首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

2.
The outer gravitational potential V of the level ellipsoid of revolution T is uniquely determined by two quantities: the eccentricity \(\varepsilon \) of the ellipsoid and Clairaut parameter q, proportional to the angular velocity of rotation squared and inversely proportional to the mean density of the ellipsoid. Quantities \(\varepsilon \) and q are independent, though they lie in a rather strict two-dimensional domain. It follows that Stokes coefficients \(I_n\) of Laplace series representing the outer potential of T are uniquely determined by \(\varepsilon \) and q. In this paper, we have found explicit expressions for Stokes coefficients via \(\varepsilon \) and q, as well as their asymptotics when \(n\rightarrow \infty \). If T does not coincide with a Maclaurin ellipsoid, then \(|I_n|\sim B\varepsilon ^n/n\) with a certain constant B. Let us compare this asymptotics with one of \(I_n\) for ellipsoids constrained by the only condition of increasing (even nonstrict) of oblateness from the centre to the periphery: \(|I_n|\sim \bar{B}\varepsilon ^n/(n^2)\). Hence, level ellipsoids with ellipsoidal equidensites do not exist. The only exception represents Maclaurin ellipsoids. It should be recalled that we confine ourselves by ellipsoids of revolution.  相似文献   

3.
In a two-component jet model, the emissions are the sum of the core and extended emissions: \(S^{\mathrm{ob}}=S_{\mathrm{core}}^{\mathrm{ob}}+S_{\mathrm{ext}}^{\mathrm{ob}}\), with the core emissions, \(S_{\mathrm{core}}^{\mathrm{ob}}= f S_{\mathrm{ext}}^{\mathrm{ob}}\delta ^{q}\) being a function of the Doppler factor \(\delta \), the extended emission \(S_{\mathrm{ext}}^{\mathrm{ob}}\), the jet type dependent factor q, and the ratio of the core to the extended emissions in the comoving frame, f. The f is an unobservable but important parameter. Following our previous work, we collect 65 blazars with available Doppler factor \(\delta \), superluminal velocity \(\beta _{\mathrm{app}}\), and core-dominance parameter, R, and calculated the ratio, f, and performed statistical analyses. We found that the ratio, f, in BL Lacs is on average larger than that in FSRQs. We suggest that the difference of the ratio f between FSRQs and BL Lacs is one of the possible reasons that cause the difference of other observed properties between them. We also find some significant correlations between \(\log f\) and other parameters, including intrinsic (de-beamed) peak frequency, \(\log \nu _{\mathrm{p}}^{\mathrm{in}}\), intrinsic polarization, \(\log P^{\mathrm{in}}\), and core-dominance parameter, \(\log R\), for the whole sample. In addition, we show that the ratio, f, can be estimated by R.  相似文献   

4.
To investigate the \(M_\bullet -\sigma \) relation, we consider realistic elliptical galaxy profiles that are taken to follow a single power-law density profile given by \(\rho (r) = \rho _{0}(r/ r_{0})^{-\gamma }\) or the Nuker intensity profile. We calculate the density using Abel’s formula in the latter case by employing the derived stellar potential; in both cases. We derive the distribution function f(E) of the stars in the presence of the supermassive black hole (SMBH) at the center and hence compute the line-of-sight (LoS) velocity dispersion as a function of radius. For the typical range of values for masses of SMBH, we obtain \(M_{\bullet } \propto \sigma ^{p}\) for different profiles. An analytical relation \(p = (2\gamma + 6)/(2 + \gamma )\) is found which is in reasonable agreement with observations (for \(\gamma = 0.75{-}1.4\), \(p = 3.6{-}5.3\)). Assuming that a proportionality relation holds between the black hole mass and bulge mass, \(M_{\bullet } =f M_\mathrm{b}\), and applying this to several galaxies, we find the individual best fit values of p as a function of f; also by minimizing \(\chi ^{2}\), we find the best fit global p and f. For Nuker profiles, we find that \(p = 3.81 \pm 0.004\) and \(f = (1.23 \pm 0.09)\times 10^{-3}\) which are consistent with the observed ranges.  相似文献   

5.
We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, \(2 T=k\pi +\int _\Omega g\) where k is an integer, \(\Omega \) is the region enclosed by the periodic orbit and \(g:{\mathbb {R}}^2\rightarrow {\mathbb {R}}\) is a function that only depends on the constant C known as the Jacobian constant; it does not depend on \(\Omega \). This theorem has a Keplerian flavor in the sense that it relates the period with the space “swept” by the orbit. As an application we prove that there is a neighborhood around \(L_4\) such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for \(L_5\).  相似文献   

