首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the 11 August 2012 M w 6.4 Ahar earthquake is investigated using the ground motion simulation based on the stochastic finite-fault model. The earthquake occurred in northwestern Iran and causing extensive damage in the city of Ahar and surrounding areas. A network consisting of 58 acceleration stations recorded the earthquake within 8–217 km of the epicenter. Strong ground motion records from six significant well-recorded stations close to the epicenter have been simulated. These stations are installed in areas which experienced significant structural damage and humanity loss during the earthquake. The simulation is carried out using the dynamic corner frequency model of rupture propagation by extended fault simulation program (EXSIM). For this purpose, the propagation features of shear-wave including \( {Q}_s \) value, kappa value \( {k}_0 \), and soil amplification coefficients at each site are required. The kappa values are obtained from the slope of smoothed amplitude of Fourier spectra of acceleration at higher frequencies. The determined kappa values for vertical and horizontal components are 0.02 and 0.05 s, respectively. Furthermore, an anelastic attenuation parameter is derived from energy decay of a seismic wave by using continuous wavelet transform (CWT) for each station. The average frequency-dependent relation estimated for the region is \( Q=\left(122\pm 38\right){f}^{\left(1.40\pm 0.16\right)}. \) Moreover, the horizontal to vertical spectral ratio \( H/V \) is applied to estimate the site effects at stations. Spectral analysis of the data indicates that the best match between the observed and simulated spectra occurs for an average stress drop of 70 bars. Finally, the simulated and observed results are compared with pseudo acceleration spectra and peak ground motions. The comparison of time series spectra shows good agreement between the observed and the simulated waveforms at frequencies of engineering interest.  相似文献   

2.
根据山西数字地震台网14个地震台的310条波形资料,研究了山西地区的非弹性衰减系数;采用Atkinson和Moya方法,研究了各台的场地响应和几种震源参数,并对这两种方法的反演结果进行了对比分析. 得到山西地区非弹性衰减Q值随频率f的关系为Q(f)=323.2f 0.506;得到的14个台站的场地响应均没有显示出明显的放大效应,这与山西台站均处于岩石地基相符;得到了拐角频率与地震矩、地震矩与应力降、震源半径与应力降之间存在依赖关系.   相似文献   

3.
Site response and source spectra of S waves in the Zagros region, Iran   总被引:1,自引:0,他引:1  
S wave amplitude spectra from shallow earthquakes with magnitudes ranging between 4.2 and 6.2 in the Zagros region of Iran that occurred between 1998 and 2008 are used to examine source parameters and site response of S waves. A generalized inversion scheme has been used to separate the source, propagation path, and local site effects from S wave spectra. For removing the trade-off between source and site terms and propagation effects (including geometric and anelastic attenuation), the spectral amplitudes of the records used were corrected for attenuation and geometrical spreading function using a path model proposed by Zafarani and Soghrat (Bull Seism Soc Am 102:2031–2045, 2012) for the region. We assume a Brune’s point source model to retrieve source parameters like corner frequency, moment magnitude, and high-frequency fall off coefficient, for each event. When the source spectra are interpreted in terms of Brune’s model, the average stress drops obtained are about 7.1 and 5.9 MPa (71 and 59 bars), respectively for the eastern and western Zagros regions. Stress drops range from 1.4 to 35.0 MPa (14 to 350 bars), with no clear dependence on magnitude. The results in terms of stress drop and S wave seismic energy indicate that the Zagros events are more similar to interplate earthquakes of western North America than to intraplate events of eastern North America. The method also provides us with site responses for all 40 stations individually and is an interesting alternative to other methods, such as the H/V method. A new empirical relationship between body-wave magnitudes and moment magnitude has been proposed for the Iranian plateau using derived seismic moment from the inversion.  相似文献   

4.
中国大陆主要地震活动区中小地震震源参数研究   总被引:31,自引:3,他引:28       下载免费PDF全文
本文利用中国大陆几个主要地震活动区近几年积累的大量ML≥2.5数字地震观测记录,在分别反演得到13个不同构造研究区域的介质衰减模型、348个台站的场地效应的基础上,自0.1~20 Hz的SH观测波形数据中逐步消除了仪器、噪声、几何扩散、传播路径的介质衰减、台站场地效应等影响后,恢复了2573次3.0≤ML≤6.0地震的...  相似文献   

