首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermal event reduces the number of previously registered fission tracks in a mineral dependent upon the track retention properties of the individual mineral. Apatite, sphene and zircon have retention properties over a wide range of temperatures (from 100° to 550°C); apatite data reveal information at lowest temperatures while sphene and zircon data are useful for higher temperatures.Thermal events within this temperature range of 100°C to about 550°C are suitable for study with this technique. The age of the event is determined from samples in which the fission tracks are completely erased, while minerals containing partially removed (erased) tracks provide information on the temperatures occurring during the thermal event.As a test case, the analysis of the temperatures developed by the meteorite impact which produced the Ries crater at 14.7 m.y. ago is presented.  相似文献   

2.
Thermal loading of rocks at high temperatures induces changes in their mechanical properties. In this study, a hard gabbro was tested in the laboratory. Specimens were slowly heated to a maximum temperature of 1,000°C. Subsequent to the thermal loading, specimens were subjected to uniaxial compression. A drastic decrease of both unconfined compressive strength and elastic moduli was observed. The thermal damage of the rock was also highlighted by measuring elastic wave velocities and by monitoring acoustic emissions during testing. The micromechanisms of rock degradation were investigated by analysis of thin sections after each stage of thermal loading. It was found that there is a critical temperature above which drastic changes in mechanical properties occur. Indeed, below a temperature of 600°C, microcracks start developing due to a difference in the thermal expansion coefficients of the crystals. At higher temperatures (above 600°C), oxidation of Fe2+ and Mg2+, as well as bursting of fluid inclusions, are the principal causes of damage. Such mechanical degradation may have dramatic consequences for many geoengineering structures.  相似文献   

3.
Water temperature influences most of the physical, chemical and biological properties of rivers. It plays an important role in the distribution of fish and the growth rates of many aquatic organisms. Therefore, a better understanding of the thermal regime of rivers is essential for the management of important fisheries resources. This study deals with the modelling of river water temperature using a new and simplified model based on the equilibrium temperature concept. The equilibrium temperature concept is an approach where the net heat flux at the water surface can be expressed by a simple equation with fewer meteorological parameters than required with traditional models. This new water temperature model was applied on two watercourses of different size and thermal characteristics, but within a similar meteorological region, i.e., the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). A study of the long‐term thermal characteristics of these two rivers revealed that the greatest differences in water temperatures occurred during mid‐summer peak temperatures. Data from 1992 to 1994 were used for the model calibration, while data from 1995 to 1999 were used for the model validation. Results showed a slightly better agreement between observed and predicted water temperatures for Catamaran Brook during the calibration period, with a root‐mean‐square error (RMSE) of 1·10 °C (Nash coefficient, NTD = 0·95) compared to 1·45 °C for the Little Southwest Miramichi River (NTD = 0·94). During the validation period, RMSEs were calculated at 1·31 °C for Catamaran Brook and 1·55 °C for the Little Southwest Miramichi River. Poorer model performances were generally observed early in the season (e.g., spring) for both rivers due to the influence of snowmelt conditions, while late summer to autumn modelling performances showed better results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Using the three global seismic profiles, model 1066B, PEM, and PREM, we have calculated adiabatic temperature profiles, corrections arising from the differences between adiabatic self compression on the seismic and convective time scales, and the superadiabatic profiles from inhomogeneity. The three adiabatic temperature profiles are virtually identical and provide a net change of 600 K across the lower mantle; the net superadiabatic temperature changes from inhomogeneity are also similar and provide a further 200 K. If elastic relaxation corrections of 400–700 K are included in addition to a thermal boundary layer arising from heat transfer from the core to the base of the mantle, then it is possible to construct mantle profiles beginning with 1600°C at 670 km and yielding temperatures at the core-mantle boundary within the range 3300 ± 500°C inferred from shock melting experiments on iron.  相似文献   

