首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

2.
Carbon dioxide dissolved in both synthetic Ca±Mg-bearing silicate glasses and natural basaltic glasses has been characterized using infrared spectroscopy. CO2 is inferred to be dissolved in these glasses as distorted Ca or Mg carbonate ionic complexes that result in unique infrared absorption bands at 1515 cm−1 and 1435 cm−1. This speciation contrasts with the case of CO2-bearing sodium aluminosilicate glasses, which contain both dissolved molecular CO2 and dissolved Na-carbonate ionic-complexes. The difference in speciation in Ca±Mg-bearing melts may result in part from a higher activity of oxygens that react with CO2 molecules to produce carbonate.Dissolved CO2 contents of natural basaltic glasses can be determined from the intensities of the carbonate absorption bands at 1515 cm−1 and 1435 cm−1. The uncertainty of the method is estimated to be ± 15% of the amount present. The infrared technique is a powerful tool for the measurement of dissolved CO2 contents in natural basaltic glasses since it is non-destructive, can be aimed at regions of glass a few tens of microns in size, and can discriminate between dissolved carbonate and carbon present as carbonate alteration, contained in fluid inclusions, or adsorbed on the glass.A set of submarine basaltic glasses dredged from a variety of locations contain 0–400 ppm dissolved CO2, measured using the infrared technique. These concentrations are lower than most previous reports for similar basaltic glasses. No general relationship is observed between dissolved CO2 content and depth of magmatic eruption, although some correlation might be present in restricted geographic locales.  相似文献   

3.
The Ischia geothermal system is hosted by silicic rocks of the Quaternary Potassic Roman Province, in southern Italy. Exploration drilling down to 1156 m depth in the mid-1950s provided information on boiling profiles (up to 250°C) and on the depth and permeability of the potential reservoirs. Discharge fluid samples were collected and analyzed to define the inflow of surrounding seawater (C1 ranges from 2.5 to 20 g/kg) into the system.Analyses of samples from surface manifestations and shallow wells collected during 1983 and 1988 point to the existence of three distinct mixing regimes, involving three water components. A dishomogeneous body of diluted water (Cl less than 2.5 g/kg), that occurs at depths > 700 m and reequilibrates at 240°C at least, is overlain by an aquifer of groundwater variably mixed with variably seawater (Cl from 4 to 10 g/kg), which tends to reequilibrate at 160°C. Steam-heated waters locally develop and act as dilutants of the rising geothermal fluids.Dilution, mixing, and evaporation of the ascending chloride fluids are supported by oxygen and hydrogen isotopic data the thermal waters being enriched in 18O and D with respect to local meteoric water by up to 7 and 30‰, respectively. The relative composition of the major cations in thermal solutions was used to discriminate the two main groups of thermal waters, the reservoir temperatures of which are estimated from the Na/K-gethermometer. K-Mg geothermometer indicates reequilibration in near-surface conditions.The isotopic composition of the fumarolic steam varies from −7 to −12‰ in ∂8O and from − 35 to − 70‰ in ∂D, in agreement with a deep mixed fluid that boils adiabatically from 240 to 80°C. The deuterium content of the H2O-H2 pair gives enrichment factor of about 830‰, corresponding to equilibrium temperature conditions slightly higher than the surface boiling temperatures. The ∂13C of CO2is almost constant at −4.5‰ (1δ=0.4), suggesting an important magmatic contribution, and the ∂18O values of CO2appears to in equilibrium with accompanying steam at the measured temperatures.The CO2/Ar and H2/Ar chemical ratios have been used to derive aquifer temperatures, the values obtained being consistent with those of solute geothermometers.  相似文献   

4.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

5.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

6.
Beryllium isotopes (10Be and9Be) have been measured in suspended particles of < 1 mm size collected by mid-water sediment traps deployed in the eastern Pacific at MANOP sites H (6°32′N, 92°50′W, water depth 3600 m) and M (8°50′N, 104°00′W, 3100 m). For comparison, surface sediments from box cores taken from the two sites were also studied. The concentrations of10Be and9Be in sediment-trap particles are about an order of magnitude smaller than those in the bottom sediments which contain about 8 × 109 and 6 × 1016 atoms g−1 of10Be and9Be, respectively. The sediment trap samples collected from 50 m off the bottom showed significant (26–63%) contributions from resuspended bottom sediments. The10Be/9Be ratio in trap samples varies from 3 to 20 × 10−8. The variation may partly result from varied proportion of authigenic/detrital material. The fluxes of both isotopes exhibit a very strong seasonality. The fluxes of10Be into the traps at about 1500 m are estimated as 9 × 105 and 4 × 105 atoms cm−2 a−1 at sites H and M respectively. These values are to be compared with the fluxes into the sediments of 4–5 × 105 atoms cm−2 a−1 at both locations. Good correlations exist between10Be,9Be and27Al indicating that the primary carrier phase(s) for the beryllium isotopes in the water column may be aluminosilicates.  相似文献   

