首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectonic regime and Mongolian-Okhotsk tectonic regime. The Songliao and Jiamusi blocks are located in the easternmost part of the CAOB and are the key region to solve the problem about overprinting processes of multiple tectonic regimes. It is generally believed that the Mudanjiang Ocean between the two blocks was finally closed in the Mesozoic, but the Paleozoic magmatism also developed along the Mudanjiang suture zone, while on both sides of the suture zone, there were comparable Paleozoic strata, indicating that the two blocks had converged during the Paleozoic, and the evolution history of the two blocks in the Late Paleozoic remains controversial. The Carboniferous-Permian terrestrial strata mainly developed in Binxian, Wuchang and Tieli on Songliao Block, Baoqing and Mishan on Jiamusi Block. Samples from the Songliao and Jiamusi blocks in the Late Carboniferous-Early Permian and Late Permian are collected for comparative analysis. The LAICP-MS zircon U-Pb dating results show that the maximum depositional age of Middle Permian Tumenling Formation and Late Permian Hongshan Formation in Songliao Block is ~260 Ma, while that of Tatouhe Formation and Carboniferous strata in Jiamusi Block are ~290 Ma and ~300 Ma, respectively, which supports the previous stratigraphic division scheme. The age peaks of ~290–300 Ma, ~400 Ma, ~500 Ma appeared in the Late Carboniferous to Early Permian strata of Jiamusi Block and the Middle Permian strata of Songliao Block. The age peak of ~500 Ma in the Middle Permian strata of Songliao Block may come from the Cambrian basement, Mashan Complex, of Jiamusi Block, while the age peaks of ~420–440 Ma in the Carboniferous strata of Jiamusi Block may come from the Silurian magmatic arc in Zhangguangcai Range in the eastern margin of Songliao Block, reflects the history that they had been potential sources of each other, indicating that they may have combined in the Paleozoic. The Hongshan Formation of Songliao Block in the Late Permian lacks the age peak of ~500 Ma, which indicate that Jiamusi Block was not the provenance of Songliao Block in the Late Permian, that is, there was a palaeogeographic isolation between the two blocks. Combined with the ~210 Ma bimodal volcanic rocks developed along the Mudanjiang suture zone reported previously, we believe that the oceanic basin between the Songliao and Jiamusi blocks should have been connected in Late Permian and reopened during Late Permian to Late Triassic.  相似文献   

2.
新疆古生代构造—生物古地理   总被引:4,自引:0,他引:4  
郭福祥 《新疆地质》2001,19(1):20-26
通过6幅图表达了新疆古生代板块的构造-生物古地理区系。早古生代,包括劳伦,波罗的、西伯利亚和哈萨克斯坦4陆块的亚帕特斯古陆(Iapetusa)群,与由其余陆块构成的冈瓦纳古陆群隔原特提斯洋相对峙。石炭-二叠纪,欧美、安加拉、太平洋和冈瓦纳4古陆共存并立。西伯利亚和哈萨克斯担板块经历了早古生代亚伯特斯古陆、晚古生代安加拉古陆和早二叠世晚期以来欧亚大陆3个发展阶段。塔里木、中朝、华南-东南亚板块经历了早古生代冈瓦纳古陆、晚古生代太平洋古陆和早二叠世晚期以来欧亚大陆3个发展阶段。指出在中晚寒武世和晚奥陶世哈萨克斯坦板块靠近塔里木、中朝和华南-东南亚板块;在早古生代其余时期它接近西伯利亚板块。伊犁和托克逊-雅满苏地体是在中泥盆世之前裂解自塔里木板块,尔后在早二叠世晚期接近安加拉古陆。塔里木板块北东缘北山地区在早二叠世早期首先靠近安加拉古陆。塔里木与西伯利亚-哈萨克斯坦板块之间缝合时代大抵上和土耳其-中伊朗-冈底斯与华南-东南亚板块之间缝合时代一致。缝合事件发生在早二叠世早期,而相应的构造运动出现在早晚二叠世之交。  相似文献   

