首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extrusive and intrusive igneous rocks represent different parts of a magmatic system and ultimately provide complementary information about the processes operating beneath volcanoes. To shed light on such processes, we have examined and quantified the textures and mineral compositions of plutonic and cumulate xenoliths and lavas from Bequia, Lesser Antilles arc. Both suites contain assemblages of iddingsitized olivine, plagioclase, clinopyroxene and spinel with rare orthopyroxene and ilmenite. Mineral zoning is widespread, but more protracted in lavas than xenoliths. Plagioclase cores and olivine have high anorthite (An?≤?98) and low forsterite (Fo?≤?84) compositions respectively, implying crystallisation from a hydrous mafic melt that was already fractionated. Xenolith textures range from adcumulate to orthocumulate with variable mineral crystallisation sequences. Textural criteria are used to organize the xenoliths into six groups. Amphibole, notably absent from lavas, is a common feature of xenoliths, together with minor biotite and apatite. Bulk compositions of xenoliths deviate from the liquid line of descent of lavas supporting a cumulate origin with varying degrees of reactive infiltration by evolved hydrous melts, preserved as melt inclusions in xenolith crystals. Volatile saturation pressures in melt inclusions indicate cumulate crystallization over a 162–571 MPa pressure range under conditions of high dissolved water contents (up to 7.8 wt% H2O), consistent with a variety of other thermobarometric estimates. Phase assemblages of xenoliths are consistent with published experimental data on volatile-saturated low-magnesium and high-alumina basalts and basaltic andesite from the Lesser Antilles at pressures of 200–1000 MPa, temperatures of 950–1050 °C and dissolved H2O contents of 4–7 wt%. Once extracted from mid-crustal mushes, residual melts ascend to higher levels and undergo H2O-saturated crystallization in shallow, pre-eruptive reservoirs to form phenocrysts and glomerocrysts. The absence of amphibole from lavas reflects instability at low pressures, whereas its abundance in xenoliths testifies to its importance in mid-crustal differentiation processes. A complex, vertically extensive (6 to at least 21 km depth) magmatic system is inferred beneath Bequia. Xenoliths represent fragments of the mush incorporated into ascending magmas. The widespread occurrence of evolved melts in the mush, but the absence of erupted evolved magmas, in contrast to islands in the northern Lesser Antilles, may reflect the relative immaturity of the Bequia magmatic system.  相似文献   

2.
St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure–temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950–1025 °C, and fO2 = NNO ? 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa–Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5–6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.  相似文献   

3.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

4.
Geochemistry of the Lesser Antilles volcanic island arc   总被引:1,自引:0,他引:1  
New analyses of 1518 rocks for major and certain trace elements are used to examine chemical variations between the 15 larger volcanic islands of the Lesser Antilles island arc. The depth to the top of the subduction zone dipping westward at about 40° lies about 100km below all the volcanoes of the arc. Most of the sampled eruptions are post-Miocene (5-1 m.y.) although south of Martinique, the Oligocene-Miocene and the younger arc are superimposed.There is a chemical variation along the arc axis, from alkalic (southern) through calc-alkalic (central) to tholeiitic (northern) volcanic suites. Three islands are examined in detail as type examples of this variation, i.e. Grenada (south), Dominica (centre), and St. Kitts (north). The Grenada suite includes basanites, alkalic basalts, and subalkalic basalts, andesites and dacites. The subalkalic basalts, andesites and dacites each fall into three chemical groupings along the axis of the arc, distinguished especially by K, Zr, Ni and Cr abundances. The whole Lesser Antilles assemblage is characterised by low K abundances and low K/Rb ratios, compared with other island arcs.The magmas are believed to have evolved through processes of partial melting and crystal fractionation. Partial melting of garnet Iherzolite at about 100km depth in a relatively ‘fertile’ zone of upper mantle in the southern sector, above the subducted slab of basaltic ocean crust, could have produced the undersaturated alkalic magmas. In the central and northern sectors, where the crustal structures are more complex, partial melting may have occurred within more ‘barren’ upper mantle, to produce tholeiitic and calc-alkalic magmas depleted in certain trace elements. In either case, water was probably added to the melted zone from the subducted and hydrated oceanic crust, since the whole arc assemblage was erupted explosively and the rocks are rich in A12O3, plagioclase is very calcic, and amphibole is an important phase. The second process was crystal fractionation at low pressure, as evidenced by the abundance of cumulate xenoliths. Separating phases for the southern volcanoes were olivine, calcic augite and Cr-spinel, followed by hornblende, anorthite and Ti-magnetite at lower temperatures. There is little evidence of the higher-temperature fractionation controls for the central and northern volcanoes.  相似文献   

