首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Volatile organic compounds (VOCs) emissions by vegetation present in the Mediterranean area are not well known. They may contribute with anthropogenic VOC emissions to the tropospheric ozone formation that reaches important level in the European Mediterranean region. The present work, carried out as part of the European ESCOMPTE project «fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions», adds a new contribution to the inventory of the main natural hydrocarbons sources likely to participate in the ozone production. The corresponding measurement campaign was conducted in La Barben, a site close to Marseilles (France), with the aim to quantify the terpenic emission pattern and the behaviour of Pinus halepensis, an important Mediterranean species slightly studied.The determination of biogenic emissions from P. halepensis was done by the enclosure of an intact branch in a Teflon cuvette. Main emitted monoterpenes were β trans-ocimene and linalool. The total monoterpenic emission rates thus recorded were found to reach maximum values around 30 μg gdry weight−1 h−1. The normalized emission rates calculated at 30 °C and 1000 μmol m−2 s−1 with Guenther's algorithm was 14.76, 8.65 and 4.05 μg gdry weight−1 h−1, respectively, for the total monoterpenes, β trans-ocimene and linalool.  相似文献   

3.
Temporal variations in atmospheric hydrogen sulphide concentrations and its biosphere-atmosphere exchanges were studied in the World’s largest mangrove ecosystem, Sundarbans, India. The results were used to understand the possible contribution of H2S fluxes in the formation of atmospheric aerosol of different size classes (e.g. accumulation, nucleation and coarse mode). The mixing ratio of hydrogen sulphide (H2S) over the Sundarban mangrove atmosphere was found maximum during the post-monsoon season (October to January) with a mean value of 0.59?±?0.02 ppb and the minimum during pre-monsoon (February to May) with a mean value of 0.26?±?0.01 ppb. This forest acted as a perennial source of H2S and the sediment-air emission flux ranged between 1213?±?276 μg S m?2 d?1(December) and 457?±?114 μg S m?2 d?1 (August) with an annual mean of 768?±?240 μg S m?2d?1. The total annual emissions of H2S from the Indian Sundarban were estimated to be 1.2?±?0.6 Tg S. The accumulation mode of aerosols was found to be more enriched with non-sea salt sulfate with an average loading of 5.74 μg m?3 followed by the coarse mode (5.18 μg m?3) and nucleation mode (1.18 μg m?3). However, the relative contribution of Non-sea salt sulfate aerosol to total sulfate aerosol was highest in the nucleation mode (83%) followed by the accumulation (73%) and coarse mode (58%). Significant positive relations between H2S flux and different modes of NSS indicated the likely link between H2S, a dominant precursor for the non-sea salt sulfate, and non-sea sulfate aerosol particles. An increase in H2S emissions from the mangrove could result in an increase in enhanced NSS in aerosol and associated cloud albedo, and a decrease in the amount of incoming solar radiation reaching the Sundarban mangrove forest.  相似文献   

4.
陆地植被排放的异戊二烯是对流层臭氧及二次有机气溶胶的形成重要前体物之一。已有研究表明,当CO_2浓度超过一定水平时可能使得叶片气孔关闭,对叶片释放异戊二烯产生直接的抑制作用。而这一影响机制在目前大多数异戊二烯排放估算时并没有考虑在内,对其排放的估算仍存在很大的不确定性。本文基于GEOS-Chem及其耦合的MEGAN模式模拟了2006–2011年中国异戊二烯的排放变化。通过引入三种不同CO_2抑制作用参数化因子的模拟试验,定量评估了CO_2抑制作用对异戊二烯排放的影响及不确定性。结果表明:考虑CO_2抑制参数因子后,中国年平均异戊二烯的排放量平均减少了5.6%±2.3%。不同参数化方案对排放的抑制程度存在差异。CO_2对异戊二烯排放的影响将会改变其对气象条件变化的敏感性,从而影响空气质量。  相似文献   