3.
兴蒙陆内造山带   总被引:21,自引:9,他引:12  
徐备  王志伟  张立杨  王智慧  杨振宁  贺跃 《岩石学报》2018,34(10):2819-2844
本文提出了"兴蒙陆内造山带"的新概念(Xing-Meng Intracontinent Orogenic Belt,XMIOB),从大地构造、沉积建造、岩浆作用和变质作用等方面论述了XMIOB从晚古生代到中生代初的陆内伸展及陆内造山过程,为探讨晚古生代构造演化提供了新模式。根据对内蒙古中西部晚古生代构造格局的总体认识,可将XMIOB划分为五个构造单元即:早石炭世二连-贺根山裂谷带、晚石炭世陆表海盆地、早二叠世艾力格庙-二连伸展构造带、早-中二叠世盆岭构造带和晚二叠世索伦山-乌兰沟伸展构造带。晚石炭世末-二叠纪在兴蒙造山带基底上发育三期伸展构造:第一期见于内蒙古北部二连-艾力格庙地区,形成陆内裂谷盆地及其盆缘三角洲沉积,发育时代为302~298Ma;第二期在内蒙古中西部广泛分布,以隆起与凹陷相间分布的盆岭构造为特征,发育时代为290~260Ma;第三期见于内蒙古南部索伦山到温都尔庙乌兰沟一带,形成主动裂谷背景下的红海型小洋盆,发育时代为260~250Ma。晚古生代与伸展过程有关的岩浆活动可分四期:1)早石炭世贺根山期:以蛇绿岩为主,发育于具有前寒武纪古老基底和早古生代造山带年轻基底的陆壳伸展区; 2)晚石炭世达青牧场期:主要沿北造山带分布,以基性和酸性岩浆构成的双峰式侵火成岩为特征; 3)早二叠世大石寨期:形成的岩石种类多样,分布广泛,包括双峰式火山岩、双峰式侵入岩和碱性岩; 4)二叠纪末-三叠纪初索伦山期:形成陆缘型蛇绿岩或基性岩-超基性岩组合,产生于软流圈上涌造成的主动裂谷背景。兴蒙陆内造山带的构造变形可分为两期,第一期为晚古生代地层大范围褶皱变形,造成盆-岭构造带的缩短;第二期为沿盆-岭构造的边界强烈剪切变形,产生向东逃逸的挤出构造,其构造背景是北部蒙古-鄂霍茨克造山带和南部大别-秦岭中央造山带的远距离效应引起的被动闭合作用。兴蒙陆内造山带的变质作用分为两个阶段,早期变质作用主要表现为石炭纪期间与陆内伸展有关的低压高温变质,晚期为二叠纪末到三叠纪初区域大面积的低压绿片岩相变质以及沿构造边界的局部中-低压型低温变质。  相似文献   

4.
The history and research on the Paleozoic formations in Japan is summarized.

In the past the Japanese Paleozoic was dealt with as one system under the general name Chichibu Paleozoic, as the Chichibu system in the Kanto region was thought to represent all Paleozoic formations in Japan. However, since the discovery of Lower Carboniferous fossils by Ichiro Hayasaka in 1924, Upper Devonian fossils by Mitsuo Noda in 1934 and Gotlandian fossils by Yoshio Onuki in 1937, the distribution and stratigraphic sequence of the Japanese Paleozoic have become better known.

The Hida metamorphic rocks constitute the basement of Paleozoic sedimentary basins and are assigned to pre-Gotlandian age.

The Gotlandian system is found in regions of complex geologic structure. Its distribution, though sporadic, may bear an important significance in view of structural geology. It consists predominantly of fossiliferous limestone, associated with shale, slate, phyllite and tuff.

Distribution of the Devonian system is limited. It consists of sandstone, shale and slate, accompanied by tuff and limestone lenses. Conglomerate of schistose pebbles is locally found. The system may be conformable with the underlying Gotlandian system.