5.
The 1971 Teneguía eruption is the most recent volcanic event of the Cumbre Vieja rift zone on La Palma. The eruption produced basanite lavas that host xenoliths, which we investigate to provide insight into the processes of differentiation, assimilation and magma storage beneath La Palma. We compare our results to the older volcano magmatic systems of the island with the aim to reconstruct the temporal development of the magma plumbing system beneath La Palma. The 1971 lavas are clinopyroxene-olivine-phyric basanites that contain augite, sodic-augite and aluminium augite. Kaersutite cumulate xenoliths host olivine, clinopyroxene including sodic-diopside, and calcic-amphibole, whereas an analysed leucogabbro xenolith hosts plagioclase, sodic-augite-diopside, calcic-amphibole and hauyne. Mineral thermobarometry and mineral-melt thermobarometry indicate that clinopyroxene and plagioclase in the 1971 Teneguía lavas crystallised at 20–45 km depth, coinciding with clinopyroxene and calcic-amphibole crystallisation in the kaersutite cumulate xenoliths at 25–45 km and clinopyroxene, calcic-amphibole and plagioclase crystallisation in the leucogabbro xenolith at 30–50 km. Combined mineral chemistry and thermobarometry suggest that the magmas had already crystallised, differentiated and formed multiple crystal populations in the oceanic lithospheric mantle. Notably, the magmas that supplied the 1949 and 1971 events appear to have crystallised deeper than the earlier Cumbre Vieja magmas, which suggests progressive underplating beneath the Cumbre Vieja rift zone. In addition, the lavas and xenoliths of the 1971 event crystallised at a common depth, indicating a reused plumbing system and progressive recycling of Ocean Island plutonic complexes during subsequent magmatic activity.  相似文献   

6.
The Gede Volcanic Complex (GVC) of the Sunda island arc (West Java, Indonesia) consists of multiple volcanic centres and eruptive groups with complex magmatic histories. We present new petrological, mineralogical, whole-rock major and trace element and Sr–O isotopic data to provide constraints on the relative importance of fractional crystallisation and magma mixing in petrogenesis, as well as on the role and nature of the arc crust. Banded juvenile scoria from Young and Old Gede provide unequivocal evidence for the (late-stage) interaction of distinct magmas at Gede volcano. However, the relatively small-degree compositional zoning observed in plagioclase phenocrysts of all eruptive groups (up to ~20 mol% An) may be attributed to physical changes in magma properties (e.g. P, T, and PH2O) rather than changes in melt composition. Major element and trace element variations within each eruptive series are inconsistent with magmatic evolution through simple mixing processes. Instead, mixing of variably fractionated magma batches is suggested to account for the significant scatter in some element variation diagrams. No correlation is observed between textural complexity and/or mineral disequilibrium and whole-rock geochemistry. REE data and geochemical modelling indicate that fractional crystallisation involving amphibole in the mid- to lower crust, and fractionation of plagioclase, clinopyroxene, Fe–Ti oxide ± olivine ± orthopyroxene provide strong control on the geochemical evolution of GVC rocks. Two-pyroxene geothermobarometry provides pre-eruption crystallisation temperatures of 891–1,046°C and pressures of 3.4–6.5 kbar, equivalent to ~13–24 km depth beneath the volcanoes (mid- to lower crust). Low, mantle-like clinopyroxene δ18O values of GVC lavas and poor correlation of Sr isotope ratios with indices of differentiation precludes significant assimilation of isotopically distinct crust during magmatic differentiation. Therefore, we suggest that the geochemical character of the moderately thick West Javan arc crust is relatively immature compared to typical continental crust. Trace element ratios and strontium isotopes show that the magmatic source composition of the older geographical units, Gegerbentang and Older Quaternary, is distinct from the other GVC groups.  相似文献   

