of Tehuantepec to measure surface waves and the momentum flux between the ocean and the atmosphere. High frequency radar systems (phase array type) were in operation from two coastal sites and three acoustic Doppler current profilers were deployed near-shore. Synthetic aperture radar images were also acquired as part of the remote sensing component of the experiment. The present paper provides the main results on the wave and wind fields, addressing the direct calculation of the momentum flux and the drag coefficient, and gives an overview of the intOA experiment. Although the effect of swell has been described in recent studies, this is the first time for the very specific conditions encountered, such as swell persistently opposing offshore winds and locally generated waves, to show a clear evidence of the influence on the wind stress of the significant steepness of swell waves.  相似文献   

6.
Abstract

In this paper, an overview of storm waves associated with intense weather systems affecting the east and west coasts of Canada is presented. The paper presents the wave climatology of the east and west coasts in terms of the 100‐year significant and maximum wave heights and further analyses the directional distribution of wave heights at selected locations in the Canadian east and west coasts offshore. The paper also analyses wave hazards associated with storm waves in the Beaufort Sea as well as the Canadian Great Lakes region. A section on ocean wave modelling provides a brief history of the development of ocean surface wave models and its present status. The paper further considers the impact of climate change scenarios on wave hazards and finally examines mitigation measures in terms of wave products available from operational wave models and related wave climatology.  相似文献   

7.
A dynamical wave model implemented over the North Pacific Ocean was forced with winds from three coupled global climate models (CGCMs) run under a medium-to-high scenario for greenhouse gas emissions through the twenty-first century. The results are analyzed with respect to changes in upper quantiles of significant wave height (90th and 99th percentile HS) during boreal winter. The three CGCMs produce surprisingly similar patterns of change in winter wave climate during the century, with waves becoming 10–15 % smaller over the lower mid-latitudes of the North Pacific, particularly in the central and western ocean. These decreases are closely associated with decreasing windspeeds along the southern flank of the main core of the westerlies. At higher latitudes, 99th percentile wave heights generally increase, though the patterns of change are less uniform than at lower latitudes. The increased wave heights at high latitudes appear to be due a variety of wind-related factors including both increased windspeeds and changes in the structure of the wind field, these varying from model to model. For one of the CGCMs, a commonly used statistical approach for estimating seasonal quantiles of HS on the basis of seasonal mean sea level pressure (SLP) is used to develop a regression model from 60 years of twentieth century data as a training set, and then applied using twenty-first century SLP data. The statistical model reproduces the general pattern of decreasing twenty-first century wave heights south of ~40 N, but underestimates the magnitude of the changes by ~50–70 %, reflecting relatively weak coupling between sea level pressure and wave heights in the CGCM data and loss of variability in the statistically projected wave heights.  相似文献   

8.
Coastal-trapped waves with finite bottom friction   总被引:2,自引:0,他引:2  
Coastal-trapped waves with finite-amplitude bottom friction are explored. “Finite-amplitude” in this context means that the bottom stresses are large enough to change the wave modal structure. The importance of bottom friction is measured by the nondimensional number r/(ωh), where r is a bottom resistance coefficient, ω the wave frequency and h the water depth. Increasing bottom drag causes free wave modes to adjust by having their amplitude maxima for alongshore current translate offshore to the point that, with relatively large bottom stress, the alongshore current variance is trapped entirely on the slope, even though pressure variations remain substantial right up to the coast. In conjunction with these adjustments, wave frequency, hence propagation speed, varies and the wave damping is usually less than would be expected based on a weak-friction perturbation calculation. Stronger density stratification increases wave damping, all else being the same. A mean alongshore flow can strongly affect modal structure and wave damping, although general trends are difficult to discern. Results suggest that bottom friction may cause an observed tendency for lower frequency alongshore current fluctuations to become relatively more important with distance offshore.  相似文献   

9.
This paper describes the development and application of a technique for using satellite altimeter measurements as boundary data to drive the nearshore spectral wave model, SWAN. The aim was to assess the impact in coastal areas of extreme events or changes in offshore climatology and to extend the usefulness of satellite altimetry further inshore.

