首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

2.
Matrix glass and melt inclusions in phenocrysts from pantellerite lavas of the Boseti volcanic complex, Ethiopia, record extreme fractionation of peralkaline silicic magma, with Al2O3 contents as low as 2.3?wt.%, FeO* contents up to 17?wt.% and SiO2 contents ~65?wt.%. The new data, and published data for natural and experimental glasses, suggest that the effective minimum composition for peralkaline silicic magmas has ~5?wt.% Al2O3, 13?wt.% FeO* and 66?±?2?wt.% SiO2. The dominant fractionating assemblage is alkali feldspar?+?fayalite?+?hedenbergite?+?oxides?±?quartz. Feldspar – melt relationships indicate that the feldspar is close to the minimum on the albite-orthoclase solid solution loop through the entire crystallization history. There is petrographic, mineralogical and geochemical evidence that magma mixing may have been a common process in the Boseti rhyolites.  相似文献   

3.
Petrological and geochemical data are reported for basalts andsilicic peralkaline rocks from the Quaternary Gedemsa volcano,northern Ethiopian rift, with the aim of discussing the petrogenesisof peralkaline magmas and the significance of the Daly Gap occurringat local and regional scales. Incompatible element vs incompatibleelement diagrams display smooth positive trends; the isotoperatios of the silicic rocks (87Sr/86Sr = 0·70406–0·70719;143Nd/144Nd = 0·51274–0·51279) encompassthose of the mafic rocks. These data suggest a genetic linkbetween rhyolites and basalts, but are not definitive in establishingwhether silicic rocks are related to basalts through fractionalcrystallization or partial melting. Geochemical modelling ofincompatible vs compatible elements excludes the possibilitythat peralkaline rhyolites are generated by melting of basalticrocks, and indicates a derivation by fractional crystallizationplus moderate assimilation of wall rocks (AFC) starting fromtrachytes; the latter have exceedingly low contents of compatibleelements, which precludes a derivation by basalt melting. ContinuousAFC from basalt to rhyolite, with small rates of crustal assimilation,best explains the geochemical data. This process generated azoned magma chamber whose silicic upper part acted as a densityfilter for mafic magmas and was preferentially tapped; maficmagmas, ponding at the bottom, were erupted only during post-calderastages, intensively mingled with silicic melts. The large numberof caldera depressions found in the northern Ethiopian riftand their coincidence with zones of positive gravity anomaliessuggest the occurrence of numerous magma chambers where evolutionaryprocesses generated silicic peralkaline melts starting frommafic parental magmas. This suggests that the petrological andvolcanological model proposed for Gedemsa may have regionalsignificance, thus furnishing an explanation for the large-volumeperalkaline ignimbrites in the Ethiopian rift. KEY WORDS: peralkaline rhyolites; geochemistry; Daly Gap; Gedemsa volcano; Ethiopian rift  相似文献   

4.
Petrological and geochemical data for basic (alkali basalts and hawaiites) and silicic peralkaline rocks, plus rare intermediate products (mugearites and benmoreites) from the Pleistocene Boseti volcanic complex (Main Ethiopian Rift, East Africa) are reported in this work. The basalts are slightly alkaline or transitional, have peaks at Ba and Nb in the mantle-normalized diagrams and relatively low 87Sr/86Sr (0.7039–0.7044). The silicic rocks (pantellerites and comendites) are rich in sanidine and anorthoclase, with mafic phases being represented by fayalite-rich olivine, opaque oxides, aenigmatite and slightly Na-rich ferroaugite (ferrohedenbergite). These rocks were generated after prolonged fractional crystallization process (up to 90–95 %) starting from basaltic parent magmas at shallow depths and fO2 conditions near the QFM buffer. The apparent Daly Gap between mafic and evolved Boseti rocks is explained with a model involving the silicic products filling upper crustal magma chambers and erupted preferentially with respect to basic and intermediate products. Evolved liquids could have been the only magmas which filled the uppermost magma reservoirs in the crust, thus giving time to evolve towards Rb-, Zr- and Nb-rich peralkaline rhyolites in broadly closed systems.  相似文献   

