首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The random finite element method (RFEM) combines the random field theory and finite element method in the framework of Monte Carlo simulation. It has been applied to a wide range of geotechnical problems such as slope stability, bearing capacity and the consolidation of soft soils. When the RFEM was first developed, direct Monte Carlo simulation was used. If the probability of failure (p f ) is small, the direct Monte Carlo simulation requires a large number of simulations. Subset simulation is one of most efficient variance reduction techniques for the simulation of small p f . It has been recently proposed to use subset simulation instead of direct Monte Carlo simulation in RFEM. It is noted, however, that subset simulation requires calculation of the factor of safety (FS), while direct Monte Carlo requires only the examination of failure or non-failure. The search for the FS in RFEM could be a tedious task. For example, the search for the FS of slope stability by the strength reduction method (SRM) usually requires much more computational time than a failure or non-failure checking. In this paper, the subset simulation is combined with RFEM, but the need for the search of FS is eliminated. The value of yield function in an elastoplastic finite element analysis is used to measure the safety margin instead of the FS. Numerical experiments show that the proposed approach gives the same level of accuracy as the traditional subset simulation based on FS, but the computational time is significantly reduced. Although only examples of slope stability are given, the proposed approach will generally work for other types of geotechnical applications.  相似文献   

2.
Root systems of trees reinforce the underlying soil in hillslope environments and therefore potentially increase slope stability. So far, the influence of root systems is disregarded in Geographic Information System (GIS) models that calculate slope stability along distinct failure plane. In this study, we analyse the impact of different root system compositions and densities on slope stability conditions computed by a GIS-based slip surface model. We apply the 2.5D slip surface model r.slope.stability to 23 root system scenarios imposed on pyramidoid-shaped elements of a generic landscape. Shallow, taproot and mixed root systems are approximated by paraboloids and different stand and patch densities are considered. The slope failure probability (Pf) is derived for each raster cell of the generic landscape, considering the reinforcement through root cohesion. Average and standard deviation of Pf are analysed for each scenario. As expected, the r.slope.stability yields the highest values of Pf for the scenario without roots. In contrast, homogeneous stands with taproot or mixed root systems yield the lowest values of Pf. Pf generally decreases with increasing stand density, whereby stand density appears to exert a more pronounced influence on Pf than patch density. For patchy stands, Pf increases with a decreasing size of the tested slip surfaces. The patterns yielded by the computational experiments are largely in line with the results of previous studies. This approach provides an innovative and simple strategy to approximate the additional cohesion supplied by root systems and thereby considers various compositions of forest stands in 2.5D slip surface models. Our findings will be useful for developing strategies towards appropriately parameterising root reinforcement in real-world slope stability modelling campaigns.  相似文献   

3.
This paper investigates, using the random field theory and Monte Carlo simulation, the effects of random field discretization on failure probability, p f, and failure mechanism of cohesive soil slope stability. The spatial sizes of the discretized elements in random field Δx, Δy in horizontal and vertical directions, respectively, are assigned a series of combinational values in order to model the discretization accuracy. The p f of deterministic critical slip surface (DCSS) and that of the slope system both are analyzed. The numerical simulation results have demonstrated that both the ratios of Δy/λ y (λ y  = scale of fluctuation in vertical direction) and Δx/λ x (λ x  = scale of fluctuation in horizontal direction) contribute in a similar manner to the accuracy of p f of DCSS. The effect of random field discretization on the p f can be negligible if both the ratios of Δx/λ x and Δy/λ y are no greater than 0.1. The normalized discrepancy tends to increase at a linear rate with Δy/λ y when Δx/λ x is larger than 0.1, and vice versa for p f of DCSS. The random field discretization tends to have more considerable influence on the p f of DCSS than on that of the slope system. The variation of p f versus λ x and λ y may exhibit opposite trends for the cases where the limit state functions of slope failure are defined on DCSS and on the slope system as well. Finally, the p f of slope system converges in a more rapid manner to that of DCSS than the failure mechanism does to DCSS as the spatial variability of soil property grows from significant to negligible.  相似文献   