7.
Xenoliths from the upper mantle and lower crust are abundant in Plio–Pleistocene alkali basalts of the Nógrád-Gömör Volcanic Field (NGVF; northern Pannonian Basin, northern Hungary/southern Slovakia), representing a valuable ‘probe’ of lithospheric structures and processes. Ultramafic xenoliths have been divided into two groups: (1) Type-I, composed mostly of olivine with subsidiary orthopyroxene, clinopyroxene and spinel, and (2) Type-II, containing mostly Al- and Ti-rich clinopyroxene with subordinate olivine, spinel and plagioclase. Both types often contain amphibole and, to a lesser extent, mica. The refractory character of Type-I xenoliths suggests they represent mantle depleted by prior episodes of partial melting. In contrast, Type-II series (wehrlites, olivine clinopyroxenites, clinopyroxenites and plagioclase-bearing ultramafic lithologies), on the basis of their textural features, thermobarometric histories and major and trace element variation, appear to have formed as magmatic cumulates. Petrologic and geochemical studies of Type-II xenoliths from Nógrád-Gömör suggest they crystallized from basaltic melts emplaced within the lithospheric mantle and lower crust, prior to the onset of Plio–Pleistocene volcanic activity. After their consolidation, metasomatic agents reacted with the anhydrous cumulate phases producing amphiboles and micas at the expense of olivine and clinopyroxene. The metasomatic agents appear to have been adakitic rather than basaltic in composition, possibly linked to a retreating arc–forearc system. Large-scale contamination of the lithospheric mantle can therefore be attributed to fluid and melt fractions related to subduction beneath the outer Carpathian arc.  相似文献   

8.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

9.
The Jerrabattgulla Creek basalts are in the upper catchment of the Shoalhaven River of southeastern New South Wales. The basalts erupted into a narrow, north-draining valley and modified the local drainage system, re-routing the paleo-Jerrabattgulla Creek, preserving a series of sub-basaltic quartzose gravels with silcretes in the paleovalley. The paleovalley indicates that a north-flowing drainage existed in this place in the Miocene. The high-relief, narrow valley has preserved a volcanic stratigraphy allowing the magmatic evolution of this small lava field to be determined. The lavas have a large compositional range from olivine nephelinite through to quartz tholeiite, which is unusual in such a small lava field. They represent three distinct magma batches, most likely from an amphibole–apatite metasomatised sub-continental lithospheric mantle, and underwent fractional crystallisation of olivine, clinopyroxene and plagioclase and assimilated upper crust. The lava field underwent temporal change from dominantly alkaline, to mixed alkaline and subalkaline, to dominantly alkaline magmatism over the course of its evolution.  相似文献   

10.
Mantle peridotites entrained as xenoliths in the lavas of Ngao Bilta in the eastern branch of the continental Cameroon Line were examined to constrain mantle processes and the origin and nature of melts that have modified the upper mantle beneath the Cameroon Line.The xenoliths consist mainly of lherzolite with subordinate harzburgite and dunite.They commonly contain olivine,orthopyroxene,clinopyroxene and spinel although the dunite is spinel-free.Amphibole is an essential constituent in the lherzolites.Mineral chemistry differs between the three types of peridotite:olivines have usual mantle-like Mg#of around 90 in lherzolites,but follow a trend of decreasing Mg#(to 82)and NiO(to 0.06 wt.%)that is continuous in the dunites.Lherzolites also contain orthopyroxenes and/or clinopyroxenes with low-Mg#,indicating a reaction that removes Opx and introduces Cpx,olivine,amphibole and spinel.This is attributed to reaction with a silica-undersaturated silicate melt such as nephelinite or basanite,which originated as a low-degree melt from a depleted source as indicated by low Al2O3 and Na2O in Cpx and high Na2O/K2O in amphibole.Thermobarometric estimates place the xenoliths at pressures of 11–15 kbar(35–50 km)and temperatures of 863–957C,along a dynamic rift geotherm and shallower than the region where carbonate melts may occur.The melt/rock reactions exhibited by the Ngao Bilta xenoliths are consistent with their peripheral position in the eastern branch of the Cameroon Volcanic Line in an area of thinned crust and lithosphere beneath the Adamawa Uplift.  相似文献   

11.
Olivine + clinopyroxene ± amphibole cumulates have beenwidely documented in island arc settings and may constitutea significant portion of the lowermost arc crust. Because ofthe low melting temperature of amphibole (1100°C), suchcumulates could melt during intrusion of primary mantle magmas.We have experimentally (piston-cylinder, 0·5–1·0GPa, 1200–1350°C, Pt–graphite capsules) investigatedthe melting behaviour of a model amphibole–olivine–clinopyroxenerock, to assess the possible role of such cumulates in islandarc magma genesis. Initial melts are controlled by pargasiticamphibole breakdown, are strongly nepheline-normative and areAl2O3-rich. With increasing melt fraction (T > 1190°Cat 1·0 GPa), the melts become ultra-calcic while remainingstrongly nepheline-normative, and are saturated with olivineand clinopyroxene. The experimental melts have strong compositionalsimilarities to natural nepheline-normative ultra-calcic meltinclusions and lavas exclusively found in arc settings. Theexperimentally derived phase relations show that such naturalmelt compositions originate by melting according to the reactionamphibole + clinopyroxene = melt + olivine in the arc crust.Pargasitic amphibole is the key phase in this process, as itlowers melting temperatures and imposes the nepheline-normativesignature. Ultra-calcic nepheline-normative melt inclusionsare tracers of magma–rock interaction (assimilative recycling)in the arc crust. KEY WORDS: experimental melting; subduction zone; ultra-calcic melts; wehrlite  相似文献   