5.
Pleistocene and Holocene peralkaline rhyolites from Torfajökull (South Iceland Volcanic Zone) and Ljósufjöll central volcanoes and trachytes from Snæfellsjökull (Snæfellsnes Volcanic Zone) allow the assessment of the mechanism for silicic magma genesis as a function of geographical location and crustal geothermal gradient. The low δ18O (2.4‰) and low Sr concentration (12.2 ppm) measured in Torfajökull rhyolites are best explained by partial melting of hydrated metabasaltic crust followed by major fractionation of feldspar. In contrast, very high 87Sr/86Sr (0.70473) and low Ba (8.7 ppm) and Sr (1.2 ppm) concentrations measured in Ljósufjöll silicic lavas are best explained by fractional crystallisation and subsequent 87Rb decay. Snæfellsjökull trachytes are also generated by fractional crystallisation, with less than 10% crustal assimilation, as inferred from their δ18O. The fact that silicic magmas within, or close to, the rift zone are principally generated by crustal melting whereas those from off-rift zones are better explained by fractional crystallisation clearly illustrates the controlling influence of the thermal state of the crust on silicic magma genesis in Iceland.  相似文献   

6.
ABSTRACT

This work presents zircon ages and Hf-in-zircon isotopic data for Permian and Triassic A-type granitoids and reviews the evolution of central Inner Mongolia, China, during the early Permian and Late Triassic. SHRIMP U–Pb dating of zircons of peralkaline granites yielded 206Pb/238U ages of 294 ± 4 Ma and 293 ± 9 Ma that reflect the time of Permian magmatism. Zircon ages were also obtained for Late Triassic granites (226 ± 4 Ma, 224 ± 4 Ma). Our results, in combination with published zircon ages and geochemical data, document distinct magmatic episodes in central Inner Mongolia.

The Permian peralkaline granites show typical geochemical features of A-type granites, which also have highly positive zircon εHf(t) values (+4.9 – +17.1), indicating a significant contribution of an isotopically depleted source, likely formed from mantle-derived magmas. Late Triassic A-type granitoids, however, in central Inner Mongolia show large variations and mostly positive in zircon εHf(t) values (?1.3 – +13.5), suggesting derivation from a mixture of crust and mantle or metasomatized lithospheric mantle with crustal contamination. The geochemical characteristics of the Permian peralkaline granites and Late Triassic A-type granitoids are consistent with a post-collisional setting and were likely related to asthenosphere upwelling during the evolution of the Northern Block and Central Asian Orogenic Belt (CAOB).  相似文献   

7.
Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) 25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23–25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19–23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole, mica, and sphene compositions suggest that the peralkaline magma evolved from metaluminous magma. Extensive feldspar fractionation occurred during evolution of the peralkaline magmas, but additional alkali and iron enrichment was likely a result of high halogen fluxes from crystallizing plutons and basaltic magmas at depth.  相似文献   

8.
In this contribution we report the results of an experimental study that investigated equilibrium and fractional crystallization of hydrous, transitional alkaline basalt at low oxygen fugacity, under lower to middle crustal conditions to constrain the generation of subaluminous and peralkaline differentiation products that typically occur in rift systems. The experiments reveal that liquids produced by equilibrium crystallization in the range 0.7–1 GPa cannot cross the subaluminous/peralkaline compositional divide. In contrast, fractional crystallization experiments under isobaric and polybaric conditions approach closer the naturally observed trend from subaluminous to evolved peralkaline products suggesting that polybaric differentiation starting at elevated pressures can indeed lead to the transition from subaluminous to peralkaline derivative liquids. The presence of water in the parental magmas of silicic derivative products is of prime importance for the fractionation equilibria as well as for the mobility of such magmas toward shallow crustal levels.