4.
Cyclic triaxial test by means of the geotechnical digital system is conducted for the soil near the Guoquan Road Station of Metro Line 10 in Shanghai to analyze the strain characteristics and the variation law of saturated silty soil under subway loading. Orthogonal design method is used to arrange the experiment, considering the following factors: frequency ratio f R, cyclic stress ratio σ R, vibration time ratio N R, and the interaction function among them. Results show that the cyclic stress ratio σ R, the frequency ratio f R, the vibration time ratio N R, and the interaction between the cyclic stress ratio σ R and the vibration time ratio N R have a significant effect on the axial strain of the subway tunnel. The effect of the interaction between the cyclic stress ratio σ R and the vibration time ratio N R is also significant. From the analysis of variance and regression theory, the nonlinear regression equation of the cumulative plastic strain of silty soil under subway loading is established. Residual analysis proves that the equation is ideal and credible. The results have important value for the design of subway tunnels.  相似文献   

5.
AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1 ? F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.  相似文献   

6.
The rock mass failure process can be divided into several distinct deformation stages: the compaction stage, elastic stage, stable failure stage, accelerated failure stage, and post-peak stage. Although each stage has been well studied, the relationship among the stages has not been established. Here, we establish two models which are the Strain model Q and Energy density model S by using the renormalization group theory and investigate the mechanical relationship between the volume dilatant point and peak stress point on the rock stress-strain curve. Our models show that the strain ratio (ε f /ε c ) and energy ratio (E f /E c ) at the volume dilatant point and peak stress point are solely functions of the shape parameter m. To verify our models, we further studied the failure process of rock specimens through several uniaxial compression experiments and found that the relationship between ε f /ε c or E f /E c and m shares a notably similar pattern to that from our theoretical model. However, the ε f /ε c and E f /E c values in our experiments are slightly smaller than those predicted by the models. In brief, we demonstrate that our models can be used to predict the failure process of the laboratory-scale hard brittle rock samples.  相似文献   

7.
Dam failure constitutes a grave threat to human life. However, there is still a lack of systematic and comprehensive research on the loss of life (L) caused by dam break in China. From the perspective of protecting human life, a new calculation method for L occurred in dam break floods is put forward. Fourteen dam failure cases in China are selected as the basic data by three-dimensional stratified sampling, balancing spatial, vertical elevation and temporal representations, as well as considering various conditions of the dam collapse. The method includes three progressive steps: Firstly, some impact factors of loss of life (IFL) are selected by literature survey, i.e., severity of dam break flood (S F), population at risk (P R), understanding of dam break (U B), warning time (T W) and evacuation condition (E C). And the other IFL of weather during dam break (W B), dam break mode (M B), water storage (S W), building vulnerability (V B), dam break time (T B) and average distance from affected area to dam (D D) are also taken into account to get a more comprehensive consideration. According to disaster system and disaster risk, these eleven IFL are divided into four categories. Through the improved entropy method, eight key IFL are further selected out of the eleven. Secondly, four L modules are built based on four categories, which are L-causing factor module (M 1), L-prone environment module (M 2), affected body module (M 3) and rescue condition module (M 4). Eventually, by using two methods of multivariate nonlinear regression and leave-one-out cross-validation in combination with coupled four modules, the calculation method for L is established. Compared with the results of Graham method and D&M method, the result of the proposed one is much closer to the actual value and performs better in fitting effect and regional applicability. In the application, L calculation and consequence assessment are carried out in the example of Hengjiang reservoir that has already broken down. At the same time, L calculation and risk prediction are used in the analysis of Yunshan reservoir, which is under planning. The proposed method can not only be applied to estimate L and its rate (f L ) under various types of dam break conditions in China, but also provide a reliable consequence assessment and prediction approach to reduce the risk of L.  相似文献   

8.
Understanding the changes in permeability of soil, when soil is subjected to high confining pressure and flow pressure, which may alter the textural and geomechanical characteristics of soil, is of great importance to many geo-engineering activities such as, construction of high-rise buildings near the coast or the water bodies, earthen dams, pavement subgrades, reservoir, and shallow repositories. It is now possible to evaluate the changes in permeability of soil samples under varying conditions of confining pressure and flow pressure using flexible wall permeameter (FWP). In the present study, investigation was carried out on a cylindrical sample of granular soil employing FWP under varied conditions of confining pressure (σ3)—50–300 kPa, which can simulate the stress conditions equivalent to depth of about 20 m under the earth’s crust, and a flow pressure (fp)—20–120 kPa, which is mainly present near the small earthen embankment dams, landfill liners, and slurry walls near the soft granular soil with high groundwater table. The obtained results indicate a linear relationship between hydraulic conductivity (k) with effective confining pressure (σeff.), k, decreasing linearly with an incremental change in σeff.. Further, k increases significantly with an increase in fp corresponding to each σeff., and q increases significantly with increase in the fp corresponding to each (σ3). It was also observed that corresponding to the low fp of 20 kPa, the reduction in k is nonlinear with σ3. The percentage reduction in k is observed to be 9, 13, and 27% corresponding to σ3 of 50–100, 100–200, and 200-300 kPa, respectively.  相似文献   