12.
 Two types of melt pockets occur in Hawaiian mantle xenoliths: amphibole-bearing (AMP) and spinel-bearing (SMP). AMPs contain amphibole (kaersutite), olivine (Fo92), clinopyroxene (with 7–11% Al2O3), vesicles and glass. SMPs contain olivine, clinopyroxene, spinel, glass, and vesicles. The glasses in SMPs (SiO2=44–45%, 11–12% alkalis, La=90–110 ppm) and AMPs (SiO2=49–54%, 6–8.5% alkalis, La=8–14 ppm) are distinct in color and composition. Both glasses are generally characterized by LREE-enriched (chondrite-normalized) patterns. Amphibole and clinopyroxene have gently convex upward-to-moderately LREE-enriched patterns. Mineral/glass trace element abundance ratio plots show a strong negative Ti anomaly and a gentle negative Zr anomaly for clinopyroxene/glass; whereas amphibole/glass patterns show a distinctive positive Ti spike. The amphibole/glass trace element ratios are similar to published megacryst/lava values. An earlier study showed that the Hawaiian spinel lherzolites (lithosphere) have largely been metasomatized during post-erosional Honolulu magmatic activity. REE abundances of SMP glasses (melts) overlap the REE abundances calculated for such metasomes. The occurrence of hydrous, alkaline, mafic melt pockets in Hawaiian upper mantle xenoliths implies that (1) such hydrous liquids are generated in the upper mantle, and (2) water plays a role in magmatic activity associated with the Hawaiian plume. Although we are uncertain about the source (plume, lithosphere, or asthenosphere) of this water, we speculate that such melts and other alkalic lavas erupted on Oahu and on the sea-floor over the Hawaiian arch were generated from a broad „wet“ rim of a radially layered Hawaiian plume, whose hot and „dry“ core supplied the shield-forming magmas. Received: 6 February 1995 / Accepted: 28 August 1995  相似文献   

13.
Primitive andesites from the Taupo Volcanic Zone formed by magma mixing   总被引:1,自引:0,他引:1  
Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand’s Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.  相似文献   

14.
Xenolithic inclusions in calc-alkaline andesite from Mt. Moffettvolcano, Adak Island, Aleutian arc, reveal a nearly continuousrecord of crystallization of basaltic magmas in the crust, andpossibly upper mantle, of the arc. The record is more detailedand continuous than that obtained from study of calc-alkalinevolcanic rocks in the arc. Cumulate xenoliths form a progressiveseries in modal mineralogy from ultramafic, hornblende-bearingolivine clinopyroxenite to both hornblende-bearing and hornblende-freegabbros. The cumulate hornblende gabbro xenoliths are typicalof those found in island arc andesites worldwide. Xenolithicinclusions without cumulate textures, here termed compositexenoliths, are characterized by forsteritic olivine, zoned Cr-diopsideand hornblende, and are interpreted to have resulted from reactionand chilling upon magma mixing at depth. The olivine and clinopyroxene in both cumulate and compositexenoliths show the largest and the most complete variation trendsfor Ni, Cr, and FeO/MgO ratio yet reported in igneous xenolithsfrom island arc volcanic rocks. Variation of Ni in olivine indicatesthat the parent magmas for the xenoliths had minimum MgO contentsof 9 wt. per cent. Variation of Cr in clinopyroxene indicatesthat the magmas were basaltic rather than picritic, probablyin equilibrium with spinel lherzolite at near Moho depths. Successiveinjections of batches of primary melt into a magma chamber fractionatingolivine and clinopyroxene can reproduce observed compatibleelement depletion trends. A steady-state process of cotecticcrystallization in a magma chamber continually replenished withbasaltic magma is a possible mechanism for producing large accumulationsof olivine and clinopyroxene, suggesting that Alaskan-type ultramaficcomplexes are related to hydrous basaltic magmas in island arcs.This steady-state open-system crystallization process can alsoyield the abundant high-alumina basalt type in the Aleutianarc. Continued crystallization of high-alumina basalt in lowercrustal magma chambers, recorded in a mineralogically coherentseries of pyroxenite to hornblende gabbro xenoliths, can yieldbasaltic to andesitic magmas of the calc-alkaline series. No xenoliths with a sedimentary protolith have been found atMt Moffett, evidence that the arc crust is igneous in origin,with the lower crust formed of gabbro crystallized from mantle-derivedmelts. Ultramafic cumulates may reside in both the lower crustor upper mantle beneath the arc. A model is proposed wherebythe cumulate crystallization products of hydrous, mantle beneaththe arc. A model is define the upper mantle and lower crustof the arc over time.The net composition added to the crustof the arc is that of high-alumina basalt.  相似文献   