6.
In extremely dense neutrino environments like in supernova core, the neutrino-neutrino refraction may give rise to self-induced flavor conversion. These neutrino flavor oscillations are well understood from the idea of the exponentially growing modes of the interacting oscillators in the flavor space. Until recently, the growth rates of these modes were found to be of the order of the vacuum oscillation frequency \(\Delta m^2/2E\) [\(\mathcal {O}(1~\mathrm{km}^{-1})\)] and were considered slow growing. However, in the last couple of years it was found that if the system was allowed to have different zenith-angle distributions for the emitted \(\nu _e\) and \(\bar{\nu }_e\) beams then the fastest growing modes of the interacting oscillators grew at the order of \(\mu =\sqrt{2} G_\mathrm{F}n_{\nu }\), a typical \(\nu \)\(\nu \) interaction energy [\(\mathcal {O}(10^5~\mathrm{km}^{-1})\)]. Thus the growth rates are very large in comparison to the so-called ‘slow oscillations’ and can result in neutrino flavor conversion on a much faster scale. In fact, the point that the growth rates are no longer dependent on the vacuum oscillation frequency \(\Delta m^2/2E\), makes these ‘fast flavor conversions’ independent of \(\Delta m^2\) (thus mass) and energy. This is a surprising result as neutrino flavor conversions are considered to be the ultimate proof of massive neutrinos. However, the importance of this effect in the realistic astrophysical scenarios still remains to be understood.  相似文献   

7.
The gravitational interaction between two objects on similar orbits can effect noticeable changes in the orbital evolution even if the ratio of their masses to that of the central body is vanishingly small. Christou (Icarus 174:215–229, 2005) observed an occasional resonant lock in the differential node \(\varDelta \varOmega \) between two members in the Himalia irregular satellite group of Jupiter in the N-body simulations (corresponding mass ratio \(\sim 10^{-9}\)). Using a semianalytical approach, we have reproduced this phenomenon. We also demonstrate the existence of two additional types of resonance, involving angle differences \(\varDelta \omega \) and \(\varDelta (\varOmega +\varpi )\) between two group members. These resonances cause secular oscillations in eccentricity and/or inclination on timescales \(\sim \)1 Myr. We locate these resonances in (aei) space and analyse their topological structure. In subsequent N-body simulations, we confirm these three resonances and find a fourth one involving \(\varDelta \varpi \). In addition, we study the occurrence rates and the stability of the four resonances from a statistical perspective by integrating 1000 test particles for 100 Myr. We find \(\sim \)10 to 30 librators for each of the resonances. Particularly, the nodal resonance found by Christou is the most stable: 2 particles are observed to stay in libration for the entire integration.  相似文献   

8.
The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, \(B_{\mathrm{new}}^{0}=3.3\times10^{-4}B/P\), where \(P\) is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the \(\cot\chi\)-law, where \(\chi\) is a random quantity uniformly distributed in the interval \([0,\pi/2]\). Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle between the magnetic and rotational axes and gives insight into the neutron star unification on the geometrical basis.  相似文献   

9.
Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = ?0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.  相似文献   

10.
We examine the properties of the viscous dissipative accretion flow around rotating black holes in the presence of mass loss. Considering the thin disc approximation, we self-consistently calculate the inflow-outflow solutions and observe that the mass outflow rates decrease with the increase in viscosity parameter (\(\alpha \)). Further, we carry out the model calculation of quasi-periodic oscillation frequency (\(\nu _{\mathrm{QPO}}\)) that is frequently observed in black hole sources and observe that \(\nu ^\mathrm{max}_{\mathrm{QPO}}\) increases with the increase of black hole spin (\(a_k\)). Then, we employ our model in order to explain the High Frequency Quasi-Periodic Oscillations (HFQPOs) observed in black hole source GRO J1655-40. While doing this, we attempt to constrain the range of \(a_k\) based on observed HFQPOs (\(\sim \)300 Hz and \(\sim \)450 Hz) for the black hole source GRO J1655-40.  相似文献   

11.
In this work we consider the Kepler problem with linear drag, and prove the existence of a continuous vector-valued first integral, obtained taking the limit as \(t\rightarrow +\infty \) of the Runge–Lenz vector. The norm of this first integral can be interpreted as an asymptotic eccentricity \(e_{\infty }\) with \(0\le e_{\infty } \le 1\). The orbits satisfying \(e_{\infty } <1\) approach the singularity by an elliptic spiral and the corresponding solutions \(x(t)=r(t)e^{i\theta (t)}\) have a norm r(t) that goes to zero like a negative exponential and an argument \(\theta (t)\) that goes to infinity like a positive exponential. In particular, the difference between consecutive times of passage through the pericenter, say \(T_{n+1} -T_n\), goes to zero as \(\frac{1}{n}\).  相似文献   

12.
This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res.120, 7094, 2015 and Yermolaev et al. in Solar Phys.292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, \(\varphi\), in CIRs from ?2 to \(2^{\circ}\) agree with earlier results (e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle \(\varphi\) in ICMEs changes from 2 to \(-2^{\circ}\), while in sheaths it changes from ?2 to \(2^{\circ}\) (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle \(\vartheta\) on all the intervals of the chosen SW types, the angle \(\vartheta\) is almost constant at \({\sim}\,1^{\circ}\). We made for the first time a selection of SW events with increasing and decreasing \(\vartheta\) and found that the average \(\vartheta\) temporal profiles in the selected events have the same “integral-like” shape as for \(\varphi\). The difference in \(\varphi\) and \(\vartheta\) average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.  相似文献   