9.
This study analyzed 267 landslide landforms (LLs) in the Kumamoto area of Japan from the database of about 0.4 million LLs for the whole of Japan identified from aerial photos by the National Research Institute for Earth Science and Disaster Resilience of Japan (NIED). Each LL in the inventory is composed of a scarp and a moving mass. Since landslides are prone to reactivation, it is important to evaluate the sliding-recurrence susceptibility of LLs. One possible approach to evaluate the susceptibility of LLs is slope stability analysis. A previous study found a good correlation (R 2 = 0.99) between the safety factor (F s ) and slope angle (α) of F s  = 17.3α ?0.843. We applied the equation to the analysis of F s for 267 LLs in the area affected by the 2016 Kumamoto earthquake (M j  = 7.3). The F s was calculated for the following three cases of failure: scarps only, moving mass only, and scarps and moving mass together. Verification with the 2016 Kumamoto earthquake event shows that the most appropriate method for the evaluation of LLs is to consider the failure of scarps and moving mass together. In addition, by analyzing the relationship between the factors of slope of entire landslide and slope of scarp for LLs and comparing the results with the Aso-ohashi landslide, the largest landslide caused by the 2016 Kumamoto earthquake, we also found that morphometric analysis of LLs is useful for forecasting the travel distance of future landslides.  相似文献   

10.
This study quantifies the influence of various intrinsic soil properties including particle roundness, R, sphericity, S, 50% size by weight, D 50, coefficient of uniformity, C u, and the state property of relative density, D r, on the compression and recompression indices, C c and C r, of sands of various geologic origins at pre-crushing stress levels. Twenty-four sands exhibiting a wide range of particle shapes, gradations, and geologic origins were collected for the study. The particle shapes were determined using a computational geometry algorithm which allows characterization of a statistically large number of particles in specimens. One dimensional oedometer tests were performed on the soils. The new data was augmented with many previously published results. Through statistical analyses, simple functional relationships are developed for C c and C r. In both cases, the models utilized only R and D r since other intrinsic properties proved to have lesser direct influence on the compression indices. However, previous studies showed that the contributions of S and C u are felt through their effects on index packing void ratios and thus on D r. The accuracy of the models was confirmed by comparison of predicted and observed C c and C r values.  相似文献   

11.
Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length (Z 0/H) and shear velocity ratio (R) were analyzed as a function of roughness density (λ). Experiments showed that Z 0/H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/H and R showed little change with λ value beyond as λ max.  相似文献   

12.
Previously, similarity of source spectra of Kamchatka earthquakes with respect to the common corner frequency fc1 and the expressed deviations from similarity for the second fc2 and the third fc3 corner frequencies were revealed. The value of fc3 reflects the characteristic size Lis of fault surface; correspondingly, LisvrTis, where vr is the rupture speed and Tis ≈ 1/fc3 is characteristic time. The estimates of fc3 are used for normalizing fc1 and fc2. In this way one obtains dimensionless rupture temporal parametres τ1 and τ2 and can further study the dependence τ21). The growth of a rupture is considered as a process of aggregation of elementary fault spots of the size Lis. The dimensionless width of the random front of aggregation is on the order of τ2. The relationship τ21) approximately follows power law with exponent β. The estimates of β derived from earthquake populations of Kamchatka, USA and Central Asia (β = 0.35–0.6) agree with values expected from the known Eden’s theory of random aggregation growth and from its generalizations.  相似文献   