7.
The weight-specific respiration rate (μl O2 mg−1 AFDW h−1) of three species of leech from Lake Esrom, Denmark, Glossiphonia concolor, G. complanata and Helobdella stagnalis was measured in a closed stirred chamber with a micro electrode. At declining oxygen concentration (mg O2 l−1) all three species expressed moderate ability to regulate respiration, in G. concolor and G. complanata down to 2 mg O2 l−1, in H. stagnalis down to 0.75 mg O2 l−1. Survival in anoxia was measured in closed bottles. The time to 50% survival (LD50) was 30 days in G. concolor at 20 °C and 30 and 4 days in H. stagnalis at 10 and 20 °C, respectively. The results were discussed in relation to habitat and spatial distribution of the three species in the lake.  相似文献   

8.
Here we present the first species-specific study of boron isotopes in the epibenthic foraminifer species Cibicidoides wuellerstorfi. Coretop samples from a water depth profile from 1000 to 4500 m on the northern flank of the Walvis Ridge are 4.4‰ lower than the values expected, based on calculations of the δ11Bborate of ambient seawater. Similar values for this foraminifer species are presented from ODP site 668B at the Sierra Leone Rise, in the equatorial Atlantic. The consistency between data of the same species suggests the offsets are primary, rather than diagenetic. Glacial C. wuellerstorfi from ODP 668B and Walvis Ridge have boron isotope compositions only slightly different to interglacial samples, that is no larger than + 0.10 pH units, or + 23 µmol kg− 1 in [CO32−] above the reconstructed glacial lysocline, and − 0.07 pH units, or − 14 µmol kg− 1 in [CO32−] below. We use these results to suggest that glacial deep water pH in the Atlantic was similar to interglacial pH. The new data resolve the inconsistency between the previously reported high bottom water pH and the lack of significant carbonate preservation of the glacial deep ocean.  相似文献   

9.
Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The δ18O values of quartz and calcite from the andesite and basalt flows (700–932 m) have isotopic values which require that the equilibrated water δ18O values increase slightly (− 11.3 to −9.2‰) with increasing measured temperatures (150–265°C). The lithic tuffs and brecciated lava flows (300–700 m) contain widespread siderite. Calculated oxygen isotopic compositions of waters in equilibrium with siderite generally increase with increasing temperatures (76–100°C). The δ18O values of siderite probably result from precipitation in water produced by mixing various amounts of the deep hydrothermal water (− 10.5 ‰) with meteoric water (− 15.5 ‰) recharged within the caldera. The δ13C values of calcite and siderite decrease with increasing temperatures and show that these minerals precipitated in isotopic equilibrium with CO2 of about −8 ‰.The δ18O values of weakly altered (<5% alteration of plagioclase) whole-rock samples decrease with increasing temperatures above 100°C, indicating that exchange between water and rock is kinetically controlled. The water/rock mass ratios decrease with decreasing temperatures. The δ18O values of rocks from the bottom of Newberry 2 show about 40% isotopic exchange with the reservoir water.The calculated δ18O and δD values of bottom hole water determined from the fluid produced during the 20 hour flow test are −10.2 and −109‰, respectively. The δD value of the hydrothermal water indicates recharge from outside the caldera.  相似文献   

10.
Garnets in an amphibolite-facies metasediment from Sulitjelma, North Norway yield precise and concordant SmNd, UPb and RbSr ages that relate directly to the pressure (P) and temperature (T) conditions of mineral growth. Differential mineral reaction between graphitic and non-graphitic layers within this sample preserves a record of theP-T and time (t) history experienced during Barrovian regional metamorphism. Garnets in graphitic layers grew during prograde metamorphism at462 ± 16°C and5.2 ± 0.5 kbar under conditions of lowaH2O, and yield indistinguishable147Sm143Nd and238U206Pb ages of434.1 ± 1.2 Ma and433.9 ± 1.0 Ma, respectively. In contrast, garnet growth in adjacent graphite-free layers did not occur untilP-T conditions of540 ± 18°C and8.0 ± 1.0 kbar were attained, with continued growth in response to minor heating and decompression with final matrix equilibration at544 ± 16°C and7.0 ± 1.0 kbar. The inclusion-free garnet rims in this assemblage record indistinguishable147Sm143Nd and238U206Pb ages of424.6 ± 1.2 Ma and423.4± 1.7 Ma, respectively. These results provide precise estimates for average heating and burial rates during prograde metamorphism of 8.6−4.4+7.5°C Ma−1 and 0.8−0.5+0.9 km Ma−1, respectively. Rb and Sr exchange between coexisting silicates in the graphite-free assemblage continued for some 37 Ma after the “peak” of metamorphism, and require an average cooling rate of about 4.0°C Ma−1 during uplift. These results illustrate a clear relationship between reaction history and the timing of mineral growth and provide definitive constraints on the rates of thermal and tectonic processes accompanying regional metamorphism.  相似文献   