The carboniferous system is widely distributed, usually associated with the Permian, and consists chiefly of sandstone, shale, slate and schalstein, but is locally represented by limestone facies. The Carboniferous is generally uncomformable with the Permian, although locally it may be conformable.

The Permian system has the widest distribution, amounting to nearly 80 percent of the known Paleozoic, hence its stratigraphic succession, fossil horizons and sedimentary facies are fairly well known. However, varied names now in use for the respective series require unification. The system consists of sandstone, shale, slate, schalstein, chert, often accompanied by limestone and conglomerate. Existence of conglomerate is one of the characteristics of the Permian system, although the constituent pebbles vary regionally and further study is needed to clarify the distribution, stratigraphic position and lithology of the conglomerates.

According to Hisakatsu Yabe, the name Chichibu system should be used only for the Carboniferous and Permian and a new name Kitakami system be used to denote the Gotlandian and Devonian.

Major orogenic movements of the Japanese Paleozoic are, 1) Akiyoshi orogenesis, 2) Setamai fold, 3) Shimizu fold, 4) Kesen fold and 5) Hida orogenesis. — Reiko Fusejima  相似文献   

5.
Northeastern China is suited in the eastern part of the Central Asian Orogenic Belt, and it is mainly composed of Erguna Massif, Xing'an Massif, Songnen-Zhangguangcai Range Massif, Jiamusi Massif, and Nadanhada Terrane. The Late Paleozoic magmatism was relatively intense accompanied with multiple stages of amalgamation in several microcontinents, therefore these magmatic products are an important media in recording the Late Paleozoic tectonic evolution history of the northeastern China. According to the petrological, geochronological, and geochemical characteristics of Late Paleozoic igneous rocks in the northeastern China, we found that the Late Paleozoic magmatism was based on Carboniferous -Permian igneous rocks. The Early Carboniferous magmatic products are gabbro, diorite and granite, the Late Carboniferous magmatic products are mainly composed of granitoids with minor gabbro, and the Permian magmatic products are mainly granitoids. Meanwhile, these Late Paleozoic igneous rocks mostly exhibit typical arc characteristics. In addition, the Late Paleozoic igneous rocks in eastern Jilin and Heilongjiang provinces are mainly Permian granitoids with minor gabbro, and these Permian igneous rocks show typical arc characteristics. Combined with petrological, geochronological, geochemical and isotopic characteristics, we suggest that the Late Paleozoic igneous rocks in the Great Xing'an Range and eastern Jilin and Heilongjiang provinces underwent different magmatic evolution history, and the microcontinents in NE China had different crustal growth history.  相似文献   

6.
Permian marine sedimentary rocks that crop out in northern Chile are closely related to the development of a Late Paleozoic magmatic arc. A study of Upper Paleozoic units east of Iquique (20°S) identified three members within the Juan de Morales Formation, each of which were deposited in a different sedimentary environment. A coarse-grained terrigenous basal member represents alluvial sedimentation from a local volcanic source. A mixed carbonate-terrigenous middle member represents coastal and proximal shallow marine sedimentation during a relative sea-level rise related with a global transgression. Preliminary foraminifer biostratigraphy of this middle member identified a late Early Permian (late Artinskian–Kungurian) highly impoverished nodosarid–geinitzinid assemblage lacking fusulines and algae, which is characteristic of temperate cold waters and/or disphotic zone. The upper fine-grained terrigenous member represents shallow marine siliciclastic sedimentation under storm influence. The Juan de Morales Formation consists of continental, coastal and shallow marine sediments deposited at the active western margin of Gondwana at mid to low latitudes. A revised late Early Permian age and similar paleogeography and sedimentary environments are also proposed for the Huentelauquén Formation and related units of northern and central Chile, Arizaro Formation of northwestern Argentina, and equivalent units of southernmost Peru.  相似文献   