13.
The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (CO2 and HCO3 ?) by plants. The net photosynthetic CO2 assimilation (P N), the photosynthetic assimilation of CO2 and bicarbonate (P N’), the proportion of increased leaf area (f LA) and the stable carbon isotope composition (δ13C) of Orychophragmus violaceus (Ov) and Brassica juncea (Bj) under three bicarbonate levels (5, 10 and 15 mm NaHCO3) were examined to determine the relationship among P N, P N’ and f LA. P N’, not P N, changed synchronously with f LA. Moreover, the proportions of exogenous bicarbonate and total bicarbonate (including exogenous bicarbonate and dissolved CO2-generated bicarbonate) utilised by Ov were 2.27 % and 5.28 % at 5 mm bicarbonate, 7.06 % and 13.28 % at 10 mm bicarbonate, and 8.55 % and 17.31 % at 15 mm bicarbonate, respectively. Meanwhile, the proportions of exogenous bicarbonate and total bicarbonate utilised by Bj were 1.77 % and 3.28 % at 5 mm bicarbonate, 2.11 % and 3.10 % at 10 mm bicarbonate, and 2.36 % and 3.09 % at 15 mm bicarbonate, respectively. Therefore, the dissolved CO2-generated bicarbonate and exogenous bicarbonate are important sources of inorganic carbon for plants.  相似文献   

14.
The results of several sets of measurements of the frequency of radio signals during coronal-sounding experiments carried out from 1991 to 2000 using the ULYSSES and GALILEO spacecraft are presented and analyzed. The S-band signals (carrier frequency f = 2295 MHz) were received at the three 70-m widely spaced ground stations of the NASA Deep Space Network. As a rule, the frequency-fluctuation spectra at frequencies above 1 mHz are power-laws. At small heliocentric distances, R < 10R (R is the solar radius), the spectral index is close to zero; this corresponds to a spectral index for the one-dimensional turbulence spectrum p1 = 1. The index of the frequency-fluctuation spectra in the region of the supersonic solar wind at distances R > 30 R is between 0.5 and 0.7 (p1 = 1.5–1.7). The results demonstrate a substantial difference between the turbulence regimes in these regions: in the region of the established solar wind, the power-law spectra are determined by nonlinear cascade processes that pump energy from the outer turbulence scale to the small-scale part of the spectrum, whereas such cascade processes are absent in the solar wind acceleration region. Near the solar minimum, the change in the turbulence regime of the fast, high-latitude solar wind occurs at greater distances than for the slow, low-latitude solar wind. Spectra with a sharp cutoff at high frequencies have been detected for the first time. Such spectra are observed only at R < 10 R and at sufficiently low levels of the electron density fluctuations. The measured cutoff frequencies are between 10 and 30 mHz; the cutoff frequency tends to increase with heliocentric distance. The variance of the plasma-density fluctuations has been estimated for the slow, low-latitude solar wind. These estimates suggest that the relative fluctuation level at distances 7 R < R < 30 R does not depend on heliocentric distance. The cross correlation of the frequency fluctuations recorded at widely spaced ground stations increases with the index of the frequency-fluctuation spectrum. At distances R ≈ 10 R, the rate of temporal changes in irregularities on the scale of several thousand kilometers is less than or comparable to the solar wind velocity.  相似文献   

15.
Circular failure is generally observed in the slope of soil, highly jointed rock mass, mine dump and weak rock. Accurate estimation of the safety factor (SF) of slopes and their performance is not an easy task. In this research, based on rock engineering systems (RES), a new approach for the estimation of the SF is presented. The introduced model involves six effective parameters on SF [unit weight (γ), pore pressure ratio (r u), height (H), angle of internal friction (φ), cohesion (C) and slope angle (\(\beta\))], while retaining simplicity as well. In the case of SF prediction, all the datasets were divided randomly to training and testing datasets for proposing the RES model. For comparison purposes, nonlinear multiple regression models were also employed for estimating SF. The performances of the proposed predictive models were examined according to two performance indices, i.e., coefficient of determination (R 2) and mean square error. The obtained results of this study indicated that the RES is a reliable method to predict SF with a higher degree of accuracy in comparison with nonlinear multiple regression models.  相似文献   

