首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

2.
On the 27 June 2015, at 15:34:03 UTC, a moderate-sized earthquake of M w 5.0 occurred in the Gulf of Aqaba. Using teleseismic P waves, the focal mechanism of the mainshock was investigated by two techniques. The first technique used the polarities of the first P wave onsets, and the second technique was based on the normalized waveform modeling technique. The results showed that the extension stress has a NE orientation with a shallow southward plunge while the compression stress has a NW trend with a nearly shallow westward plunge, obtaining a strike-slip mechanism. This result agrees well with the typical consequence of crustal deformation resulting from the ongoing extensional to shear stress regime in the Gulf of Aqaba (NE-SW extension and NW-SE compression). The grid search method over a range of focal depths indicates an optimum solution at 15 ± 1 km. To identify the causative fault plane, the aftershock hypocenters were relocated using the local waveform data and the double-difference technique. Considering the fault trends, the spatial distribution of relocated aftershocks demarcated a NS-oriented causative fault, in consistence with one of the nodal planes of the focal mechanism solution, emphasizing the dominant stress regime in the region. Following the Brune model, the estimates of source parameters exhibited fault lengths of 0.29 ≤ L ≤ 2.48 km, moment magnitudes of 3.0 ≤ M w ≤ 5.0, and stress drops of 0.14 ≤ Δσ < 1.14 MPa, indicating a source scaling similar to the tectonic earthquakes related to plate boundaries.  相似文献   

3.
In this paper, the relationships of the plunges and azimuths of T and P axes versus the strikes, dips, and rakes of two seismic nodal planes were derived to provide reference for earthquake researchers. The independence of the plunges and azimuths of T, B, and P axes in focal mechanism solution was discussed, and it was concluded that three parameters, i.e., the azimuths of T, B and P axes, are completely independent. The focal mechanism solution representation based on Euler rotation was introduced, using three Euler angles in place of the plunges and azimuths of T, B, and P axes, and three focal mechanism solution representations were briefly compared and analyzed in respect of accuracy on the basis of the assumption of rounding; it was concluded that the Euler angle representation has better accuracy, compared with the azimuth representation and the traditional representation with T, B, and P axes.  相似文献   

4.
The parameters of the earthquake that took place February 3, 2015, near the city of Sumy, Ukraine, were calculated from an analysis of records obtained by both Russian and Ukrainian seismic stations (Poltava, Skvira, Nikolaev, Dneropetrovsk, and Desna). The calculated hypocenter depth of 54 km was verified by several approaches: isolation of deep PP, SP phases from the records of remote stations and solution of the kinematic problem for the Poltava station. The focal mechanism as shear with a complex fault component was determined by the first arrivals of P-waves. The data on the azimuthal travel-time curve confirm the focal mechanism. We have calculated the earthquake parameters; they are as follows: length gap L1 = 8.08 km, L2 = 6.68 km, a destruction rate of C = 2 km/s. We have obtained the dynamic parameters of the event. The calculated fault length (L = 5.46 km) within the accuracy limits of the method coincides with the early result obtained by the azimuthal travel-time curve. On the basis of these results, we suggest that elastic energy release and formation of the dislocations in the earthquake source occurred on a smooth, prefractured fault (σr > 0). Association of the hypocenter with the tectonic node of the northern marginal fault of the Dnieper–Donets graben and northern branch of Kryvyi Rih–Kremenchuk suture confirm this. Here, we observe a considerable Moho depth, structural alteration, and high gradients of the temperature and magnetic and electric rock properties in the lower Earth’s crust and upper mantle. These circumstances are favorable for the earthquake occurring here.  相似文献   