5.
Seismic amplitude variations with offset contain information about the elastic parameters. Prestack amplitude analysis seeks to extract this information by using the variations of the reflection coefficients as functions of angle of incidence. Normally, an approximate formula is used for the reflection coefficients, and variations with offset of the geometrical spreading and the anelastic attenuation are often ignored. Using angle of incidence as the dependent variable is also computationally inefficient since the data are recorded as a function of offset. Improved approximations have been derived for the elastic reflection and transmission coefficients, the geometrical spreading and the complex travel-time (including anelastic attenuation). For a 1 D medium, these approximations are combined to produce seismic reflection amplitudes (P-wave, S-wave or converted wave) as a Taylor series in the offset coordinate. The coefficients of the Taylor series are computed directly from the parameters of the medium, without using the ray parameter. For primary reflected P-waves, dynamic ray tracing has been used to compute the offset variations of the transmission coefficients, the reflection coefficient, the geometrical spreading and the anelastic attenuation. The offset variation of the transmission factor is small, while the variations in the geometrical spreading, absorption and reflection coefficient are all significant. The new approximations have been used for seismic modelling without ray tracing. The amplitude was approximated by a fourth-order polynomial in offset, the traveltime by the normal square-root approximation and the absorption factor by a similar expression. This approximate modelling was compared to dynamic ray tracing, and the results are the same for zero offset and very close for offsets less than the reflector depth.  相似文献   

6.
To estimate the parameters of ground motion in future strong earthquakes, characteristics of radiation and propagation of seismic waves in the Kamchatka region were studied. Regional parameters of radiation and propagation of seismic waves were estimated by comparing simulations of earthquake records with data recorded by stations of the Kamchatka Strong Motion Network. Acceleration time histories of strong earthquakes (M w = 6.8–7.5, depths 45–55 km) that occurred near the eastern coast of Kamchatka in 1992–1993 were simulated at rock and soil stations located at epicentral distances of 67–195 km. In these calculations, the source spectra and the estimates of frequency-dependent attenuation and geometrical spreading obtained earlier for Kamchatka were used. The local seismic-wave amplification was estimated based on shallow geophysical site investigations and deep crustal seismic explorations, and parameters defining the shapes of the waveforms, the duration, etc. were selected, showing the best-fit to the observations. The estimated parameters of radiation and propagation of seismic waves describe all the studied earthquakes well. Based on the waveforms of the acceleration time histories, models of slip distribution over the fault planes were constructed for the studied earthquakes. Station PET can be considered as a reference rock station having the minimum site effects. The intensity of ground motion at the other studied stations was higher than at PET due to the soil response or other effects, primarily topographic ones. At soil stations INS, AER, and DCH the parameters of soil profiles (homogeneous pyroclastic deposits) were estimated, and nonlinear models of their behavior in the strong motion were constructed. The obtained parameters of radiation and propagation of seismic waves and models of soil behavior can be used for forecasting ground motion in future strong earthquakes in Kamchatka.  相似文献   

7.
Introduction Seismic recording is the information recorded by seismograph when earthquake occurs, which is a kind of comprehensive information, including the characteristics of earthquake focus, propagation path of seismic wave and site response, etc. Therefore, we must try to distinguish source effect, propagation path and site response in the seismic recordings in order to obtain accu-rate parameters. The method of Atkinson has better solved the problem (Atkinson, Mereu, 1992), which is bas…  相似文献   

8.
The study of seismic attenuation property is a major subject in seismology. Seismic waves recorded by seismic stations (seismographs) contain source effect, seismic wave propagation effect, site response of seismic stations and instrumental response. The path effect of seismic wave propagation, site response of seismic stations and instrumental response must be taken out in the study of source property with seismic data. The path effect of seismic wave propagation (seismic attenuation) involves an important influential factor, the anelastic attenuation of medium, which is measured with quality factor Q, apart from geometric attenuation with the distance. As a basic physical parameter of the Earth medium, Q value is essential for quantitative study of earthquakes and source property (e.g. determination of source parameters), which is widely used in earthquake source physics and engineering seismology.  相似文献   