We suggest that peralkaline magmas in rift environments are indicative for differentiation under relatively low oxygen fugacity conditions in an extensional environment characterized by a high degree of crustal fracturing that allows rapid upward migration of mafic parental magmas and formation of shallow magma reservoirs. Crystallization–differentiation of parental, hydrous transitional alkaline basalt in such reservoirs is controlled by low pressure phase equilibria that typically evolve through early saturation of anorthite-rich plagioclase and suppressed amphibole crystallization resulting in ‘low-alumina’, peralkaline derivative liquids.  相似文献   


9.
Haibo Zou  Qicheng Fan  Hongfu Zhang 《Lithos》2010,119(3-4):289-296
The Changbaishan (Tianchi) volcano extending across the border of northeast China and North Korea erupted ~ 100 km3 peralkaline rhyolites around 1000 AD. This Millennium eruption of the Changbaishan volcano is one of the two largest explosive eruptions in the past 2000 years. Here we report the results of uranium–thorium dating of zircons from the Changbaishan volcanic rocks. Our data indicate that the rhyolitic magmas were stored in the crust for only 8.2 ± 1.2 ka prior to eruption. Based on titanium-in-zircon geothermometer and alkali feldspar-glass geothermometer, the rhyolitic magmas were formed at a relatively low temperature (~ 740 ± 40 °C). This storage time is very short compared with other large volume catastrophic silicic eruptions. This work demonstrates that peralkaline rhyolitic magmas from the Changbaishan volcano can develop into a catastrophic eruptive phase quite quickly.  相似文献   

10.
In the Central American Volcanic Arc, adakite-like volcanism has often been described as volumetrically insignificant. However, extensive silicic adakitic volcanism does occur in the Panamanian arc and provides an opportunity to evaluate the origin of this magma-type as well as to contrast its origin with other Central American silicic magmas. The Quaternary volcanic deposits of El Valle volcano are characterized by pronounced depletions in the heavy rare earth elements, low Y, high Sr, high Sr/Y, relatively high MgO, and low K2O/Na2O, when compared with other Quaternary Central American volcanics at similar SiO2. These chemical features are also diagnostic of adakitic signatures. Our new 40Ar/39Ar ages of lava flows and ash flows that compose the volcanic edifice of El Valle volcano illustrate that the eruptive volume of adakitic-like volcanism is substantial during the Quaternary (~120 km3). Adakitic-like magmas dominate the stratigraphic record. Common to all models for the origin of an adakite geochemical signature is the involvement of garnet, as a residual or fractionating phase. The stability of garnet in hydrous magmas has been recently reevaluated with important consequences; garnet is a stable primary igneous phase at pressure and temperature conditions expected for magma differentiation at the roots of a mature island arc. Moreover, adakite-like volcanism erupted at El Valle volcano displays the middle rare earth element depletion observed in other Panamanian volcanic centers that has been attributed to significant amphibole fractionation. Extensive amphibole fractionation may have occurred in two stages. The first stage of fractionation, garnet + amphibole fractionation, occurs from hydrous basaltic–andesitic parental magmas that have ponded at the base of an overthickened crust. The second stage occurs at mid-lower crustal levels where abundant amphibole + plagioclase and minor sphene crystallized from water-rich magmas. These two stages combined may have resulted in an amphibole-rich cumulate layer. This amphibole layer is likely the source of the abundant amphibole-rich cumulate enclaves and blobs found in volcanic products across the Panamanian arc. Stalling of water-rich magmas during this two-stage fractionation process could drive the interstitial liquids to the evolved compositions typical of continental crust, while leaving behind amphibole-rich cumulate rocks that may eventually be returned to the asthenosphere. Differentiation of H2O-rich magmas under the conditions appropriate for the roots of island arcs may therefore be a key process in developing a better understanding of the generation of continental crust in island arc environments.  相似文献   