5.
Between 2013 June and 2015 January, 35 earthquakes with local magnitude M L ranging from 1.1 to 4.2 occurred in Nógrád county, Hungary. This earthquake sequence represents above average seismic activity in the region and is the first one that was recorded by a significant number of three-component digital seismographs in the county. Using a Bayesian multiple-event location algorithm, we have estimated the hypocenters of 30 earthquakes with M L ≥1.5. The events occurred in two small regions of a few squared kilometers: one to the east of Érsekvadkert and the other at Iliny. The uncertainty of the epicenters is about 1.5–1.7 km in the E-W direction and 1.8–2.1 km in the N-S direction at the 95 % confidence level. The estimated event depths are confined to the upper 3 km of the crust. We have successfully estimated the full moment tensors of 4 M w ≥3.6 earthquakes using a probabilistic waveform inversion procedure. The non-double-couple components of the retrieved moment tensor solutions are statistically insignificant. The negligible amount of the isotropic component implies the tectonic nature of the investigated events. All of the analyzed earthquakes have strike-slip mechanism with either right-lateral slip on an approximately N-S striking or left-lateral movement on a roughly E-W striking nodal plane. The orientations of the obtained focal mechanisms are in good agreement with the main stress pattern published for the epicentral region. Both the P and T principal axes are horizontal, and the P axis is oriented along a NE-SW direction.  相似文献   

6.
In this paper changes in focal mechanisms, parameters of wave spectra, and stress drops for the M S=5.0 foreshock and M S=6.0 mainshock in February 2001 in Yajiang County, Sichuan, and seismicity in epicentral region are studied. Comparison of focal mechanisms for the Yajiang earthquakes with distribution patterns of aftershocks, the nodal plane I, striking in the direction of NEN, of the Yajiang M=5.0 event is chosen as the faulting plane; the nodal plane II, striking in the direction of WNW, of the M=6.0 event as the faulting plane. The strikes of the two faulting planes are nearly perpendicular to each other. The level of stress drops in the epicentral region before the occurrence of the M=6.0 earthquake increases, which is consistent with increase of seismicity in the epicentral region. The rate decay of the Yajiang earthquake sequence, changes in wave spectra for foreshocks and aftershocks, and focal mechanisms are complex.  相似文献   

7.
This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md?=?1.4–3.4, which occurred at distances up to 250 km during 2001–2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune’s source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217–226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.The analysis showed that both P-wave and especially S-wave displacement spectra of quarry blasts demonstrate the corner frequencies lower than those obtained from earthquakes of similar magnitudes. A clear separation between earthquake and explosion populations was obtained for ratios of P- to S-wave corner frequency f 0(P)/f 0(S). The ratios were computed for each event with corner frequencies f 0 of P- and S-wave, which were obtained from the measured f 0 I at individual stations, then corrected for distance and finally averaged. We obtained empirically the average estimation of f 0(P)/f 0(S)?=?1.23 for all used earthquakes, and 1.86 for all explosions. We found that the difference in the ratios can be an effective discrimination parameter which does not depend on estimated moment magnitude M w .The new multi-station Corner Frequency Discriminant (CFD) for earthquakes and explosions in Israel was developed based on ratios P- to S-wave corner frequencies f 0(P)/f 0(S), with the empirical threshold value of the ratio for Israel as 1.48.  相似文献   

8.
Archeoseismological studies of the Kurmenty settlement have proved the seismogenic origin of the deformation in the walls at this site. The radiocarbon age of the first seismic event damaged the walls of the settlement is 7th century AD. The second seismic event occurred a few centuries later, probably in the late Middle Ages. The strongest seismic events of North Tien Shan occurred in the late 19th–early 20th century as the Chilik (1889, M = 8.4) and Kebin (1911, M = 7.9) also damaged the walls of the Kurmenty settlement. The local shaking intensity during these seismic events was I ≥ VII on MSK-64 scale.  相似文献   