5.
The magnetic properties of loess, lake, and ocean sediments are often used as indicators for paleoclimatic/paleoenvironmental changes. Thermomagnetic analysis is a conventional approach for identifying magnetic phases and thermal alteration of samples. Magnetic concentration parameters are often enhanced after thermal treatment. In this study, the role of clay minerals in magnetic enhancement at elevated temperatures is systematically investigated. The results indicate that the clay minerals (saponite, Ca-montmorillonite, kaolinite, and chlorite) are dominated by paramagnetic behaviour and that the magnetic properties remain relatively stable after heating to 700°C in argon. In contrast, mixtures of hematite and chlorite have a high degree of magnetic enhancement after heating in argon, which indicates that clay minerals play important role in magnetic enhancement. These results improve our understanding of the processes involved in complicated mineral transformations, which is important for retrieving paleoclimatic/paleoenvironemntal signals from magnetic proxies.  相似文献   

6.
Influence of water temperature on embryonic and larval development of bream (Abramis brama L.) was stdied. Eggs of bream were incubated at eight constant water temperatures between 13.2 and 26.8°C. The temperature of 21.1°C gave highest hatching success, with no abnormalities in the eleutheroembryos and lowest mortality observed between eyed egg stage and the time of hatching. Developmental rate increased with increasing temperature. Duration of embryonic development (y; hours) decreased with increasing incubation temperature (x; °C) according to the formula: y=910.1−65.88 x+1.318 x2. Larvae were reared at eight constant temperatures ranging from 13.5 to 34.0°C. The instantaneous growth rate in wet weight increased with increasing test temperature from 13.5 to 29.9°C, and then decreased at higher temperatures. Individual growth of fish and biomass production rate were highest at 27.9°C. This temperature is considered optimal when food availability and photoperiod are no limiting factors.  相似文献   

7.
Luminescence thermochronometry is sensitive to very low temperatures (below ∼120 °C), and enables the resolution of thermal histories over sub-Quaternary timescales. Here we apply a multi-elevated-temperature post-infrared infrared-stimulated luminescence (MET-pIR-IRSL) measurement protocol to feldspar minerals to extract thermal histories. These thermal histories depend on the thermal stability of the MET signal, and are based on the thermal kinetic parameters extracted from isothermal decay experiments. However, the derived thermal kinetic parameters vary with experimental conditions, specifically with the isothermal holding temperatures (ITL) used. We analyse samples with independently known thermal histories, together with synthetic thermal history samples and samples with unknown thermal histories to test the validity of thermal kinetic parameters obtained from different combinations of isothermal holding data. This approach is tested on feldspars of different mineralogies and lithologies. We find that the temperatures inferred from inverting the data change, depending both on the number and on the highest ITL temperature used for thermal kinetic parameter derivation. Analysed samples validate the MET-pIR-IRSL protocol for extracting thermal histories, and we suggest that four isothermal holding temperatures between 190 and 250 °C are used for appropriate thermal kinetic parameter derivation.  相似文献   

8.
Thermal remanent magnetization analyses were carried out on ceramic fragments and lithic clasts embedded in the first pumice fall deposits of the Minoan eruption. The aim of this study is to estimate the equilibrium temperature after deposition of these pyroclastic fall deposits and their thermal effect on the pre-Minoan surface. A total of 30 samples from 22 independent ceramic fragments and 20 samples from 14 lithic clasts have been studied. Samples were collected from the Megalochori Quarry, located at the southern part of Santorini island. Stepwise thermal demagnetization reveals that the ceramics were mostly re-heated at temperatures around 140–180°C; in few ceramics a higher temperature component is also present, probably related to the original heating or the use of the ceramics before the eruption. Thermal demagnetization of the lithic clasts shows similar results with slightly higher re-heating temperatures, around 180–240°C. The estimated temperatures represent the equilibrium temperatures obtained after the deposition of the pumice fall and show that the pyroclastic fall deposits at a distance of around 6 km from the eruption vent maintained a temperature high enough to re-heat the buried ceramics at temperatures around 140–180°C.  相似文献   