11.
Ciomadul is the youngest volcano in the Carpathian–Pannonian region produced crystal-rich high-K dacites that contain abundant amphibole phenocrysts. The amphiboles in the studied dacites are characterized by large variety of zoning patterns, textures, and a wide range of compositions (e.g., 6.4–15 wt% Al2O3, 79–821 ppm Sr) often in thin-section scale and even in single crystals. Two amphibole populations were observed in the dacite: low-Al hornblendes represent a cold (<800 °C) silicic crystal mush, whereas the high-Al pargasites crystallized in a hot (>900 °C) mafic magma. Amphibole thermobarometry suggests that the silicic crystal mush was stored in an upper crustal storage (~8–12 km). This was also the place where the erupted dacitic magma was formed during the remobilization of upper crustal silicic crystal mush body by hot mafic magma indicated by simple-zoned and composite amphiboles. This includes reheating (by ~200 °C) and partial remelting of different parts of the crystal mush followed by intensive crystallization of the second mineral population (including pargasites). Breakdown textures of amphiboles imply that they were formed by reheating in case of hornblendes, suggesting that pre-eruptive heating and mixing could take place within days or weeks before the eruption. The decompression rim of pargasites suggests around 12 days of magma ascent in the conduit. Several arc volcanoes produce mixed intermediate magmas with similar bimodal amphibole cargo as the Ciomadul, but in our dacite the two amphibole population can be found even in a single crystal (composite amphiboles). Our study indicates that high-Al pargasites form as a second generation in these magmas after the mafic replenishment into a silicic capture zone; thus, they cannot unambiguously indicate a deeper mafic storage zone beneath these volcanoes. The simple-zoned and composite amphiboles provide direct evidence that significant compositional variations of amphiboles do not necessarily mean variation in the pressure of crystallization even if the Al-tschermak substitution can be recognized, suggesting that amphibole barometers that consider only amphibole composition may often yield unrealistic pressure variation.  相似文献   

12.
Eight feldspar phases have been distinguished within individual alkali feldspar primocrysts in laminated syenite members of the layered syenite series of the Klokken intrusion. The processes leading to the formation of the first four phases have been described previously. The feldspars crystallized as homogeneous sodian sanidine and exsolved by spinodal decomposition, between 750 and 600 °C, depending on bulk composition, to give fully coherent, strain-controlled braid cryptoperthites with sub-μm periodicities. Below ~500 °C, in the microcline field, these underwent a process of partial mutual replacement in a deuteric fluid, producing coarse (up to mm scale), turbid, incoherent patch perthites. We here describe exsolution and replacement processes that occurred after patch perthite formation. Both Or- and Ab-rich patches underwent a new phase of coherent exsolution by volume diffusion. Or-rich patches began to exsolve albite lamellae by coherent nucleation in the range 460–340 °C, depending on patch composition, leading to film perthite with ≤1 μm periodicities. Below ~300 °C, misfit dislocation loops formed, which were subsequently enlarged to nanotunnels. Ab-rich patches (bulk composition ~Ab91Or1An8), in one sample, exsolved giving peristerite, with one strong modulation with a periodicity of ~17 nm and a pervasive tweed microtexture. The Ab-rich patches formed with metastable disorder below the peristerite solvus and intersected the peristerite conditional spinodal at ~450 °C. This is the first time peristerite has been imaged using TEM within any perthite, and the first time peristerite has been found in a relatively rapidly cooled geological environment. The lamellar periodicities of film perthite and peristerite are consistent with experimentally determined diffusion coefficients and a calculated cooling history of the intrusion. All the preceding textures were in places affected by a phase of replacement correlating with regions of extreme optical turbidity. We term this material ultra porous late feldspar (UPLF). It is composed predominantly of regions of microporous very Or-rich feldspar (mean Ab2.5Or97.4An0.1) associated with very pure porous albite (Ab97.0Or1.6An1.4) implying replacement below 170–90 °C, depending on degree of order. In TEM, UPLF has complex, irregular diffraction contrast similar to that previously associated with low-temperature albitization and diagenetic overgrowths. Replacement by UPLF seems to have been piecemeal in character. Ghost-like textural pseudomorphs of both braid and film parents occur. Formation of patch perthite, film perthite and peristerite occurred 104–105 year after emplacement, but there are no microtextural constraints on the age of UPLF formation.  相似文献   