7.
新疆博格达山主体由石炭系海相火山一沉积岩系组成,以发育两期双峰式火山岩,但不发育花岗岩为特征,对其晚古生代地层时代的划分和演化争议较大。本文重点对博格达山北部两个晚古生代砂岩进行了碎屑锆石U-Pb年代学分析,重新标定博格达山地区晚古生代地层的形成时代;利用物源区的演化,约束晚古生代构造演化。测年结果显示博格达上亚群砂岩的碎屑锆石表面年龄值分布范围较宽,主峰年龄为343~284 Ma(80%),次峰年龄为386~375 Ma(3%)、503~441Ma(7%)和871~735 Ma(10%);芦草沟组砂岩的碎屑锆石表面年龄值非常集中,主峰年龄为358~279 Ma(97%),次峰年龄为257~251 Ma(约3%)。博格达山中部原石炭纪博格达群上亚群与西部和南部下芨芨槽群相当,应属于早二叠世,中部一东部的石炭一二叠纪界线应在博格达下亚群一上亚群或居里得能组一沙雷塞尔克组之间的不整合面之中。博格达北部地区晚二叠世以南侧天山物源区供给为主,反映出晚古生代期间博格达山地区至少存在晚石炭世末和中二叠世两期构造隆升。结合区域火山岩与火山碎屑岩的研究,认为博格达山地区晚古生代主要经历4个演化阶段:早石炭世弧后盆地裂解阶段、晚石炭世碰撞拼贴阶段、早二叠世碰撞后伸展阶段、中-晚二叠世再次隆升到稳定阶段。  相似文献   

8.
南华北盆地晚石炭世—早二叠世主要为陆表海充填沉积。通过层序界面识别和层序地层划分,建立层序地层格架,将研究区晚石炭世—早二叠世地层划分为1个Ⅱ级陆表海充填层序,3个Ⅲ级层序(Sq1—Sq3),分别对应晚石炭世巴什基尔-格舍尔期、早二叠世紫松期和隆林期,同时对3个层序的特征及演化进行了分析。根据层序地层学研究对Sq1~Sq3进行古地理重建,发现陆表海充填总体上为海退序列,物源主要来自北缘阴山隆起;同时也证实了海侵转换面的存在,全球海平面上升和板缘构造运动共同塑造了南华北盆地晚石炭世—早二叠世特殊的古地理演化过程。  相似文献   

9.
This paper reviews recent progress on the geotectonic evolution of exotic Paleozoic terranes in Southwest Japan, namely the Paleo-Ryoke and Kurosegawa terranes. The Paleo-Ryoke Terrane is composed mainly of Permian granitic rocks with hornfels, mid-Cretaceous high-grade metamorphic rocks associated with granitic rocks, and Upper Cretaceous sedimentary cover. They form nappe structures on the Sambagawa metamorphic rocks. The Permian granitic rocks are correlative with granitic clasts in Permian conglomerates in the South Kitakami Terrane, whereas the mid-Cretaceous rocks are correlative with those in the Abukuma Terrane. This correlation suggests that the elements of Northeast Japan to the northeast of the Tanakura Tectonic Line were connected in between the paired metamorphic belt along the Median Tectonic Line, Southwest Japan. The Kurosegawa Terrane is composed of various Paleozoic rocks with serpentinite and occurs as disrupted bodies bounded by faults in the middle part of the Jurassic Chichibu Terrane accretionary complex. It is correlated with the South Kitakami Terrane in Northeast Japan. The constituents of both terranes are considered to have been originally distributed more closely and overlay the Jurassic accretionary terrane as nappes. The current sporadic occurrence of these terranes can possibly be attributed to the difference in erosion level and later stage depression or transtension along strike-slip faults. The constituents of both exotic terranes, especially the Ordovician granite in the Kurosegawa-South Kitakami Terrane and the Permian granite in the Paleo-Ryoke Terrane provide a significant key to reconstructing these exotic terranes by correlating them with Paleozoic granitoids in the eastern Asia continent.  相似文献   