5.
Experiments were conducted during the growing season of 1993 at a mixed deciduous forest in southern Ontario, Canada to investigate the atmospheric abundance of hydrocarbons from phytogenic origins, and to measure emission rates from foliage of deciduous trees. The most abundant phytogenic chemical species found in the ambient air were isoprene and the monoterpenes -pinene and -pinene. Prior to leaf-bud break during spring, ambient hydrocarbon mixing ratios above the forest remained barely above instrument detection limit (20 parts per trillion), but they became abundant during the latter part of the growing season. Peak isoprene mixing ratios reached nearly 10 parts per billion (ppbv) during mid-growing season while maximum monoterpene mixing ratios were close to 2 ppbv. Both isoprene and monoterpene mixing ratios exhibited marked diurnal variations. Typical isoprene mixing ratios were highest during mid-afternoon and were lowest during nighttime. Peak isoprene mixing ratios coincided with maximum canopy temperature. The diurnal pattern of ambient isoprene mixing ratio was closely linked to the local emissions from foliage. Isoprene emission rates from foliage were measured by enclosing branches of trees inside environment-controlled cuvette systems and measuring the gas mixing ratio difference between cuvette inlet and outlet airstream. Isoprene emissions depended on tree species, foliage ontogeny, and environmental factors such as foliage temperature and intercepted photosynthetically active radiation (PAR). For instance, young (<1 month old) aspen leaves released approximately 80 times less isoprene than mature (>3 months old) leaves. During the latter part of the growing season the amount of carbon released back to the atmosphere as isoprene by big-tooth and trembling aspen leaves accounted for approximately 2% of the photosynthetically fixed carbon. Significant isoprene mixing ratio gradients existed between the forest crown and at twice canopy height above the ground. The gradient diffusion approach coupled with similarity theory was used to estimate canopy isoprene flux densities. These canopy fluxes compared favorably with values obtained from a multilayered canopy model that utilized locally measured plant microclimate, biomass distribution and leaf isoprene emission rate data. Modeled isoprene fluxes were approximately 30% higher compared to measured fluxes. Further comparisons between measured and modeled canopy biogenic hydrocarbon flux densities are required to assess uncertainties in modeling systems that provide inventories of biogenic hydrocarbons.  相似文献   

6.
7.
徐星凯 《大气科学进展》2009,26(6):1253-1261
Soil acidification via acid precipitation is recognized to have detrimental impacts on forest ecosystems, which is in part associated with the function of ethylene released from the soil. However, the impacts of acidification on the cycling of ethylene in forest soils have not been fully taken into consideration in global change studies. Forest topsoils (0--5 cm) under four temperate forest stands were sampled to study the effects of a pH change on the emissions of ethylene and carbon dioxide from the soils and concentrations of dissolved organic carbon (DOC) released into the soils. Increasing acidification or alkalinization of forest soils could increase concentrations of DOC released into the soils under anoxic and oxic conditions. The ethylene emission from these forest topsoils could significantly increase with a decreasing pH, when the soils were acidified experimentally to a pH<4.0, and it increased with an increasing concentration of DOC released into the soils, which was different from the carbon dioxide emission from the soils. Hence, the short-term stimulating responses of ethylene emission to a decreasing pH in such forest soils resulted from the increase in the DOC concentration due to acidification rather than carbon mineralization. The results would promote one to study the effects of soil acidification on the cycling of ethylene under different forest stands, particularly under degraded forest stands with heavy acid depositions.  相似文献   

8.
Emission of nitrous oxide from temperate forest soils into the atmosphere   总被引:5,自引:0,他引:5  
N2O emission rates were measured during a 13-month period from July 1981 till August 1982 with a frequency of once every two weeks at six different forest sites in the vicinity of Mainz, Germany. The sites were selected on the basis of soil types typical for many of the Central European forest ecosystems. The individual N2O emission rates showed a high degree of temporal and spatial variabilities which, however, were not significantly correlated to variabilities in soil moisture content or soil temperatures. However, the N2O emission rates followed a general seasonal trend with relatively high values during spring and fall. These maxima coincided with relatively high soil moisture contents, but may also have been influenced by the leaf fall in autumn. In addition, there was a brief episode of relatively high N2O emission rates immediately after thawing of the winter snow. The individual N2O emission rates measured during the whole season ranged between 1 and 92 g N2O-N m–2 h–1. The average values were in the range of 3–11 g N2O-N m–2 h–1 and those with a 50% probability were in the range of 2–8 g N2O-N m–2 h–1. The total source strength of temperate forest soils for atmospheric N2O may be in the range of 0.7–1.5 Tg N yr–1.  相似文献   

9.
10.
11.
Tropopause folds are one of the key mechanisms of stratosphere-troposphere exchange (STE) in extratropical regions, transporting ozone-rich stratospheric air into the middle and lower troposphere. Although there have been many studies of tropopause folds that have occurred over Europe and North America, a very limited amount of work has been carried out over northeastern Asia. Ozonesondes produced by the Institute of Atmospheric Physics were launched in Changchun (43.9°N, 125.2°E), Northeast China, in June 2013, and observed an ozone-enriched layer with thickness of 3 km and an ozone peak of 180 ppbv at 6 km in the troposphere. The circulation field from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) dataset shows that this ozone peak was caused by a tropopause fold associated with a jet stream at the eastern flank of the East Asian trough. By analyzing the ozone data from the ozone monitoring instrument and Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations, it was found that a high ozone concentration tongue originating from the lower stratosphere at high latitude (near central Siberia) intruded into the middle troposphere over Changchun between 5 and 8 km on 12 June 2013. The high-resolution WRF-Chem simulation was capable of describing events such as the tropopause fold that occurred on the cyclonic shear side of the jet stream. In addition, the TRAJ3D trajectory model was used to trace the origin of measured secondary ozone peaks in the middle troposphere back, for example, to stratospheric intrusion through the tropopause fold.  相似文献   