9.
The elastic thickness of the continental lithosphere is closely related to its total strength and therefore to its susceptibility to tectonic deformation and earthquakes. Recently it has been questioned whether the lithosphere thickness and strength are dependent on crustal and upper mantle temperatures and compositions as predicted by laboratory data. We test this dependence regionally by comparison in northwestern North America of the effective elastic thickness Te, from topography–gravity coherence, with upper mantle temperatures mapped by shear wave tomography velocities Vs and other temperature indicators. The Te values are strongly bimodal as found globally, less than 20 km for the hot Cordillera backarc and over 60 km for the cold stable Craton. These Te correspond to low Vs beneath the Cordillera and high Vs beneath the Craton. Model temperature-depth profiles are used to estimate model Te for comparison with those observed. Only limited areas of intermediate thermal regimes, i.e., thermotectonic ages of ~ 300 Ma, have intermediate Te that suggest a weak lower crust over a stronger upper mantle. There are large uncertainties in model Te associated with composition, water content, strain rate, and decoupling stress threshold. However, with reasonable parameters, model yield stress envelopes correspond to observed Te for thermal regimes with 800–900 °C at the Cordillera Moho and 400–500 °C for the Shield, in agreement with temperatures from Vs and other estimators. Our study supports the conclusion that lithosphere elastic thickness and strength are controlled primarily by temperature, and that laboratory-based rheology generally provides a good estimate of the deformation behaviour of the crust and upper mantle on geological time scales.  相似文献   

10.
The experimental studies done at high temperature and high pressure find that increased temperature can lead to dramatic velocity and strength reductions of most of rocks at high confining pressure[1,2]. What causes this phenomenon? Is it due to dehydrati…  相似文献   

11.
We invert S-wave velocities for the 3D upper-mantle temperatures, in which the position with a temperature crossing the 1300℃ adiabat is corresponding to the top of the seismic low velocity zone. The temperatures down to the depth of 80 km are then calculated by solving steady-state thermal conduction equation with the constraints of the inverted upper-mantle temperatures and the surface temperatures, and then surface heat flows are calculated from the crustal temperatures. The misfit between the calculated and observed surface heat flow is smaller than 20% for most regions. The result shows that, at a depth of 25 km, the crustal temperature of eastern China (500―600℃) is higher than that of western China (<500℃). At a depth of 100 km, temperatures beneath eastern and southeastern China are higher than the adiabatic temperature of 1300℃, while that beneath west China is lower. The Tarim craton and the Sichuan basin show generally low temperature. At a depth of 150 km, temperatures beneath south China, eastern Yangtze craton, North China craton and around the Qiangtang terrane are higher than the adiabatic temperature of 1300℃, but is the lowest beneath the Sichuan basin and the regions near the Indian-Eurasian collision zone. At a depth of 200 km, very low temperature occurs beneath the Qinghai-Tibet Plateau and the south to the Tarim craton.  相似文献   

12.
The Raman spectra of carbonaceous material (CM) from 19 metasediment samples collected from six widely separated areas of Southwest Japan and metamorphosed at temperatures from 165 to 655°C show systematic changes with metamorphic temperature that can be classified into four types: low‐grade CM (c. 150–280°C), medium‐grade CM (c. 280–400°C), high‐grade CM (c. 400–650°C), and well‐crystallized graphite (> c. 650°C). The Raman spectra of low‐grade CM exhibit features typical of amorphous carbon, in which several disordered bands (D‐band) appear in the first‐order region. In the Raman spectra of medium‐grade CM, the graphite band (G‐band) can be recognized and several abrupt changes occur in the trends for several band parameters. The observed changes indicate that CM starts to transform from amorphous carbon to crystallized graphite at around 280°C, and this transformation continues until 400°C. The G‐band becomes the most prominent peak at high‐grade CM suggesting that the CM structure is close to that of well‐crystallized graphite. In the highest temperature sample of 655°C, the Raman spectra of CM show a strong G‐band with almost no recognizable D‐band, implying the CM grain is well‐crystallized graphite. In the Raman spectra of low‐ to medium‐grade CM, comparisons of several band parameters with the known metamorphic temperature show inverse correlations between metamorphic temperature and the full width at half maximum (FWHM) of the D1‐ and D2‐bands. These correlations are calibrated as new Raman CM geothermometers, applicable in the range of c. 150–400°C. Details of the methodology for peak decomposition of Raman spectra from the low to medium temperature range are also discussed with the aim of establishing a robust and user‐friendly geothermometer.  相似文献   