9.
小波尺度域含气储层地震波衰减特征   总被引:22,自引:4,他引:18       下载免费PDF全文
黏弹性衰减因子Q的可靠估计可通过Q反褶积来提高地震资料的分辨率并有助于振幅分析. 本文从小波理论出发,结合地震波在黏弹性介质中的传播方程,推导出小波尺度域地震波能量衰减公式. 能量衰减公式具有下列性质:(1)Q值越大,能量衰减得越慢;Q值越小,能量衰减越严重;(2)尺度越小,信号中保留的能量越少;(3)对于脉冲源来说在理想的无衰减介质(即Q趋近于∞)中传播时,信号在不同尺度内的能量相同. 利用尺度能量公式,可从反射地震资料中直接估计品质因子Q(即衰减因子),也可以提取不同尺度的能量衰减剖面作为储层描述的属性参数,用来进行岩性识别和指示气藏,与经典的谱比法相比,避免了谱比法所面临的双时窗问题以及进行谱估计的窗选择问题. 理论模型试验表明了本文方法的正确性和有效性.  相似文献   

10.
By introducing a residual geometrical spreading factor, a new model was proposed in recent papers of Morozov to improve the estimates of seismic Q, and some published seismic Q observations were reinterpreted under the framework of the new model. We found that in these papers the definitions about the residual geometrical spreading and seismic scattering attenuation were conceptually confusing, and physically impossible negative values of seismic Q may arise in the new model. We argue that the estimates of the residual geometrical spreading in the new model are influenced by seismic scattering. Thus, the correlation between the residual geometrical spreading and tectonic activity, and the observation of temporal variations of the residual geometrical spreading and apparent attenuation, as reported by Morozov, are not surprising.  相似文献   

11.
We study the geometrical and material conditions which lead to focusing of seismic waves traveling across a concave velocity interface representing the boundary of a sedimentary basin within a denser rock. We approximate, using geometrical analysis for plane-waves, the combination of interface eccentricities and velocity ratios for which the seismic rays converge to a near surface region of the basin. 2-D finite difference modeling is used to compute Peak Ground Velocity (PGV) and spectral amplification across the basin. We show that effective geometrical focusing occurs for a narrow set of eccentricities and velocity ratios, where seismic energy is converged to a region of $\pm $ 0.5 km from surface. This mechanism leads to significant amplification of PGV at the center of the basin, up to a factor of 3; frequencies of the modeled spectrum are amplified up to the corner frequency of the source. Finally, we suggest a practical method for evaluating the potential for effective geometrical focusing in sedimentary basins.  相似文献   

12.
Generalized inversion of the S-wave amplitude spectra from the strong-motion network data in the East-Central Iran has been used to estimate simultaneously source parameters, site response and the S-wave attenuation (Qs). In this regard, 190 three-component records were used corresponded to 40 earthquakes with the magnitudes M3.5–M7.3. These earthquakes were recorded at 42 stations in the hypocentral distance range from 9 to 200 km. The inverse problem was solved in 20 logarithmically equally spaced points in the frequency band from 0.4 to 15 Hz. The frequency-dependent site amplification was imposed, as a constraint, on two reference site responses in order to remove the undetermined degree of freedom in the inversion and obtain a unique inverse solution. Also, a geometrical spreading factor was assumed for removing the trade-off between geometrical spreading and anelastic attenuation. Different source parameters, such as seismic moment (M0), seismic energy (Es), corner frequency (fc) and Brune stress drop (Δσ), were estimated for each event by fitting an ω2 model to the spectra obtained from the inversion. The stress drop values of earthquakes, obtained in this research, are in good agreement with those of other studies. Also average site response values were correlated to the average shear wave velocities in the uppermost 30 m, in high and low frequency bands. The peak frequencies of site amplifications, estimated by the generalized inversion method, where in good agreement with those of horizontal to vertical (H/V) spectral ratios for the S-wave portion of records. However, no perfect matching in amplitude was obtained due to the deficiencies of the H/V ratio technique. By supposing a free shape for Q factor, a frequency dependent function was found, the logarithm of which could be approximated by a linear function, Q(f)=151f0.75. The uncertainties of model parameters have been evaluated by covariance matrix of least-square fit. The residuals were also analyzed in order to assess the validity of the model. The analysis of residuals with respect to magnitude and distance indicates that they are distributed normally with approximately zero mean. The robustness of the results has been studied concerning their sensitivities to the omission of different datasets, selected randomly from original database. The results obtained here can be used in predicting ground-motion parameters applying stochastic methods.  相似文献   