For the purpose of verifying the technique, three test areas where both bathymetry and some in situ data were available were chosen. The technique could, potentially, be applied to any coastal location where there is bathymetric information although, as the results reported in this paper show, intelligence must be used in adapting the methodology for different sites. It is also necessary to have information on the local wind field from either models or measurements.

The experiments at the three test areas demonstrated that there is not a simple relationship between the offshore wave height climate and the inshore climate in a particular region. Important complicating factors are bathymetry, tidal range and incident wave angle. As was most clearly demonstrated in the Carmarthen Bay test area, bathymetric complexity leads to high spatial variation in the amount of wave energy dissipated close to the coast. In the study of extreme wave events described in this paper the exact value of the local wind field was not found to be critical.

This work was a first trial combining wave climatology derived from satellite altimetry with a third generation coastal wave model so was necessarily experimental. The general trends and patterns of spatial variation obtained are encouraging but there remains significant, unquantifiable uncertainty in the results. Better observations of nearshore waves, improved understanding of the joint probability distribution of water level and waves as well as more knowledge of future climate change would all improve accuracy.  相似文献   

10.
Belmadani  Ali  Dalphinet  Alice  Chauvin  Fabrice  Pilon  Romain  Palany  Philippe 《Climate Dynamics》2021,56(11):3687-3708

Tropical cyclones are a major hazard for numerous countries surrounding the tropical-to-subtropical North Atlantic sub-basin including the Caribbean Sea and Gulf of Mexico. Their intense winds, which can exceed 300 km h−1, can cause serious damage, particularly along coastlines where the combined action of waves, currents and low atmospheric pressure leads to storm surge and coastal flooding. This work presents future projections of North Atlantic tropical cyclone-related wave climate. A new configuration of the ARPEGE-Climat global atmospheric model on a stretched grid reaching ~ 14 km resolution to the north-east of the eastern Caribbean is able to reproduce the distribution of tropical cyclone winds, including Category 5 hurricanes. Historical (1984–2013, 5 members) and future (2051–2080, 5 members) simulations with the IPCC RCP8.5 scenario are used to drive the MFWAM (Météo-France Wave Action Model) spectral wave model over the Atlantic basin during the hurricane season. An intermediate 50-km resolution grid is used to propagate mid-latitude swells into a higher 10-km resolution grid over the tropical cyclone main development region. Wave model performance is evaluated over the historical period with the ERA5 reanalysis and satellite altimetry data. Future projections exhibit a modest but widespread reduction in seasonal mean wave heights in response to weakening subtropical anticyclone, yet marked increases in tropical cyclone-related wind sea and extreme wave heights within a large region extending from the African coasts to the North American continent.

  相似文献   

11.
We investigated the flux footprints of receptors at different heights in the convective boundary layer (CBL). The footprints were derived using a forward Lagrangian stochastic (LS) method coupled with the turbulent fields from a large-eddy simulation model. Crosswind-integrated flux footprints shown as a function of upstream distances and sensor heights in the CBL were derived and compared using two LS particle simulation methods: an instantaneous area release and a crosswind linear continuous release. We found that for almost all sensor heights in the CBL, a major positive flux footprint zone was located close to the sensor upstream, while a weak negative footprint zone was located further upstream, with the transition band in non-dimensional upwind distances −X between approximately 1.5 and 2.0. Two-dimensional (2D) flux footprints for a point sensor were also simulated. For a sensor height of 0.158 z i, where z i is the CBL depth, we found that a major positive flux footprint zone followed a weak negative zone in the upstream direction. Two even weaker positive zones were also present on either side of the footprint axis, where the latter was rotated slightly from the geostrophic wind direction. Using CBL scaling, the 2D footprint result was normalized to show the source areas and was applied to real parameters obtained using aircraft-based measurements. With a mean wind speed in the CBL of U = 5.1 m s−1, convective velocity of w * = 1.37 m s−1, CBL depth of z i = 1,000 m, and flight track height of 159 m above the surface, the total flux footprint contribution zone was estimated to range from about 0.1 to 4.5 km upstream, in the case where the wind was perpendicular to the flight track. When the wind was parallel to the flight track, the total footprint contribution zone covered approximately 0.5 km on one side and 0.8 km on the other side of the flight track.  相似文献   