13.
In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed‐loop geothermal systems for energy recovery. Three types of BHEs (single U‐tube, double U‐tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U‐tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger.  相似文献   

14.
Eight paleo-fired samples from the baked layer in different depths under the lava and one unfired sample were collected from Datong, China. Fine quartz grains (4–11 μm) from samples were used for probing into relationship between luminescence signals and paleo-firing temperatures. Findings from the re-firing experiments indicated that using thermoluminescence (TL) and optically stimulated luminescence (OSL) sensitivity changes could estimate the paleo-firing temperatures of samples: (1) 110 °C TL sensitivity change rate against the re-firing temperature can tell whether the sample has been fired to temperatures above 500 °C or not; (2) 150 °C TL sensitivity against the re-firing temperature can indicate whether the sample has been fired to temperatures above 900 °C or not; (3) the more specific paleo-firing temperatures can be estimated by comparing the ratio of OSL and 150 °C TL sensitivities against re-firing temperatures. Results showed that the paleo-firing temperatures of the eight lava-baked samples decreased exponentially with the distance from the lava. Based on the estimated temperature profile, the temperature of the lava was estimated to be about 1100 °C.  相似文献   

15.
Stream temperature is a critical water quality parameter that is not fully understood, particularly in urban areas. This study explores drivers contributing to stream temperature variability within an urban system, at 21 sites within the Philadelphia region, Pennsylvania, USA. A comprehensive set of temperature metrics were evaluated, including temperature sensitivity, daily maximum temperatures, time >20°C, and temperature surges during storms. Wastewater treatment plants (WWTPs) were the strongest driver of downstream temperature variability along 32 km in Wissahickon Creek. WWTP effluent temperature controlled local (1–3 km downstream) temperatures year-round, but the impacts varied seasonally: during winter, local warming of 2–7°C was consistently observed, while local cooling up to 1°C occurred during summer. Summer cooling and winter warming were detected up to 12 km downstream of a WWTP. Comparing effects from different WWTPs provided guidelines for mitigating their thermal impact; WWTPs that discharged into larger streams, had cooler effluent, or had lower discharge had less effect on stream temperatures. Comparing thermal regimes in four urban headwater streams, sites with more local riparian canopy had cooler maximum temperatures by up to 1.5°C, had lower temperature sensitivity, and spent less time at high temperatures, although mean temperatures were unaffected. Watershed-scale impervious area was associated with increased surge frequency and magnitude at headwater sites, but most storms did not result in a surge and most surges had a low magnitude. These results suggest that maintaining or restoring riparian canopy in urban settings will have a larger impact on stream temperatures than stormwater management that treats impervious area. Mitigation efforts may be most impactful at urban headwater sites, which are particularly vulnerable to stream temperature disruptions. It is vital that stream temperature impacts are considered when planning stormwater management or stream restoration projects, and the appropriate metrics need to be considered when assessing impacts.  相似文献   

16.
Tele-seismic coseismic well temperature changes and their interpretation   总被引:1,自引:0,他引:1  
Coseismic water level oscillation and correlated deep water temperature changes have been observed in a water well at Tangshan City by high sensitivity measurement. Amount of water temperature changes depend on ampli-tude of water level oscillation. Coseismic water temperatures always decrease as water level oscillates, drop of temperature ranges from 0.001 °C to 0.01 °C corresponding to amplitude of water level oscillation from several centimeters to about one meter. Temperatures usually recover one to several hours after the oscillation. We suggest that the temperature drop is produced by dispersive transfer of heat as the water oscillates, and follow-up thermal conduction makes temperature recovery. Our finite element calculations support quantitatively the idea. High ac-curacy measurements of water temperature at different depths in the future may test our interpretation.  相似文献   