13.
We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f 0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.  相似文献   

14.
—?Thirty-three earthquakes which occurred in the Central Apennines (Italy) with Ml ranging from 2.4 to 3.7 have been spectrally analysed using digital recordings from twelve stations of the Rete Sismometrica Marchigiana (RSM) network. Data corrected for geometrical spreading and quality factor Q have been inverted by means of the Generalised Inversion Technique. Site responses have been compared with those obtained by H/V ratio. Site amplifications have been observed both at stations placed on Pleistocene sediments and at one station located at 1800?m altitude. Source parameters have been calculated by fitting the spectra with an automatic procedure adopting the ω2 source model. The seismic moments range from 9.23?×?1019 to 4.28?×?1021 dyne-cm with an average M 0 (S) to M 0 (P) ratio of 1.13?±?0.38. The stress drops are generally low and they vary between 1.1 and 10.2?bar when estimated by using S source spectra, and between 0.5 and 7.1?bar when the P-source spectra are fitted. For the considered range of seismic moments we observe that the stress drop does not have significant dependence on event size.  相似文献   

15.
We investigate the scaling relationships among earthquake source parameters using more than 300 good quality broad band seismograms from 30 small earthquakes in the Kumaon Himalaya from the spectral analysis of P and S waves. The average ratio of P/S wave corner frequency is found to be 1.13, which is suggestive of shift in the corner frequency. The estimated seismic moment range from 1.6?×?1013–5.8?×?1015 N?m, while the stress drop varies from 0.6 to 16 bars with 80 % of the events below 10 bars. An analysis of stress drop and apparent stress drop indicates the partial stress drop mechanism in the region. The source radii are between 0.17 and 0.88 km. The total seismic energy varies from 1.79?×?108 to 7.30?×?1011 J. We also observe the variation in seismic energy for a given seismic moment. The scaling relation between the seismic moment and stress drop suggests the breakdown of constant stress drop scaling for the range of seismic moments obtained here for the region. This shows the anomalous behavior of small earthquakes in the region. The study indicates that the stress drop is the dominant scaling factor for the moments studied here.  相似文献   

16.
Generalized inversion of the S-wave amplitude spectra from the strong-motion network data in the Alborz, Iran has been used to estimate simultaneously source parameters, site response and S-wave attenuation (Qs). To obtain an optimum inverse solution, and also for decreasing the uncertainty level, a frequency-dependent site amplification as a constraint, was imposed to five reference site responses. This constraint removes the undetermined degree of freedom in the inversion. Furthermore, for removing the trade-off between geometrical spreading and anelastic attenuation, a geometrical spreading factor was adopted from the Motazedian [20] study. A point source model has been calibrated against the resulting source terms and consequently source parameters, like corner frequency, moment magnitude and high frequency fall off coefficient, for each event has been determined separately. Also, based on the available data and their connectivity two sub-regions including western and eastern parts of Alborz located east and west of 52.5°E have been considered to see that if there is any possible systematic difference in their seismic source characteristics. The average stress drops obtained are about 182 and 116 bars, respectively for eastern and western Alborz. Another result of the study is the site responses, which have been determined for all of 81 stations individually. Though soil nonlinearity was detected at the Ab-bar station (experienced strong ground shaking, i.e., PGA>0.5 g) near to the epicenter of Manjil M7.4 earthquake of June 20, 1990, but an analysis of residuals showed generally a weak influence of soil nonlinearity (i.e., dependence of amplification on shaking level); probably because of the relatively weak levels of acceleration in our database. Finally, the shear wave quality factor (i.e., Qs) has been determined as a function of frequency represented by a linear equation in logarithmic scale. To evaluate the outcomes of the current study, the results have been compared with similar studies wherever it was available. The results of the current study are of utmost importance for seismic hazard assessment of the metropolitan area of Tehran, where 15 million people live, one-fifth of the population of Iran.  相似文献   