12.
《大气与海洋》2013,51(3):184-203
Abstract

Three widely used wave models, namely, the open ocean wave model (Cycle‐4.5, hereinafter referred to as WAM4.5) and the coastal models, Simulation of WAves Nearshore (Cycle III version 40.31, hereinafter referred to as SWAN) and the K‐model, are applied to Lake Erie to simulate waves at a spatial resolution of about 4 km. The results of a three‐week hindcast study are compared with buoy observations in terms of integrated parameters, one‐dimensional (1‐D) and two‐dimensional (2‐D) energy spectra, scatter plots and statistical analyses of the wave fields. The time development of the 1‐D spectra by the models matches the buoy measurements well. All the wave models tend to overpredict the wave heights and underpredict (particularly the K‐model) the peak period. SWAN performs best for the wave heights and WAM4.5 for the peak periods and is computationally less demanding, whereas the spatial resolution applied to Lake Erie seems to be too coarse for an adequate use of the K‐model. In general, WAM4.5 has advantages over coastal wave models in operational intermediate‐scale applications.  相似文献   

13.
Abstract

Three sites were instrumented to measure all components of the energy balance. The sites were located in the Churchill, Manitoba region and comprised a Sea Site on a sand spit 1 km seaward from the mainland, a Nearcoast Site 2 km inland from the coast and an Inland Site 65 km inland. Measurements were made continuously over a 90‐day period from 19 May to 16 August 1984. This period encompassed the bulk of the growing season.

The measurements were stratified into onshore and offshore wind directions and were compared for 10‐day periods. The comparisons show very significant differences attributable to the cold summer conditions promoted by the sea ice in Hudson Bay. The ground heat flux and latent heat flux were much greater during offshore winds but the sensible heat flux was greatest for onshore winds. Air temperatures averaged 7°C warmer for offshore than for onshore winds. The reasons for these differences are detailed and the climatic modifications that would probably result from earlier sea‐ice melt are discussed. Some implications of climatic modification are also noted.  相似文献   

14.
Geomorphological features and sparse visual wave measurements, presented in previous works, point out to the possible existence of alongshore wave energy gradients over the Southern Brazilian Shelf (SBS). After describing the two numerical models utilized and the model grids and settings, the present study evaluated the proposed validation of the basin-scale results against orbital altimetry and the regional-scale results against the two available wave-buoy data, discussing the extent to which the model reproduced local reality. The basin-scale model results of significant wave height could be considered as in good agreement with observations, presenting remarkable similarities with observed altimetry. Regarding the regional-scale modeling, both significant wave height and peak wave periods were considered as in good agreement with observations. The peak wave directions, however, were classified as in poor agreement, once the ESE waves were erroneously reproduced as E. Increased spatial resolution certainly played a role, but it was the lowering of bottom friction that represented the major improvement in the coastal grid simulations.  相似文献   

15.
The results of wind wave hindcast for the Caspian Sea for the period of 1979–2017 are presented. The WAVEWATCHIII wave model and wind forcing from the NCEP/CFSR reanalysis are used. The modeling is performed on the unstructured grid with the spacing to 1 km in the coastal zone. Mean and extreme values of wave height, length, and period are provided. It is shown that the maximum height of waves of 3% probability of exceedance is 11.7 m. The interannual variability of wave parameters is analyzed. No unambiguous trend towards increase or decrease in the storm activity was revealed over the hindcasting period.  相似文献   