9.
Age determination of paleotsunami sediment from Lombok Island, Indonesia, and surrounding area has been carried out using the 210 Pb method in BATAN Jakarta. The basic theory of this method assumes that weathering of sediments, including paleotsunami sediments, will result in 210 Pb enrichment. The principle of this method is to calculate 210 Pb contents accumulation in a particular sedimentation interval from the surface to the deeper buried sediments. The results are then converted into age or depositional time in years ago unit. The dating results from the paleotsunami sediments of the Gawah Pudak(S8°46’2.91’’, E115°56’34.23’’) and Gili Trawangan areas(S8°21’1.38’’, E116°2’36.6’’) indicate the Gawah Pudak sediments were deposited 37 years ago(c. in 1977)and 22 years ago(c. in 1992). Three paleotsunami sediments from Gili Trawangan were deposited 149 years ago(c. in 1865), 117 years ago(c. in 1897) and 42 years ago(c. in 1972). These results are then compared to the available Indonesian earthquake catalogue data. This study reveals that paleotsunami sediments around Lombok Islands, from older to younger, were caused by the 1857 earthquake(epicentre in Bali Sea; M7; S8°00’09.45’’,E115°29’56.41’’), 1897 earthquake(epicentre in Flores Sea;M5.5; S6°47’59.62’’, E120°48’03.5’’ or Sulu Sea earthquake; M8.5; 70 km NW of Basilan Island), the 1975 earthquake(Nusa Tenggara; S10°6’16.61’’, E123°48’09.39’’), 1977 earthquake(in Waingapu, Sumba; M8.0;S11°5’39.34’’, E118°27’50.86’’) and the 1992 earthquake(Flores; M7.8; S8°28’52.11’’, E121°53’44.3’’).  相似文献   

10.
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L)?=?A?+?B·(5 – M)?+?C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.  相似文献   

11.
We applied the g CAP algorithm to determine239 focal mechanism solutions 3:0 M We 6:0T with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere.  相似文献   

12.
One of the crucial components in seismic hazard analysis is the estimation of the maximum earthquake magnitude and associated uncertainty. In the present study, the uncertainty related to the maximum expected magnitude μ is determined in terms of confidence intervals for an imposed level of confidence. Previous work by Salamat et al. (Pure Appl Geophys 174:763-777, 2017) shows the divergence of the confidence interval of the maximum possible magnitude mmax for high levels of confidence in six seismotectonic zones of Iran. In this work, the maximum expected earthquake magnitude μ is calculated in a predefined finite time interval and imposed level of confidence. For this, we use a conceptual model based on a doubly truncated Gutenberg-Richter law for magnitudes with constant b-value and calculate the posterior distribution of μ for the time interval Tf in future. We assume a stationary Poisson process in time and a Gutenberg-Richter relation for magnitudes. The upper bound of the magnitude confidence interval is calculated for different time intervals of 30, 50, and 100 years and imposed levels of confidence α?=?0.5, 0.1, 0.05, and 0.01. The posterior distribution of waiting times Tf to the next earthquake with a given magnitude equal to 6.5, 7.0, and 7.5 are calculated in each zone. In order to find the influence of declustering, we use the original and declustered version of the catalog. The earthquake catalog of the territory of Iran and surroundings are subdivided into six seismotectonic zones Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh, and Makran. We assume the maximum possible magnitude mmax?=?8.5 and calculate the upper bound of the confidence interval of μ in each zone. The results indicate that for short time intervals equal to 30 and 50 years and imposed levels of confidence 1???α?=?0.95 and 0.90, the probability distribution of μ is around μ?=?7.16???8.23 in all seismic zones.  相似文献   

13.
A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in measurement and reduce systematic error we applied the data resampling technique. The group velocity delay of P wave was derived by using an improved multi-filtering method. Based on a linear viscoelastic relaxation model we deduced the medium quality factor Q m, and associated error with 95% confidence level. Applying the method to the seismic record of the Xiuyan M=5.4 earthquake sequences we obtained the following result: (1) High Q m started to appear from Nov. 9, 1999. The events giving the deduced high Q m value clustered in a region with their epicenter distances being between 32 and 46 km to the Yingkou station. This Q m versus distance observation obviously deviates from the normal trend of Q m linearly increasing with distance. (2) The average Q m before the 29 Dec. 1999 M=5.4 earthquake is 460, while the average Q m between the M=5.4 event and the 12 Jan. 2000 M=5.1 earthquake is 391, and the average Q m after the M=5.1 event is 204.  相似文献   