13.
Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust.  相似文献   

14.
The areally extensive (>5000 km2), syn-tectonic, ca. 520 Ma, mainly S-type Donkerhuk batholith was constructed through injection of thousands of mainly sheet-like magma pulses over 20–25 Myr. It intruded schists of the Southern Zone accretionary prism in the Damara Belt of Namibia. Each magma pulse had at least partly crystallised prior to the arrival of the following batch. However, much of the batholith may have remained partially molten for long periods, close to the H2O-saturated granite solidus. The batholith shows extreme variation in chemistry, while having limited mineralogical variation, and seems to be the world’s most heterogeneous granitic mass. The Nd model ages of ~2 Ga suggest that Eburnean rocks of the former magmatic arc, structurally overlain by the accretionary wedge, are the most probable magma sources. Crustal melting was initiated by mantle heat flux, probably introduced by thermal diffusion rather than magma advection. The granitic magmas were transferred from source to sink, with minimal intermediate storage; the whole process having occurred in the middle crust, resulting in feeble crustal differentiation despite the huge volume of silicic magma generated. Source heterogeneity controlled variation in the magmas and neither mixing nor fractionation was prominent. However, due to the transpressional emplacement régime, local filter pressing formed highly silicic liquids, as well as felsic cumulate rocks. The case of the Donkerhuk batholith demonstrates that emplacement-level tectonics can significantly influence compositional evolution of very large syn-tectonic magma bodies.  相似文献   

15.
Saline, 450-m-deep Lake Van (Eastern Anatolia, Turkey) is, with 576 km3, the third largest closed lake on Earth and its largest soda lake. In 1989 and 1990, we investigated the hydrochemistry of the lake’s water column and of the tributary rivers. We also cored the Postglacial sediment column at various water depths. The sediment is varved throughout, allowing precise dating back to ca. 15 ka BP. Furthermore, lake terrace sediments provided a 606-year-long floating chronology of the Glacial high-stand of the lake dating to 21 cal. ka BP. The sediments were investigated for their general mineralogical composition, important geochemical parameters, and pore water chemistry as well. These data allow reconstructing the history of the lake level that has seen several regressions and transgressions since the high-stand at the end of the Last Glacial Maximum. Today, the lake is very alkaline, highly supersaturated with Ca-carbonate and has a salt content of about 22 g kg?1. In summer, the warmer epilimnion is diluted with river water and forms a stable surface layer. Depth of winter mixing differs from year to year but during time of investigation the lake was oxygenated down to its bottom. In general, the lake is characterized by an Na–CO3–Cl–(SO4)-chemistry that evolved from the continuous loss of calcium as carbonate and magnesium in the form of Mg-silica-rich mineral phases. The Mg cycle is closely related to that of silica which in turn is governed by the production and dissolution of diatoms as the dominant phytoplankton species in Lake Van. In addition to Ca and Mg, a mass balance approach based on the recent lake chemistry and river influx suggests a fractional loss of potassium, sodium, sulfur, and carbon in comparison to chloride in the compositional history of Lake Van. Within the last 3 ka, minor lake level changes seem to control the frequency of deep water renewal, the depth of stratification, and the redox state of the hypolimnion. Former major regressions are marked by Mg-carbonate occurrences in the otherwise Ca-carbonate dominated sediment record. Pore water data suggest that, subsequent to the major regression culminating at 10.7 ka BP, a brine layer formed in the deep basin that existed for about 7 ka. Final overturn of the lake, triggered by the last major regression starting at about 3.5 ka BP, may partly account for the relative depletion in sulfur and carbon due to rapid loss of accumulated gases. An even stronger desiccation phase is proposed for the time span between about 20 and 15 ka BP following the LGM, during which major salts could have been lost by precipitation of Na-carbonates and Na-sulfates.  相似文献   