17.
It gradually becomes a common work using large seismic wave data to obtain source parameters, such as seismic moment, break radius, stress drop, with completingof digital seismic network in China (Hough, et al, 1999; Bindi, et al, 2001). These parameters are useful on earthquake prediction and seismic hazard analysis.Although the computation methods of source parameters are simple in principle and the many research works have been done, it is not easy to obtain the parameters accurately. There are two factors affecting the stability of computation results. The first one is the effect of spread path and site respond on signal. According to the research results, there are different geometrical spreading coefficients on different epicenter distance. The better method is to introduce trilinear geometrical spreading model (Atkinson, Mereu, 1992; Atkinson, Boore, 1995; WONG, et al, 2002). In addition, traditional site respond is estimated by comparing with rock station, such as linear inversion method (Andrews, 1982), but the comparative estimation will introduce some errors when selecting different stations. Some recent research results show that site respond is not flat for rock station (Moya, et al, 2000; ZHANG,. et al, 2001; JIN, et al, 2000; Dutta, et al, 2001). The second factor is to obtain low-frequency level and corner frequency fromdisplacement spectrum. Because the source spectrum model is nonlinear function,these values are obtained by eye. The subjectivity is strong. The small change of corner frequency will affect significantly the result of stress drop.  相似文献   

18.
Through applying the energy-flux model to teleseismic P-wave data, seismological scattering Q and intrinsic Q for the western margin of the Sichuan basin in southwestern China are estimated separately. The results exemplify the frequency-dependent Q values in the seismic frequency band. The scattering Q is heavily frequency-dependent and reaches a minimum at ~1.5 Hz. The intrinsic Q is nearly invariant for frequencies above 2 Hz and rapidly increases at lower frequencies. A major advantage of the energy-flux model is that it is a phenomenological model based on the conservation of energy and requires no geometrical spreading correction. The results are good counterexamples against the claim of a frequency-independent seismological Q.  相似文献   

19.
基于安徽数字地震台网2010年1月至2017年12月记录到的ML2.5~5.0级地震,根据中小地震震源参数测定原理,利用多台多地震联合反演Atkinson方法和Moya方法分别计算了安徽地区地壳平均非弹性衰减因子Q值和安徽24个省属专业地震的台站场地。在此基础上,运用遗传算法求得安徽地区96个地震事件的震源谱参数,进而根据Brune中小地震圆盘模型计算其拐角频率、地震矩、应力降、矩震级、震源尺度等震源参数,并分析其特征及相互之间的关系。研究结果表明:安徽地区中小地震的ML震级与其他震源参数之间存在一定相关关系,而地震矩M0与应力降Δσ、震源尺度r和拐角频率fc之间并未表现出明显的相关关系。  相似文献   

20.
利用紫坪铺水库数字地震台网和成都区域数字台网中的油榨坪台2004年8月到2008年5月12日汶川大地震前的紫坪铺库区2级以上地震波形资料,采用Atkinson方法计算了紫坪铺水库库区地震波非弹性衰减系数、几何扩散系数和介质品质因子;利用Moya等提出的方法计算了台站场地响应;对震源谱的低频水平和拐角频率进行了联合反演,并计算了紫坪铺库区287次1.6级以上地震的震源波谱参数,同时讨论了它们之间的关系。结果表明:紫坪铺库区Q值与频率的关系为Q(f)=47.8×f0.91;场地响应均表现为与频率相关;紫坪铺库区小震地震矩、震级与震源谱拐角频率的依赖关系不明确,这可能与水库诱发地震有关  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号