11.
Sulfur isotope effects during the SO2 disproportionation reaction to form elemental sulfur (3SO2+3H2O→2HSO4+S+2H+) at 200–330°C and saturated water vapor pressures were experimentally determined. Initially, a large kinetic isotopic fractionation takes place between HSO4 and S, followed by a slow approach to equilibrium. The equilibrium fractionation factors, estimated from the longest run results, are expressed by 1000 ln αHSO4S=6.21×106/T2+3.62. The rates at which the initial kinetic fractionation factors approach the equilibrium ones were evaluated at the experimental conditions.δ34S values of HSO4 and elemental sulfur were examined for active crater lakes including Noboribetsu and Niseko, (Hokkaido, Japan), Khloridnoe, Bannoe and Maly Semiachik (Kamchatka), Poás (Costa Rica), Ruapehu (New Zealand) and Kawah Ijen and Keli Mutu (Indonesia). ΔHSO4S values are 28‰ for Keli Mutu, 26‰ for Kawah Ijen, 24‰ for Ruapehu, 23‰ for Poás, 22‰ for Maly Semiachik, 21‰ for Yugama, 13‰ for Bannoe, 9‰ for Niseko, 4‰ for Khloridonoe, and 0‰ for Noboribetsu, in the decreasing order. The SO2 disproportionation reaction in the magmatic hydrothermal system below crater lakes where magmatic gases condense is responsible for high ΔHSO4S values, whereas contribution of HSO4 produced through bacterial oxidation of reduced sulfur becomes progressively dominant for lakes with lower ΔHSO4S values. Currently, Noboribetsu crater lake contains no HSO4 of magmatic origin. A 40-year period observation of δ34SHSO4 and δ34SS values at Yugama indicated that the isotopic variations reflect changes in the supply rate of SO2 to the magmatic hydrothermal system. This implies a possibility of volcano monitoring by continuous observation of δ34SHSO4 values. The δ18O values of HSO4 and lake water from the studied lakes covary, indicating oxygen isotopic equilibration between them. The covariance gives strong evidence that lake water circulates through the sublimnic zone at temperatures of 140±30°C.  相似文献   

12.
In order to better constrain the extent to which common sulfide minerals will retain their osmium isotopic composition subsequent to crystallization, we have conducted experiments to quantify the diffusion behavior of osmium in pyrite and pyrrhotite. Experiments consisted of either (1) isothermal soaking of diffusion couples consisting of natural pyrite or pyrrhotite crystals packed against powdered Os-bearing Fe-sulfide or (2) ‘relaxation’ of initially high near-surface osmium concentrations produced in the latter experiments (pyrite only). Osmium penetration into samples was characterized by depth profiling using Rutherford backscattering spectroscopy (RBS) (pyrite) or electron microprobe analyses across sectioned run products (pyrrhotite). Results of the first type of diffusion experiment involving pyrite show only limited osmium penetration into sample surfaces, with the extent of penetration uncorrelated with run duration. Images of pyrite samples using atomic force microscopy show roughening of initially smooth surfaces as a consequence of step formation and suggest that osmium incorporation into the near-surface occurred by solute uptake during step growth and not by volume diffusion. Prolonged (1000+ h) ‘relaxation’ experiments revealed no additional osmium penetration into pyrite surfaces and based on the depth resolution for RBS, a maximum diffusion coefficient of 2.5×10−23 m2/s at 500°C was calculated. Experiments involving pyrrhotite over the temperature range of 950–1100°C showed extensive osmium uptake and osmium concentration gradients that conform with Fickian diffusion behavior. We found that pyrrhotite Fe/S could be varied by changes in the composition of the starting material and osmium source and over the range of Fe/S produced in experiments (molar Fe/S=0.83–0.90), we observed no systematic variation in the osmium diffusion coefficient. Diffusion coefficients measured parallel to the a crystallographic axis were on average 1.4× higher than values measured parallel to c and regression of the c-axis data yielded the Arrhenius relation:
The application of these diffusion data to simple models of diffusive exchange during static or polythermal time–temperature histories is used to assess the conditions under which radiogenic osmium will be retained. During isothermal annealing, calculations indicate that the cores of millimeter-sized spherical pyrrhotite crystals undergoing diffusive exchange with an external osmium reservoir will have their initial compositions perturbed in ≤0.5 Ma at temperatures exceeding 400°C. Pyrite undergoing the same process at 500°C requires in excess of 10 Ma before crystal cores are affected. The relatively short ‘core retention’ time-scales for pyrrhotite indicates that this mineral may be prone to isotopic resetting following relatively brief crustal thermal events, thus possibly accounting for the scatter that commonly occurs in Re–Os isochrons generated from massive sulfide samples. Calculated closure temperatures (Tc) for osmium exchange in pyrrhotite yielded values of 300–400°C for grain sizes ranging from 10 to 1000 μm. These values of Tc are similar to those calculated for Ar retention in biotite, and considerably lower than for Sr in apatite and plagioclase, for example. Such low closure temperatures for pyrrhotite suggest this mineral will date the final stage in the cooling of a magmatic system and possibly be susceptible to open system osmium exchange in the presence of late-stage hydrothermal fluids. This latter result infers that caution be applied when interpreting elevated initial osmium isotopic ratios as a product of crustal assimilation at the magmatic stage.  相似文献   