16.
Calc-alkaline arc magmatism at convergent plate margins is volumetrically dominated by metaluminous andesites. Many studies highlighted the importance of differentiation via fractionation processes of arc magmas, but only in the last decades, it has been demonstrated that not all rock-forming minerals may affect the evolution of calc-alkaline suites. In particular, a major role exerted by Al-rich hornblende amphibole as fractionating mineral phase has been documented in many volcanic arc settings. The aim of this work is to understand the role of the Tschermak molecule (CaAlAlSiO6) hosted in the hornblende and plagioclase fractionation assemblage in driving magma differentiation in calc-alkaline magmatic suites. We explore this issue by applying replenishment–fractional crystallization (RFC) and rare earth element–Rayleigh fractional crystallization (REE-FC) modeling to the Sabzevar Eocene (ca. 45–47 Ma) calc-alkaline volcanism of NE Central Iran, where hornblende-controlled fractionation has been demonstrated. Major element mass balance modeling indicates RFC dominated by a fractionating assemblage made of Hbl52.0–52.5 + Pl44.1–44.2 + Ttn3.3–3.9 (phases are expressed on total crystallized assemblage). REE-FC modeling shows, instead, a lower degree of fractionation with respect to RFC models that is interpreted as due to hornblende and plagioclase resorption by the residual melt. Calculations demonstrate that fractionation of the Tschermak molecule can readily produce dacite and rhyolite magmas starting from a calc-alkaline andesite source (FC = ca. 30 %). In particular, the Tschermak molecule controls both the heavy rare earth elements (HREE) and light rare earth element (LREE) budgets in calc-alkaline differentiation trends.  相似文献   

17.
The crystallization sequence of a basaltic andesite from Bezymianny Volcano, Kamchatka, Russia, was simulated experimentally at 100 and 700 MPa at various water activities (aH2O) to investigate the compositional evolution of residual liquids. The temperature (T) range of the experiments was 950–1,150 °C, aH2O varied between 0.1 and 1, and the log of oxygen fugacity (fO2) varied between quartz–fayalite–magnetite (QFM) and QFM + 4.1. The comparison of the experimentally produced liquids and natural samples was used to constrain the pressure (P)TaH2O–fO2 conditions of the Bezymianny parental magma in the intra-crustal magma plumbing system. The phase equilibria constraints suggest that parental basaltic andesite magmas should contain ~2–2.5 wt% H2O; they can be stored in upper crustal levels at a depth of ~15 km, and at this depth they start to crystallize at ~1,110 °C. The subsequent chemical evolution of this parental magma most probably proceeded as decompressional crystallization occurred during magma ascent. The final depths at which crystallization products accumulated prior to eruption are not well constrained experimentally but should not be shallower than 3–4 km because amphibole is present in natural magmas (>150 MPa). Thus, the major volume of Bezymianny andesites was produced in a mid-crustal magma chamber as a result of decompressional crystallization of parental basaltic andesites, accompanied by mixing with silicic products from the earlier stages of magma fractionation. In addition, these processes are complicated by the release of volatiles due to magma degassing, which occurs at various stages during magma ascent.  相似文献   