17.
This paper presents a study on suspended particle transport in porous medium with the aid of a sand layer transportation–deposition testing system to determine the kinetic characteristics of particles in porous medium under variable temperatures. Quartz sand and quartz powder were chosen as the porous medium and particle in the tests, respectively. Four size compositions and two operational modes, that is, temperature reduction mode (changing from 18°C to 5°C) and temperature increment mode (changing from 18°C to 35°C), were adopted. The turbidity and concentration of quartz powder were measured under various conditions. We observed a high temperature‐independent correlation between them. Breakthrough curves under different conditions were analysed using this testing system. The results showed that changes in temperature affected the particle transport process to some extent, and the degree of influence was closely related to the time moment of the temperature change onset. Moreover, we found a hysteresis phenomenon in the breakthrough curve under both temperature reduction and increment conditions. The results also indicated that the temperature effect was particularly significant for smaller particles. The typical curves to represent particle transport process under variable temperatures were put forward according to the results. To explain the test results, four factors, that is, water viscosity, adsorption effect, double layer force, and particle kinetic energy, were considered and categorized as promotion or constraining factors.  相似文献   

18.
Magnetic susceptibility (MS) of natural specimens of hematite and goethite is studied under continuous heating with various additives: with carbon (sugar), nitrogen (carbamide), and elemental sulfur. It is found that heating of hematite with carbon above 450°C results in the formation of single-domain magnetite, while the magnetic susceptibility rises by a factor of 165. The increase in magnetic susceptibility on heating of hematite with nitrogen above 540°C reflects the generation of a single-domain maghemite with the Curie point of about 650°C, which is stable to heating. After the first heating, the magnetic susceptibility increases by 415 times. The subsequent cycle of thermal treatment results in the transition of maghemite to hematite, a decrease of MS, and an increase of coercivity. Heating with sulfur produces a stable single-domain magnetite at a temperature above the Curie point, which is manifested in the cooling curves. Here, the MS increases by a factor of 400. The heating curves for goethite exhibit a sharp drop in susceptibility to a temperature of 350–360°C, which reflects the transition of hematite to goethite. Heating of hematite with carbon produces stable maghemite at above 530°C, and with sulphur and nitrogen, it produces magnetite. When heated with pyrite, hematite reduces to magnetite under the action of sulfur released from pyrite.  相似文献   

19.
Precursory stages of failure development in large rock samples were studied and simultaneous observations of the space-time variation of several physical fields were carried out under different stress-strain states. The failure process was studied in detail. A hierarchical structure of discreet rock medium was obtained after loading. It was found that the moisture reduced the rock strength, increased the microcrack distribution and influenced the shape of the failure physical precursors. The rise in temperature up to 400 °C affected the physical precursors at the intermediate and final stages of the failure. Significant variations were detected in the acoustic and electromagnetic emissions. The coalescence criterion was slightly depending on the rock moisture and temperature effect. The possibility of identifying the precursory stage of failure at different strain conditions by means of a complex parameter derived from the convolution of physical recorded data is shown. The obtained results point out the efficiency of the laboratory modelling of seismic processes.  相似文献   

20.
Microcracks can have a strong influence on the elastic and fracture mechanical properties of rocks if they are numerous, or if they are orientated in unfavourable directions in anisotropic rocks in particular. This paper presents results from a great number of mechanical tests on Stripa granite containing various amounts of microcracks. Variations in the microcrack density were obtained by shock-heating the rock at different temperatures in the range 100–600°C for 3 h.The results presented are obtained from sound velocity measurements, uniaxial compression tests, Brazilian tests and three-point bending tests. The density of microcracks in the heated rock is studied by means of optical microscopy, SEM and differential strain analysis (DSA).Some of the calculated parameters show a maximum value for specimens heat-treated at about 100°C. The tensile strength is, for instance, substantially higher for specimens shock-heated at 100°C than for non-heated ones. Another striking feature is the initial decrease of the diameter observed in specimens heat-treated at 600°C when loaded in uniaxial compression. Both optical microscopy and DSA experiments reveal a large increase in microcracking when the heat-treatment temperature exceeds 300°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号