10.
11.
In this study a 2D basin model has been built along a transect crossing the Horn Graben in WNW-ESE direction. The aim of the investigation was to improve the understanding of the thermal evolution of the basin and its influence on possible petroleum systems. The 2D model of the subsurface is based on one seismic line and data from two exploration wells. Both wells TD’ed in Triassic sediments. The updoming of the Ringkøbing-Fyn High began during Late Carboniferous–Early Permian. At the end of the Permian the Horn Graben became active due to regional extension. The subsequent sedimentation history from Triassic to date is well recorded by well reports. A matter of debate has been whether or not significant amounts of Pre-Permian sediments exist in this area of the North Sea. Since organic material rich Paleozoic sediments serve as source rocks in widespread areas of North Germany and the southern North Sea it would be of great importance to know whether the same deposits exist in the Horn Graben. Nielsen et al. (Bull Geol Soc Denmark Copenhagen 45:1–10, 1998) introduced a model, which shows Paleozoic sediments covering the basement at a maximum depth of 6.5 km. Assuming, Paleozoic sediments are underlying the Permian salt deposits there should be an active petroleum system present. The 2D model includes the Paleozoic source rock and tries to explain why two exploration wells have not found petroleum.  相似文献   

12.
Iran is a mosaic of Ediacaran–Cambrian (Cadomian; 520–600 Ma) blocks, stitched together by Paleozoic and Mesozoic ophiolites. In this paper we summarize the Paleozoic ophiolites of Iran for the international geoscientific audience including field, chemical and geochronological data from the literature and our own unpublished data. We focus on the five best known examples of Middle to Late Paleozoic ophiolites which are remnants of Paleotethys, aligned in two main zones in northern Iran: Aghdarband, Mashhad and Rasht in the north and Jandagh–Anarak and Takab ophiolites to the south. Paleozoic ophiolites were emplaced when N-directed subduction resulted in collision of Gondwana fragment “Cimmeria” with Eurasia in Permo-Triassic time. Paleozoic ophiolites show both SSZ- and MORB-type mineralogical and geochemical signatures, perhaps reflecting formation in a marginal basin. Paleozoic ophiolites of Iran suggest a progression from oceanic crust formation above a subduction zone in Devonian time to accretionary convergence in Permian time. The Iranian Paleozoic ophiolites along with those of the Caucausus and Turkey in the west and Afghanistan, Turkmenistan and Tibet to the east, define a series of diachronous subduction-related marginal basins active from at least Early Devonian to Late Permian time.  相似文献   

13.
《Gondwana Research》2013,24(4):1316-1341
Subduction-related accretion in the Junggar–Balkash and South Tianshan Oceans (Paleo-Asian Ocean), mainly in the Paleozoic, gave rise to the present 2400 km-long Tianshan orogenic collage that extends from the Aral Sea eastwards through Uzbekistan, Tajikistan, Kyrgyzstan, to Xinjiang in China. This paper provides an up-to-date along-strike synthesis of this orogenic collage and a new tectonic model to explain its accretionary evolution.The northern part of the orogenic collage developed by consumption of the Junggar–Balkash Ocean together with Paleozoic island arcs (Northern Ili, Issyk Kul, and Chatkal) located in the west, which may have amalgamated into a composite arc in the Paleozoic in the west and by addition of another two, roughly parallel, arcs (Dananhu and Central Tianshan) in the east. The western composite arc and the eastern Dananhu and Central Tianshan arcs formed a late Paleozoic archipelago with multiple subduction zones. The southern part of the orogenic collage developed by the consumption of the South Tianshan Ocean which gave rise to a continuous accretionary complex (Kokshaal–Kumishi), which separated the Central Tianshan in the east and other Paleozoic arcs in the west from cratons (Tarim and Karakum) to the south. Cross-border correlations of this accretionary complex indicate a general southward and oceanward accretion by northward subduction in the early Paleozoic to Permian as recorded by successive southward juxtaposition of ophiolites, slices of ophiolitic mélanges, cherts, island arcs, olistostromes, blueschists, and turbidites, which are mainly Paleozoic in age, with the youngest main phase being Late Carboniferous–Permian. The initial docking of the southerly Tarim and Karakum cratons to this complicated late Paleozoic archipelago and accretionary complexes occurred in the Late Carboniferous–Early Permian in the eastern part of the Tianshan and in the Late Permian in the western part, which might have terminated collisional deformation on this suture zone. The final stages of closure of the Junggar–Balkash Ocean resembled the small ocean basin scenario of the Mediterranean Sea in the Cenozoic. In summary, the history of the Altaids is characterized by complicated multiple accretionary and collisional tectonics.  相似文献   