15.
Amphibole-bearing mafic inclusions (low to medium-K high-alumina basalt to basaltic andesite) comprise 4.1 vol% of calc-alkaline rhyolite and rhyodacite lavas on Akrotiri Peninsula, Santorini, Greece. Physical features indicate a magmatic origin for the inclusions, involving mingling with the host silicic magma and quenching. Water contents of the mafic magmas are estimated to have been above 4% at water pressures of 1.8 kbars or more at temperatures of approximately 950–1,000 °C. Three evolutionary stages are inferred in their petrogenesis. In the first stage infiltration of slab fluids promotes partial melting in the mantle to generate primitive wet basaltic magmas enriched in LREE, LILE, Th and U in comparison to N-type MORB. In the second stage storage and crystal differentiation of primitive magmas occurred in the lithospheric mantle or deep crust, involving olivine, spinel and clinopyroxene followed by amphibole and plagioclase. In the third stage differentiated mafic magma intrudes into porphyritic silicic magma at shallower crustal levels (estimated at 7–10 km). Mingling and quenching of the mafic magmas within the silicic host causes chemical or physical interactions between the inclusions and the host prior to and during eruption. The silicic lavas have geochemical affinities with the mafic inclusions, but are relatively depleted in MREE, HREE and Y and enriched in Rb relative to Ba and K. These observations are consistent with involvement of amphibole in magma genesis due either to crystal differentiation from wet basalt or to partial melting of mafic rocks with residual amphibole. Crystallization of wet basalt in the deep crust is preferred on the basis of physical considerations.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: I. Parsons  相似文献   

16.
Summary Mantle-derived xenoliths from Baarley in the Quaternary West Eifel volcanic field contain six distinct varieties of glass in veins, selvages and pools. 1) Silica-undersaturated glass rich in zoned clinopyroxene microlites that forms jackets around and veins within the xenoliths. This glass is compositionally similar to groundmass glass in the host basanite. 2) Silica-undersaturated alkaline glass that contains microlites of Cr-diopside, olivine and spinel associated with amphibole in peridotites. This glass locally contains corroded primary spinel and phlogopite. 3) Silica-undersaturated glass associated with diopside, spinel ± olivine and rh?nite microlites in partly to completely broken down amphibole grains in clinopyroxenites. 4) Silica-undersaturated to silica-saturated, potassic glass in microlite-rich fringes around phlogopite grains in peridotite. 5) Silica-undersaturated potassic glass in glimmerite xenoliths. 6) Silica-rich glass around partly dissolved orthopyroxene crystals in peridotites. Geothermometry of orthopyroxene–clinopyroxene pairs (P = 1.5 GPa) gives temperatures of ∼ 850 °C for unveined xenoliths to 950–1020 °C for veined xenoliths. Clinopyroxene – melt thermobarometry shows that Cr-diopside – type 2 glass pairs in harzburgite formed at 1.4 to 1.1 GPa and ∼ 1250 °C whereas Cr-diopside – type 2 glass pairs in wehrlite formed at 0.9 to 0.7 GPa and 1120–1200 °C. This bimodal distribution in pressure and temperature suggests that harzburgite xenoliths may have been entrained at greater depth than wehrlite xenoliths. Glass in the Baarley xenoliths has three different origins: infiltration of an early host melt different in composition from the erupted host basanite; partial melting of amphibole; reaction of either of these melts with xenolith minerals. The composition of type 1 glass suggests that jackets are accumulations of relatively evolved host magma. Mass balance modelling of the type 2 glass and its microlites indicates that it results from breakdown of disseminated amphibole and reaction of the melt with the surrounding xenolith minerals. Type 3 glass in clinopyroxenite xenoliths is the result of breakdown of amphibole at low pressure. Type 4 and 5 glass formed by reaction between phlogopite and type 2 melt or jacket melt. Type 6 glass associated with orthopyroxene is due to the incongruent dissolution of orthopyroxene by any of the above mentioned melts. Compositional gradients in xenolith olivine adjacent to type 2 glass pools and jacket glass can be modelled as Fe–Mg interdiffusion profiles that indicate melt – olivine contact times between 0.5 and 58 days. Together with the clinopyroxene – melt thermobarometry calculations these data suggest that the glass (melt) formed over a short time due to decompression melting of amphibole and infiltration of evolved host melt. None of the glass in these xenoliths can be directly related to metasomatism or any other process that occurred insitu in the mantle. Received November 23, 1999; revised version accepted September 5, 2001  相似文献   