16.
采用2009—2013年CFSR(Climate Forecast System Reanalysis)大气和海洋再分析资料对黄海海气间热量通量和动量通量的特征进行统计分析,并通过FVCOMSWAVE浪流耦合模式对典型寒潮过程中风浪的影响效果进行模拟研究与对比分析。统计结果显示,通量受海表大风、海气温差及海洋环流等因子影响,秋冬季节强烈,春夏季节相对较弱,在寒潮活跃的冷季该海域的海流处于弱流期,风浪对海面通量的作用明显增强。海温特征也显示冷季的不稳定性显著强于暖季,因此该海域冷季具有更强的海气热量通量。沿岸站点的比较显示,南部吕泗站面向更开阔的东海海域,其平均波高高出北部20%左右。这与沿海南部通量强于北部特征对应。数值模拟显示,在寒潮过程中,海气界面热量通量和动量通量输送比多年月平均状态显著增强,动量通量增大1~5倍,热量通量增大1~6倍。寒潮过程入海冷锋走向、强度、移动方向显著影响海面热量通量和动量通量大值区的分布。偏北路寒潮纬向型冷锋入海,其强度东部大于西部,造成通量大值区形成在黄海东北部,而偏西路寒潮经向型冷锋入海,其强度南部大于北部,造成通量大值区形成在黄海南部。同时偏北路径寒潮强度大于偏西路径,海气动量通量响应较偏西路径强约25%,热量通量强约50%。耦合风浪作用的模拟显示,海气间热量通量和动量通量明显增大,对不同强度风浪,浪高增加1.5倍,动量通量最大值增大约2倍,热量通量增大10~160 W/m2;浪高减弱至0.5倍,动量通量最大值则减弱约40%,热量通量减小10~55 W/m2。冷锋及其驱动的风浪强烈影响区域海气通量时空特征。  相似文献   

17.
A numerical experiment was performed using the Weather Research and Forecasting(WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods(Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis)were applied. During the storm, inertia-gravity waves appeared at heights of 10–14 km, with periods of 80–100 min and wavelengths of 40–50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15–20 m s~(-1). Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.  相似文献   

18.
利用1980—2015年ERA-5全球再分析资料,对汉中地区典型暴雨发生前纬向风场变化及天气尺度瞬变波活动(Eliassen-Palm通量特征)进行分析。结果表明:瞬变波Eliassen-Palm(EP)通量特征分析为汉江流域暴雨潜势预报提供一个有利的参考指标;暴雨发生前,33°N附近200 h Pa有纬向风减速中心,对应200 hPa为EP通量辐散区,这种垂直分布模型是暴雨前期的有利形势,随着纬向风减速趋势加快,EP通量辐散区扩展并加强,有利于暴雨的发生;与8月相比,7月暴雨强度更强,暴雨范围更广,纬向风变化更明显,200 hPa的EP通量辐散更强。若简单地将盛夏暴雨整体进行研究,会影响对不同月份瞬变波活动及大气环流变化趋势的诊断,造成诊断偏差且难以准确反映瞬变波与暴雨的联系。因此在讨论盛夏季天气尺度瞬变波与对流层环流的相互作用时,应按月份讨论。  相似文献   

19.
The data of instrumental observations of water temperature at autonomous bottom stations in the coastal zone of Sakhalin Island (the depth is 3-17 m) mainly along the southeastern coast are analyzed. The cases of sharp (by 15°C per day) temperature drop are detected. They are caused by the strengthening of southern and southwestern winds typtcal of summer and betng the offshore winds which favor the lift of cold water to the surface. This phenomenon is observed every year but its intensity varies depending on the frequency of offshore winds. Along the southwestern coast of Sakhalin, where the offshore effect is induced by northern, northeastern, and eastern winds characterized by the low frequency of occurrence, water temperature drops are rarer and shorter (3-5 days) but rather sharp. The occurrence of cold water (its temperature is sometimes negative) in the shallow coastal zone may lead to the mass mortality of juvenile salmon after its downstream migration in spawning rivers, may impede the approaches of humpback salmon and negatively affect its catch.  相似文献   

20.
Summary. ?A hydrostatic numerical model is used to simulate the lee wave event IOP3 (0000 GMT to 1200 GMT 15th October 1990) from the PYREX mountain experiment. Results from integrations at different horizontal resolutions are used to investigate the effect on surface pressure drag and the vertical flux of horizontal momentum due to orographically forced gravity waves. In particular, results showing the dependence on resolution of the partitioning between resolved and parametrized wave drag and fluxes are presented. With the model horizontal gridlength changing from 50 km to 10 km the majority of wave momentum flux changes from being parametrized to becoming resolved. More significantly, there is a change in the profile of flux with height. At 50 km resolution the largest inferred mean flow decelerations are at lower stratospheric level due to the parametrization scheme. At 10 km resolution this is shifted, with less deceleration high up and more wave deceleration lower down in the troposphere. Numerical weather prediction models are now beginning to take account of such low level drag with beneficial results. Received March 2, 1999/Revised July 15, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号