13.
Results are presented on scubadiving investigations carried out on thermal manifestations in the area of Panarea (Aeolian Islands). The area investigated falls inside a caldera which extends from the main island to the group of islets located to the northeast. The distribution of the gaseous manifestations is regulated by the NE-SW, NW-SE and N-S regional tectonic directrices, through which the more recent basic magma intruded, giving rise to dikes and pillow lavas. fO2-temperature relation of the gases sampled in the investigated area was calculated to be: logfO2 = 11−24,593/T which indicates that a buffering mechanism acted on the gases as they cooled down during their ascent. The high 3He/4He ratio (6 × 10−6) and the δ13C = −3.2%. (PDB), suggest the presence of a magmatic component in the gas feeding the investigated manifestations. The above relations and the almost constant high He/N2 ratio suggest that all the fumaroles are fed by the same deep hot fluids. On the basis of both the chemical characters of the fluids and the geothermo-barometric data, a deep geothermal body, having a temperature of about 240°C, is recognized. Two other shallower thermal aquifers, with a temperature of 170–210°C, are identified. A circulation pattern of the geothermal fluids is also proposed. On the basis of calculations regarding the convective energy released by the geothermal system of Panarea, and the magmatic mass responsible for the positive gravimetric anomaly of the area, it was estimated that the last volcanic activity took place less then 10,000 years ago.  相似文献   

14.
Mantle-derived volatiles in continental crust: the Massif Central of France   总被引:1,自引:0,他引:1  
CO2-rich gases and groundwaters from springs and boreholes originating within the basement of the Massif Central have variable3He/4He ratios with correspondingR/Ra values ranging from 0.8 to 5.5 and 0.3 to 2.8 respectively, indicating the presence of a significant component of mantle helium. Molar concentrations of rare gases in the CO2-rich gases are approximately 5 orders of magnitude greater than in the waters and suggest that a near-surface Henry's Law fractionation has occurred between exsolving CO2 and water.δ13C values of the CO2-rich gases are in the range −4.2 to −6.1‰, i.e. in that range normally attributed to mantle carbon, but which could also represent an average crustal composition and therefore do not discriminate between mantle and crustal sources.C/3He ratios show 4 orders of magnitude variation from 1.4 × 1012 to 5 × 108 and, compared to a mantleC/3He ratio of 109, indicate that either a complex fractionation has occurred between mantle helium and mantle CO2 or more likely that mantle rare gases have been diluted by large quantities of CO2 with an average crustal carbon isotope composition. The regional distribution of3He and C does not show any obvious relationship to age or proximity of volcanic centres or major faults, suggesting that mantle-derived C and He components decoupled from their silicate melt sources at some depth.The results from this area of active fluid circulation suggest that C-isotope data derived from metamorphic terrains should be interpreted with great caution, but that input of some mantle-derived carbon is expected to accompany crustal extension.  相似文献   