14.
成岩-极低级变质作用及油气勘探意义   总被引:12,自引:3,他引:9  
张继军  毕先梅 《地学前缘》1999,6(2):251-258
采用粘土矿物学、成岩变质矿物组合、镜质体反射率及流体包裹体数据等指标,综合讨论了准噶尔盆地西北缘晚古生代地层成岩极低级变质作用的特征和油气勘探意义。变质指示矿物和古地温梯度研究确认,西北缘玛湖坳陷北段下二叠统火山岩存在极低级变质作用,具水热变质特征,变质相为葡萄石阳起石相,温度为220~320℃,压力p<200MPa,表明极低级变质事件发生于早二叠世,未对上二叠统地层产生影响;下二叠统风城组和上二叠统地层于侏罗纪(150Ma)达到最大古地温,为130~180℃,压力p为100~200MPa,处于晚成岩A,B期。与西准噶尔界山上古生界相比,盆地西北缘变质程度较低。因此,盆地深部上古生界仍是寻找油气、尤其是天然气的有利地带  相似文献   

15.
把柯坪断隆“还原”为塔里木板块的一部分,重塑了它与北邻的乌什地区和南邻的巴楚地区古生代“分分”“合合”的演化史,得到以下重要认识。(1)奥陶纪在乌什、柯坪和巴楚一间房地区发育以东西向的古吐木休克断层为南界的台盆;该断层的西段后期被柯坪塔格断裂(东西走向段)迁就利用,中—东段后期因被肢解而“消失”。(2)柯坪地区最西部中泥盆世已有海相沉积,晚泥盆世—石炭纪海侵不断向东扩展;因南天山洋的消减在柯坪—阿克苏—库车一线形成横贯塔里木北缘的石炭纪隆起带,使得塔里木中—北部上泥盆统—石炭系的沉积相有清楚的空间展布规律。(3)据同位素年龄值将柯坪地区东段玄武岩的时代更正为早二叠世,强烈火成活动造成的热隆升使该地区早二叠世即出现陆相沉积;塔西北的其他地区石炭纪末—早二叠世普遍发生海侵。(4)从与南天山洋和西昆仑洋耦合演化的角度简要探讨了塔里木西北地区古生代的成盆动力学背景,认为古生代有东西向、北西向及北东向的控盆和控相断裂发育并总结了其后期演化的特点。  相似文献   

16.
新疆吾拉斯台一带下二叠统乌郎组火山岩地球化学特征   总被引:1,自引:0,他引:1  
乌郎组火山岩分布于哈萨克斯坦-准噶尔板块(Ⅰ级)伊犁-伊塞克湖微板块(Ⅱ级)阿吾拉勒晚古生代裂谷系(Ⅲ级)中,为一套陆相的火山岩和碎屑岩组合.吾拉斯台一带火山活动较强,火山堆积厚度巨大,区内厚近4000 m,属乌郎组中上部层位.火山岩主要由偏碱性的基性和酸性岩组成,总体以双峰式火山岩为特征.岩石地球化学所反映的构造环境为板内玄武岩和大陆裂谷玄武岩,这与所处的大地构造位置相吻合.顶部层位的粗面玄武岩207Pb/206Pb同位素年龄为285±30 Ma,时代为早二叠世.由此推断,阿吾拉勒晚古生代裂谷系火山活动在早二叠世时即将结束,之后晚二叠世接受陆相磨拉石堆积,进入稳定陆内盆地发展阶段.  相似文献   