18.
In the western Trans-Mexican Volcanic Belt voluminous silicic volcanism has been associated with the rifting of the Jalisco block from mainland Mexico. Rhyolitic volcanism started at 7.5 Ma after a major pulse of basaltic volcanism aged 11–8.5 Ma associated with slab detachment. This was followed by a second period, between 4.9 and 2.9 Ma, associated with rhyolitic domes and ignimbrite coexisting with basaltic volcanism. The similarity in rare earth element contents between basalts and rhyolites excludes a simple liquid line of descent. The low Ba and Sr contents and the ferroan character of the rhyolites suggest extensive fractional crystallization. Late Miocene–early Pliocene rhyolite Sr isotope values are only slightly more radiogenic than the basalts, whereas Nd isotope ratios are indistinguishable. We successfully modelled the 7.5–3 Ma silicic magmatism as a result of partial melting of crustal gabbroic complexes that we infer to have formed in the mid-lower crust due to the high-density Fe-enriched composition of the late Miocene basaltic volcanism. Slab rollback since ~7.5 Ma favoured decompression melting and arrival of additional mafic magmas that intruded in the lower crust. These basalts heated and melted the gabbroic complexes forming the silicic magmas, which subsequently underwent assimilation and fractional crystallization processes. The first silicic pulse was emplaced during a period of low tectonic activity. Extensional faulting since the Pliocene favours the eruption of both silicic magma and lesser amount of mafic lavas.  相似文献   

19.
To test a recently developed oxybarometer for silicic magmas based on partitioning of vanadium between magnetite and silicate melt, a comprehensive oxybarometry and thermometry study on 22 natural rhyolites to dacites was conducted. Investigated samples were either vitrophyres or holocrystalline rocks in which part of the mineral and melt assemblage was preserved only as inclusions within phenocrysts. Utilized methods include vanadium magnetite–melt oxybarometry, Fe–Ti oxide thermometry and -oxybarometry, zircon saturation thermometry, and two-feldspar thermometry, with all analyses conducted by laser-ablation ICP–MS. Based on the number of analyses, the reproducibility of the results and the certainty of contemporaneity of the analyzed minerals and silicate melts the samples were grouped into three classes of reliability. In the most reliable (n = 5) and medium reliable (n = 10) samples, all fO2 values determined via vanadium magnetite–melt oxybarometry agree within 0.5 log units with the fO2 values determined via Fe–Ti oxide oxybarometry, except for two samples of the medium reliable group. In the least reliable samples (n = 7), most of which show evidence for magma mixing, calculated fO2 values agree within 0.75 log units. Comparison of three different thermometers reveals that temperatures obtained via zircon saturation thermometry agree within the limits of uncertainty with those obtained via two-feldspar thermometry in most cases, whereas temperatures obtained via Fe–Ti oxide thermometry commonly deviate by ≥50 °C due to large uncertainties associated with the Fe–Ti oxide model at T-fO2 conditions typical of most silicic magmas. Another outcome of this study is that magma mixing is a common but easily overlooked phenomenon in silicic volcanic rocks, which means that great care has to be taken in the application and interpretation of thermometers and oxybarometers.  相似文献   

20.
Lherzolite xenoliths containing fluid inclusions from the Ichinomegata volcano, located on the rear-arc side of the Northeast Japan arc, may be considered as samples of the uppermost mantle above the melting region in the mantle wedge. Thus, these fluid inclusions provide valuable information on the nature of fluids present in the sub-arc mantle. The inclusions in the Ichinomegata amphibole-bearing spinel–plagioclase lherzolite xenoliths were found to be composed mainly of CO2–H2O–Cl–S fluids. At equilibrium temperature of 920 °C, the fluid inclusions preserve pressures of 0.66–0.78 GPa, which correspond to depths of 23–28 km. The molar fraction of H2O and the salinity of fluid inclusions are 0.18–0.35 and 3.71 ± 0.78 wt% NaCl equivalent, respectively. These fluid inclusions are not believed to be fluids derived directly from the subducting slab, but rather fluids exsolved from sub-arc basaltic magmas that are formed through partial melting of mantle wedge triggered by slab-derived fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号