12.
The United Nations Framework on Climate Change (UNFCCC), at its thirteenth meeting in 2005 (COP-11), agreed to start a work program to explore a range of policy approaches and positive incentives for Reducing Emissions from Deforestation and Degradation (REDD). This process was further encouraged in the 2007 COP-13 with the explicit consideration of REDD activities as a means to enhance mitigation action by developing countries in the future. This paper outlines the context of this ongoing political process by reviewing the science indicating that land-use change is a key contributor of greenhouse emissions globally and the assumptions that REDD activities may be competitive—in terms of cost effectiveness—in comparison to other mitigation options. The paper then examines REDD proposals submitted by Parties before COP-13 and identifies key economic, technological, methodological and institutional challenges associated with their implementation. These proposals are discussed in the light of major drivers of deforestation and ongoing efforts to address deforestation. This reveals another set of challenges which, if not taken into account, may undermine REDD effectiveness. The paper aims to aid the policy process and contribute to the best possible design of a REDD framework under the future climate regime.  相似文献   

13.
14.
15.
Many different approaches are needed to achieve reductions in GHG emissions from the transportation sector. Carbon emissions trading schemes (ETSs) are widely used in industry and are effective in reducing the overall social cost of emissions abatement. This article reports the development of a downstream ETS for the transportation sector and its application in Shenzhen, China. The ETS was devised as a mandatory cap-and-trade scheme and, as a first step, was applied to public transportation. An integrated cap was set on the total emissions from buses and taxis: an absolute cap for existing vehicles and a relative increment for new entrants. Allowances were allocated by grandfathering or benchmarking and a ‘reverse mechanism’ was established to encourage the transformation of urban transportation to a low-carbon system. Online fuel consumption monitoring was used to quantify the emissions from vehicles, and the operators were required to surrender enough allowances or credits to account for their verified annual emissions. The mechanisms for allowance trading and carbon offsets provided sufficient flexibility to make emissions abatement and the use of new-energy vehicles and environmentally friendly travel within Shenzhen's urban transportation system economically attractive.

Policy relevance

The transportation sector is becoming a major contributor to the growth in China's GHG emissions. Achieving large reductions in GHG emissions from the transportation sector is a great challenge and requires both technology and policy innovation. The tradable carbon permit is a popular concept in mitigating climate change, but the introduction of a cap-and-trade ETS into the transportation sector is a relatively innovative concept. Shenzhen has launched the first cap-and-trade ETS in a developing country and is currently exploring ways to mitigate carbon emissions by a downstream cap-and-trade ETS for the transportation sector. This article considers the main institutional arrangements and regulatory framework of Shenzhen's transportation carbon ETS. It not only refreshes the theoretical analysis and practical application of downstream cap-and-trade carbon emissions trading in urban transportation, but also provides developing countries with a cost-effective instrument to mitigate their rapid growth in traffic carbon emissions during urbanization.  相似文献   


16.
The output of a large-eddy simulation was used to study the terms ofthe turbulent kinetic energy (TKE) budget for the air layers above andwithin a forest. The computation created a three-dimensional,time-dependent simulation of the airflow, in which the lowest third ofthe domain was occupied by drag elements and heat sources to representthe forest. Shear production was a principal source of TKE in theupper canopy, diminishing gradually above tree-top height and moresharply with depth in the canopy. The transfer of energy to subgridscales (dissipation) was the main sink in the upper part of the domainbut diminished rapidly with depth in the canopy. Removal ofresolved-scale TKE due to canopy drag was extremely important,occurring primarily in the upper half of the forest where the foliagedensity was large. Turbulent transport showed a loss at the canopytop and a gain within the canopy. These general features have beenfound elsewhere but uncertainty remains concerning the effects ofpressure transport. In the present work, pressure was calculateddirectly, allowing us to compute the pressure diffusion term. Wellabove the canopy, pressure transport was smaller than, and opposite insign to, the turbulent transport term. Near the canopy top andbelow, pressure transport acted in concert with turbulent transport toexport TKE from the region immediately above and within the uppercrown, and to provide turbulent energy for the lower parts of theforest. In combination, the transport terms accounted for over half ofthe TKE loss near the canopy top, and in the lowest two-thirds of thecanopy the transport terms were the dominant source terms in thebudget. Moreover, the pressure transport was the largest source ofturbulent kinetic energy in the lowest levels of the canopy, beingparticularly strong under convective conditions. These resultsindicate that pressure transport is important in the plant canopyturbulent kinetic energy budget, especially in the lowest portion ofthe stand, where it acts as the major driving force for turbulentmotions.  相似文献   