16.
Study of intact rock failure criteria is an important topic in rock mechanics. In this study, applicability of nine different intact rock failure criteria is investigated for intact coal strength data. PFC3D modeling was used to simulate the laboratory polyaxial tests for cubic intact coal blocks of side dimension 110 mm under different confining stress combinations. A modified grid search procedure is proposed and used to find the best-fitting parameter values and to calculate the coefficient of determination (R 2) values for each criterion. Detailed comparisons of the nine criteria are made using the following aspects: R 2 values, σ 1 ? σ 2 plots for different σ 3, shapes on the deviatoric plane, linearity or nonlinearity on the meridian planes. Through the comparisons of R 2 values, σ 1 ? σ 2 plots and meridian lines, the modified Wiebols–Cook and modified Lade criteria were found to fit the intact coal strength data best. The nine failure criteria are categorized into three types based on the appearances on the deviatoric plane.  相似文献   

17.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

18.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

19.
We have determined the main parameters of the old precataclysmic variable stars MS Peg and LM Com. The radial velocities of the components, reflection effects in the spectra, and light curves of the systems are studied based on model stellar atmospheres subject to external irradiation. Forty-seven moderate-resolution spectra for MS Peg and 57 for LM Com obtained with the 6-m telescope of the Special Astrophysical Observatory are used to derive the refined orbital periods of 0.1736660 days and 0.2586873 days, respectively; the orbital eccentricities do not exceed e=0.04. The mass (M w =0.49e) and radius (e w =0.015R) of the MS Peg primary calculated using the gravitational redshift correspond to those for a cooling carbon white dwarf with a thin hydrogen envelope. The parameters of the red dwarf (M r =0.19M, Teff=3560 K, R r =0.18R) are close to those derived from evolutionary tracks for main-sequence M stars with solar chemical composition. The radius (R r =0.22R) and temperature (Teff=3650 K) of the LM Com secondary exceed theoretical estimates for main-sequence stars with masses of M r =0.17M. The luminosity excess of the red dwarf in LM Com can be explained by a prolonged (T>5×106 yrs) relaxation of the M star to its normal state after the binary leaves the common-envelope stage. For both systems, theoretical U, B, V, and R light curves and spectra calculated using the adopted sets of parameters are generally consistent with the observations. This confirms the radiative origin of the hot spots, the unimportance of horizontal radiative transport, and the absence of large-scale velocity fields with high values (Vtrans>50 km/s) at the surfaces of the secondaries. Most of the emission lines in the spectra of these objects are formed under conditions close to thermalization, enabling modeling of their pro files in an LTE approximation. A strong λ3905 Å emission line has been identified as the 3s23p4s 1P0-3s23p2 1S SiI λ3905.52 Å line formed in the atmosphere of the hot spot. The observed intensity can be explained by non-LTE “superionization” of SiI atoms by soft UV radiation from the white dwarf. We suggest a technique for identifying binaries whose cool components are subject to UV irradiation based on observations of λ3905 Å emission in their spectra.  相似文献   

20.
The aim of this research was to evaluate the potential of six legumes: Medicago sativa L., Glycine max, Arachis hypogea, Lablab purpureus, Pheseolus vulgaris and Cajanus cajan to restore within a short period of time soil contaminated with 3% crude oil. The legumes in five replications were grown in crude oil-contaminated and crude oil-uncontaminated soil in a completely randomized design. Plants were assessed for seedling emergence, plant height and leaf number. GC–MS was used to analyze the residual crude oil from the rhizosphere of the legumes. Plant growth parameters were reduced significantly (P < 0.05) for legumes in contaminated soil compared to their controls. In the 4th week after planting (WAP), shoot height increased across the species up to the 8th WAP. However, in the 12 WAP no significant increase in the shoot of all species was observed. Two WAP legumes planted in contaminated soil had significantly (P < 0.05) higher leaf number than these planted in uncontaminated soil with the exception of M. sativa. In the 4th WAP, only A. hypogea and P. vulgaris had increased leaf number, while in the 6th WAP, only L. purpureus had increased leaf number and survived up to the 12th WAP while most of the legumes species died. Chromatographic profiles indicated 100% degradation of the oil fractions in C. cajan and L. purpureus after 90 days. For other legumes however, greater losses of crude oil fractions C1–C10 and C10–C20 were indicated in rhizosphere soil of P. vulgaris and G. max, respectively. The most effective removal (93.66%) of C21–C30 components was observed in G. max-planted soil even though vegetation was not established. The legumes especially C. cajan, L. purpureus and A. hypogea are promising candidates for phytoremediation of petroleum hydrocarbon-impacted soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号