17.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


18.
Olivine-clinopyroxenite xenoliths exhumed in alkali basalts(sensu lato) in the Nógrád–GömörVolcanic Field (NGVF), northern Hungary, contain abundant silicatemelt inclusions. Geothermobarometric calculations indicate thatthese xenoliths crystallized as cumulates in the upper mantlenear the Moho. These cumulate xenoliths are considered to representa period of Moho underplating by mafic alkaline magmas priorto the onset of Late Tertiary alkaline volcanism in the Carpathian–Pannonianregion. The major and trace element compositions of silicatemelt inclusions in olivine display an evolutionary trend characterizedby a strong decrease in CaO/Al2O3. The parental melt of thecumulates was a basanite formed by low-degree ( 2%) partialmelting of a garnet peridotite source. The compositional trendof the silicate melt inclusions, textural features, and modellingwith pMELTS show that the parental melt evolved by major clinopyroxeneand minor olivine crystallization followed by the appearanceof amphibole simultaneously with significant resorption of theearlier clinopyroxene and olivine. The resulting residual meltwas highly enriched in Al2O3, alkalis and most incompatibletrace elements. This type of melt is likely to infiltrate andreact with surrounding mantle peridotite as a metasomatic agent.It might also form high-pressure pegmatite-like bodies in themantle that might be the source of the amphibole and sanidinemegacrysts also found in the alkali basalts of the NGVF. Preferentialremelting of the later-formed (i.e. lower temperature) mineralassemblage (amphibole, sanidine, residual glass) might havesignificantly contaminated the host alkaline mafic lavas, increasingtheir Al2O3 and total alkali contents and, therefore, reducingtheir MgO, FeO and CaO content. KEY WORDS: silicate melt inclusions; geochemistry; petrogenesis; Nógrád–Gömör Volcanic Field; Pannonian Basin  相似文献   

19.
Patches of glass with a second generation of small crystals of olivine, clinopyroxene, and spinel are abundant in hydrous peridotite mantle xenoliths with tabular equigranular textures from two maar-type volcanoes, Meerfelder Maar and Dreiser Weiher (West Eifel, Germany). The patches are similar in size to the main phases of the hosting peridotite. Their central part is often occupied by relics of pargasitic amphibole. Mass-balance calculations show that the patches were formed by surface controlled incongruent thermal breakdown of amphibole according to the reaction: amphibole olivine + clinopyroxene + spinel + melt. Simultaneously with the decomposition of amphibole, small crystals of olivine, clinopyroxene, and spinel grew radially from the patch/peridotite interface toward the centre of the patch. Apart from sector zoning of clinopyroxene, the crystals are virtually homogeneous and are separated from the amphibole by a seam of melt (glass). Secondary olivines reveal higher Mg-numbers, secondary clinopyroxenes higher Cr2O3 concentrations than olivines and clinopyroxenes, respectively, of the host peridotite. The silica contents of melts produced by the above breakdown reaction range from 48 to 52% SiO2 as a function of the composition of the parent amphiboles. Patches surrounded by primary olivines only reveal no reaction with the host peridotite. The variation of SiO2, MgO and CaO in melts from these patches is the result of minor precipitation of olivine and clinopyroxene during fast cooling. If patches are in contact with primary olivine and orthopyroxene, melts are additionally modified by the reaction liquid 1 + orthopyroxene liquid 2 + olivine + clinopyroxene resulting in more silica-rich compositions between 54 and 58%. For the rare glasses richer in silica, a more complex formation is required. Veinlets along grain boundaries are filled with glasses which are chemically identical to those from nearby patches. This suggests that the veinlets were filled by melts formed by amphibole breakdown during entrainment of the xenoliths to the host magmas.  相似文献   

20.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号