17.
Qualification of the sources of volatile organic compounds (VOCs) and their effects on city air pollution are crucial issues to develop an effective air pollution control strategy in many polluted large cities of China. In this study, the VOC concentrations measured in Shanghai, China from 2006 to 2008 are analyzed. A receptor model (PCA/APCS; Principal Component Analysis/Absolute Principal Component Scores) is applied for identifying the contributions of individual VOC sources to VOC concentrations. Using the PCA/APCS technique, five and four surrogated VOC sources are classified in the center of Shanghai city in summer and in winter. In summer, the five VOC sources include PCs1 (liquefied petroleum gas/natural gas leakage and gasoline evaporation), PCs2 (vehicle related emissions), PCs3 (solvent usages), PCs4 (industrial productions), and PCs5 (biomass/biofuel/coal burning and other natural sources). In winter, the four VOC sources include PCw1 (liquefied petroleum gas/natural gas leakage and gasoline evaporation), PCw2 (solvent usages and industrial productions), PCw3 (vehicle related emissions), and PCw4 (biomass/biofuel/coal burning). The result suggests that during summer, 24, 28, 17, 18, and 13% of the measured VOC concentrations were estimated due to the PCs1, PCs2, PCs3, PCs4, and PCs5 VOC sources, respectively. During winter, 17, 48, 23, and 12% of the measured VOC concentrations were attributed to the PCw1, PCw2, PCw3, and PCw4 VOC sources, respectively. For aromatic concentrations, 35% of the concentrations were resulted from solvent usage (PCs3), following by industrial productions (PCs4) of 27%, and vehicle emissions (PCs2) of 19%. For alkene concentrations, the two largest contributors were due to gasoline industrial and vehicle emissions in both summer and winter. For alkane concentrations, the largest sources were due to gasoline industrial emissions (PCs1) and vehicle emissions (PCs2) in summer. In winter, vehicle emissions (PCw3), solvent usages/industrial productions (PCw2), and gasoline industrial emissions (PCw1) were the major sources. For halo-hydrocarbon concentrations, biomass/biofuel/coal burning and other natural sources were the major sources in both summer and winter.  相似文献   

18.
The number of electric and electronic products (e-products) owned by Chinese households has multiplied in the past decade. In this study, we analyz the GHG emissions from e-products in Chinese households in order to understand and determine how to mitigate their effects on climate change. The results show that the usage stage of e-products has become an important source of GHG emissions in China, with total GHG emissions of these household e-products reaching about 663 million tons CO2 eq., accounting for about 8.85 % of all Chinese GHG emissions in 2012. The average GHG emission per household per year in China was 1538 kg CO2 eq. in 2012, a little higher than that of Norwegian households (1200 kg CO2 eq.). The electricity mix plays a very important role in GHG emissions, and the 78 % coal-fired power consumption accounted for 99.69 % of the total GHG emissions. Our research also supports the view that GHG emissions from household e-products increased with economic level. To reduce the GHG emissions of household e-products, the development of energy-saving e-products and changes to the electricity mix would be very effective measures.  相似文献   

19.
In crop canopies, the persistence of discrete water drops on leaves after rain is of particular importance to the epidemiology of certain foliar pathogens. A model is described which simulates the heat and water vapour fluxes in a plant canopy and includes evaporation from water drops on the leaves. Energy balance equations allow for heat conducted to drops from the adjacent leaf tissue. Preliminary field tests of model performance for winter wheat, which compare predicted and visually assessed leaf wetness, are encouraging.  相似文献   

20.
华北地区夏季降水模拟研究:区域气候模式性能评估   总被引:1,自引:1,他引:1       下载免费PDF全文
利用高分辨率区域气候模式Reg CM3对华北地区1991—2002年夏季气候进行了数值模拟,对照中国台站的实测资料,对模拟的华北地区夏季降水、温度进行了较为全面的比较,以检验模式的模拟性能。对平均场的模拟结果检验认为,该区域气候模式对华北地区夏季降水的空间分布模拟存在一定的误差,河套地区及黄河以南地区降水量接近实况,沿着太行山脉及东部沿海地区降水量明显偏多。模式对温度的模拟误差较小,较好地再现了气温的空间分布特征,但山西及以北地区模拟的温度略偏低。模式能够较好地模拟出华北地区夏季降水和气温的年际变化,成功再现了该区域降水和气温的异常变化。模式能够成功模拟出该区域降水和气温日变化特征,特别是对于逐年夏季的降水日变化过程的峰值和谷值均有成功表现,对于典型年份华北地区较强降水过程中降水发生的时间、落区、强度等也有再现能力,不足的是模拟的降水量比观测偏大。对于模式误差是否与地形或模式积云对流参数化方案等有关,需要进一步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号