14.
We study the frictional and viscous effects on earthquake nucleation, especially for the nucleation phase, based on a one-degree-of-freedom spring-slider model with friction and viscosity. The frictional and viscous effects are specified by the characteristic displacement, U c, and viscosity coefficient, η, respectively. Simulation results show that friction and viscosity can both lengthen the natural period of the system and viscosity increases the duration time of motion of the slider. Higher viscosity causes a smaller amplitude of lower velocity motion than lower viscosity. A change of either U c (under large η) or η (under large U c) from a large value (U ch for U c and η h for η) to a small one (U cl for U c and η l for η) in two stages during sliding can result in a clear nucleation phase prior to the P-wave. The differences δU c = U ch ? U cl and δη = η h ? η l are two important factors in producing a nucleation phase. The difference between the nucleation phase and the P-wave increases with either δU c or δη. Like seismic observations, the peak amplitude of P-wave, which is associated with the earthquake magnitude, is independent upon the duration time of nucleation phase. A mechanism specified with a change of either η or U c from a larger value to a smaller one due to temporal variations in pore fluid pressure and temperature in the fault zone based on radiation efficiency is proposed to explain the simulation results and observations.  相似文献   

15.
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke J Seismol 17(4):1157–1182, (2013a), with the sample of random difference ξ?=?ln(Y 1 )-ln(Y 2 ), in which Y 1 and Y 2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure, the distribution of difference ξ was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference ξ of the sample of peak ground accelerations, and the variance of the individual random components was considerably smaller than that of conventional GMRs. In addition, the dependence of variance on the epicentre distance was considered; however, a dependence of variance on the magnitude was not detected. Finally, the influence of the novel model and the corresponding approximations on PSHA was researched. The applied approximations of distribution of the individual random component were satisfactory for the researched example of PSHA.  相似文献   

16.
Results of investigation of the lithosphere in the Kamchatka seismic focal zone from dynamic characteristics of earthquake records obtained at regional stations are presented. It is assumed that the specificity of the source zone can be estimated by the relation Cr = K P ? bK S ? c characterizing relative energies (energy classes, according to [Fedotov, 1972]) of short period transverse and longitudinal waves in the source. Azimuthal, spatial, and temporal variations in Cr and their relation to focal mechanisms are examined. Spatiotemporal variations in this parameter are shown to be caused by the influence of variations in the conditions in the source zone (its substance or process) on the radiation of P and S waves.  相似文献   

17.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

18.
The majority of original seismograms recorded at the very beginning of instrumental seismology (the early 1900s) did not survive till present. However, a number of books, bulletins, and catalogs were published including the seismogram reproductions of some, particularly interesting earthquakes. In case these reproductions contain the time and amplitude scales, they can be successfully analyzed the same way as the original records. Information about the Atushi (Kashgar) earthquake, which occurred on August 22, 1902, is very limited. We could not find any original seismograms for this earthquake, but 12 seismograms from 6 seismic stations were printed as example records in different books. These data in combination with macroseismic observations and different bulletins information published for this earthquake were used to determine the source parameters of the earthquake. The earthquake epicenter was relocated at 39.87° N and 76.42° E with the hypocenter depth of about 18 km. We could further determine magnitudes m B = 7.7 ± 0.3, M S = 7.8 ± 0.4, M W = 7.7 ± 0.3 and the focal mechanism of the earthquake with strike/dip/rake ? 260°± 20/30°± 10/90°± 10. This study confirms that the earthquake likely had a smaller magnitude than previously reported (M8.3). The focal mechanism indicates dominant thrust faulting, which is in a good agreement with presumably responsible Tuotegongbaizi-Aerpaleike northward dipping thrust fault kinematic, described in previous studies.  相似文献   

19.
We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (~900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.  相似文献   

20.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号