15.
The Teide volcano (3717 m) is the central structure of the island of Tenerife and at present its morphology is that of a stratovolcano which has grown on a large caldera with a collapse 17 km in diameter, which was generated some 0.6 million years ago.The different studies that have been carried out seem to indicate that, in a oversimplified model, there is an intermediate magma chamber with an approximate volume of 30 km3 and located 2–3 km below the actual base of the caldera, i.e., almost at sea level, with a temperature of 430 ± 50°C, and a pressure of 400 ± 100 bar.The summit fumarole emissions are 85°C and are formed mainly of CO2 with small amounts of sulphur species, H2, CH4 and He. The water vapor (68–82%) emitted with the gases comes from the vaporization of a perched aquifer in the upper cone, as shown by the isotopic analyses.  相似文献   

16.
Geothermal gases from submarine and subaerial hot springs in Ensenada, Baja California Norte, Mexico, were sampled for determination of gas chemistry and helium, nitrogen and stable carbon isotope composition. The submarine hot spring gas is primarily nitrogen (56.1% by volume) and methane (43.5% by volume), whereas nearby subaerial hot spring gases are predominantly nitrogen (95–99% by volume). The N2/Ar ratios and σ 15N values of the subaerial hot spring gas indicate that it is atmospheric air, depleted in oxygen and enriched in helium. The submarine hot spring gas is most probably derived from marine sediments of Cretaceous age rich in organic matter. CH4 is a major component of the gas mixture (σ 13C = −44.05%0), with only minor amounts of CO2 (σ13C= −10.46%0). The σ15N of N2 is + 0.2%0 with a very high N2/Ar ratio of 160. The calculated isotopic equilibra tion temperature for CH4---CO2 carbon exchange at depth in the Punta Banda submarine geothermal field is approximately 200°C in agreement with other geothermometry estimates. The 3He/4He ratios of the hot spring gases range from 0.3 to 0.6 times the atmospheric ratio, indicating that helium is predominantly derived from the radioactive decay of U and Th within the continental crust. Thus, not all submarine hydrothermal systems are effective vehicles for mantle degassing of primordial helium.  相似文献   

17.
Methods used previously to remove compositional modifications from volcanic gas analyses for Mount Etna and Erta'Ale lava lake have bean employed to estimate the gas phase composition at Nyiragongo lava lake, based on samples obtained in 1959. H2O data were not reported in 11 of the 13 original analyses. The restoration methods have been used to estimate the H2O contents of the samples and to correct the analyses for atmospheric contamination, loss of sulfur and for pre- and pest-collection oxidation of H2S, S2, and H2. The estimated gas compositions are relatively CO2-rich, low in total sulfur and reduced. They contain approximately 35–50% CO2 45–55% H2O, 1–2% SO2, 1–2% H2., 2–3% CO, 1.5–2.5% H2S, 0.5% S2 and 0.1% COS over,he collection temperature range 102° to 960° C. The oxygen fugacities of the gases are consistently about half an order of magnitude below quartz-magnetite-fayalite. The low total sulfur content and resulting low atomic S/C of the Nyiragongo gases appear to be related to the relatively low fO2 of the crystallizing lava. At temperatures above 800°C and pressures of 1–1.5 k bar, the Nyiragongo gas compositions resemble those observed in primary fluid inclusions believed to have formed at similar temperatures and pressures in nephelines of intrusive alkaline rocks. Cooling to 300°C, with fO2 buffered by the rock, results in gas compositions very rich in CH4 (50–70%) and resembling secondary fluid inclusions formed at 200–500°C in alkaline rocks. Below 600°C the gases become supersaturated in carbon as graphite. These inferences are corroborated by several reports of hydrocarbons in plutonic alkaline rocks, and by the presence of CH4-rich waters in Lake Kivu — a lake on the flanks of Nyiragongo volcano.  相似文献   

18.
19.
Secular variations in 13C/12C ratios and chemical compositions of gas samples from October 1986 to July 1992 are reported from a 92–95 °C steam well located about 3 km north of Mt. Mihara, an active volcano on Izu-Oshima Island, Japan. The δ13C value steeply increased from −2.97‰ (relative to PDB carbonate) in December 1986 to −1.15‰ in March 1988 and then gradually decreased to −1.75‰ in July 1992. Over the same period, the CO2 content changed similarly with time, even though the experimental error is relatively large. These variations are consistent with helium isotope changes. Initially rapid and then slow enhancements of 3He/4He ratio, δ13C value and CO2 content are invoked by violent eruptions of Izu-Oshima volcano from 15 November to 18 December 1986. After the eruptive activity, depletion of magmatic gas emission and subsequent mixing with crustal fluids in the hydrothermal system may produce the gradual decreases of 3He/4He ratio, δ13C value and CO2 content. Taking into account the rates of these decreases, we suggest that helium and carbon isotope ratios will return to the situation of before the magmatic eruption within 15 years.  相似文献   

20.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号