17.
桂西晚古生代深水相地层   总被引:19,自引:2,他引:17       下载免费PDF全文
邝国敦  吴浩若 《地质科学》2002,37(2):152-164
详细描述了分别位于桂西的北、中、南部的几个晚古生代地层剖面,据此建立桂西晚古生代深水沉积的地层序列,其岩石地层单位自下而上可归人广西原有的平恩组、罗富组、榴江组、五指山组、鹿寨组、巴平组、南丹组、四大寨组和领薅组.和这些单位的命名剖面比较,桂西腹地的同期地层具有更典型的深水相沉积,并含大量玄武岩,构成从早泥盆世晚期到晚二叠世末的连续深水沉积.桂西晚古生代为广海远洋环境,其中孤立碳酸盐台地上泥盆-石炭系灰岩中出现的二叠纪"化石脉",是古特提斯张裂作用的结果.  相似文献   

18.
苏尼特左旗北部晚二叠世花岗岩分布在索伦缝合带北侧,地处西伯利亚板块东南缘古生代陆壳增生区,对这些花岗 岩的研究有助于加深对内蒙古中部地区晚古生代构造演化的认识。主微量元素地球化学特征分析结果显示:苏尼特左旗北 部晚二叠世花岗岩总体呈富硅、富碱、相对富钠贫钾、贫钙镁的特征,属高钾钙碱性系列。富集 LREE 和 LILE,具明显的 铕负异常;微量元素相对亏损 Nb,Ta,Sr,P,Ti,富集 Pb,Hf,Dy 等元素。成因类型为高分异的 I 型花岗岩,产于汇聚板 块边缘大陆弧环境,该结果指示索伦缝合带在晚二叠世还未封闭,西伯利亚和华北板块还未完全碰撞拼合,苏尼特左旗北 部地区在晚二叠世可能正处于由板块俯冲向碰撞造山转换的阶段  相似文献   

19.
天山古生代洋陆转化特点的几点思考   总被引:36,自引:14,他引:36  
本文简要评述了天山地区前寒武纪洋陆格局、古生代洋盆的开启与闭合的时限、古生代洋陆格局、下石炭统底部碰撞造山磨拉石发现的地质意义、以及石炭-二叠纪大规模裂谷岩浆作用形成的地球动力学背景等问题,并且提出了一些新的思考。  相似文献   

20.
巴彦洪格尔地区位于蒙古国中部 ,由古生代俯冲体系构成。该体系包括前寒纪微板块 (白得拉格和伯得高尔构造带 )、逆冲蛇绿岩带、加积型沉积岩 (巴彦洪格尔和得扎格构造带 )和弧前沉积岩 (可汗盖构造带 )。巴彦洪格尔地区岛弧岩浆作用主要以早古生代钛铁矿系列和晚古生代磁铁矿系列花岗岩类为特征。许多诸如斑岩型、矽卡岩型及脉岩型等各种类型的热液矿床与这些花岗岩类伴生。该区四大矿床的 K Ar同位素测年显示 :南方 Cu Au斑岩型矿床、呼布金洪迪矽卡岩型 Cu Au矿床、罕乌尔含金剪切带和塔磁高尔伟晶岩 W Au矿床的形成年龄值分别为 2 40± 5 Ma、2 5 2± 5 Ma、2 83± 6 Ma、32 9± 7Ma。由此可见 ,前三个地区的矿床与二叠纪—三叠纪初期磁铁矿系列花岗岩类具亲缘关系 ,而塔磁高尔W— Au伟晶岩则与早石炭世钛铁矿系列花岗岩类具亲缘关系。斑岩型和矽卡岩型 Cu— Au矿化作用发生在二叠纪末期—三叠纪初期 ,此时紧随着安第斯型岛弧岩浆作用 ,发生了白得拉格和塔巴嘎泰微板块的碰撞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号