13.
We examine the average magnetic field magnitude (\(| \boldsymbol{B} | \equiv B\)) within magnetic clouds (MCs) observed by the Wind spacecraft from 1995 to July 2015 to understand the difference between this \(B\) and the ideal \(B\)-profiles expected from using the static, constant-\(\alpha\), force-free, cylindrically symmetric model for MCs of Lepping, Jones, and Burlaga (J. Geophys. Res. 95, 11957, 1990, denoted here as the LJB model). We classify all MCs according to an assigned quality, \(Q_{0}\) (\(= 1, 2, 3\), for excellent, good, and poor). There are a total of 209 MCs and 124 when only \(Q_{0} = 1\), 2 cases are considered. The average normalized field with respect to the closest approach (\(\mathit{CA}\)) is stressed, where we separate cases into four \(\mathit{CA}\) sets centered at 12.5 %, 37.5 %, 62.5 %, and 87.5 % of the average radius; the averaging is done on a percentage-duration basis to treat all cases the same. Normalized \(B\) means that before averaging, the \(B\) for each MC at each point is divided by the LJB model-estimated \(B\) for the MC axis, \(B_{0}\). The actual averages for the 209 and 124 MC sets are compared to the LJB model, after an adjustment for MC expansion (e.g. Lepping et al. in Ann. Geophys. 26, 1919, 2008). This provides four separate difference-relationships, each fitted with a quadratic (Quad) curve of very small \(\sigma\). Interpreting these Quad formulae should provide a comprehensive view of the variation in normalized \(B\) throughout the average MC, where we expect external front and rear compression to be part of its explanation. These formulae are also being considered for modifying the LJB model. This modification will be used in a scheme for forecasting the timing and magnitude of magnetic storms caused by MCs. Extensive testing of the Quad formulae shows that the formulae are quite useful in correcting individual MC \(B\)-profiles, especially for the first \({\approx\,}1/3\) of these MCs. However, the use of this type of \(B\) correction constitutes a (slight) violation of the force-free assumption used in the original LJB MC model.  相似文献   

14.
We use a formulation of the N-body problem in spaces of constant Gaussian curvature, \({\kappa }\in \mathbb {R}\), as widely used by A. Borisov, F. Diacu and their coworkers. We consider the restricted three-body problem in \(\mathbb {S}^2\) with arbitrary \({\kappa }>0\) (resp. \(\mathbb {H}^2\) with arbitrary \({\kappa }<0\)) in a formulation also valid for the case \({\kappa }=0\). For concreteness when \({\kappa }>0\) we restrict the study to the case of the three bodies at the upper hemisphere, to be denoted as \(\mathbb {S}^2_+\). The main goal is to obtain the totality of relative equilibria as depending on the parameters \({\kappa }\) and the mass ratio \(\mu \). Several general results concerning relative equilibria and its stability properties are proved analytically. The study is completed numerically using continuation from the \({\kappa }=0\) case and from other limit cases. In particular both bifurcations and spectral stability are also studied. The \(\mathbb {H}^2\) case is similar, in some sense, to the planar one, but in the \(\mathbb {S}^2_+\) case many differences have been found. Some surprising phenomena, like the coexistence of many triangular-like solutions for some values \(({\kappa },\mu )\) and many stability changes will be discussed.  相似文献   

15.
Precise measurement of the coronal properties of Active Galactic Nuclei (AGN) requires the availability of high signal-to-noise ratio data covering a wide range of X-ray energies. The Nuclear Spectroscopic Telescope Array (NuSTAR) which is highly sensitive to earlier missions in its operational energy range of 3–79 keV, allows us to arrive at precise estimates of the coronal parameters such as cut-off energy (\(E_\mathrm{cut}\)), coronal temperature (\(\textit{kT}_e\)) and geometry of the corona at least for sources that have \(E_\mathrm{cut}\) within the energy range of NuSTAR. In this paper, we present our preliminary results on the spectral analysis of two Seyfert galaxies namely 3C 120 and NGC 4151 using NuSTAR observations in the 3–79 keV band. We investigated the continuum and coronal parameters, the photon index \(\Gamma \), \(E_\mathrm{cut}\) and \(\textit{kT}_{e}\). By fitting the X-ray spectrum of 3C 120 and NGC 4151 with a simple phenomenological model, we found that both the sources showed a clear cut-off in their spectrum.  相似文献   

16.
Hydrodynamic computations of nonlinear Cepheid pulsation models with periods from 20 to 100 day on the evolutionary stage of core helium burning were carried out. Equations of radiation hydrodynamics and time–dependent convection were solved with initial conditions obtained from selected models of evolutionary sequences of population I stars with initial masses from 8 M to 12.5 M. For each crossing of the instability strip the pulsation period Π and the rate of period change \(\dot \prod \) were derived as a function of evolutionary time. Comparing results of our computations with observational estimates of Π and \(\dot \prod \) we determined fundamental parameters (the age, the mass, the luminosity and the radius) of seven long–period Cepheids. Theoretical estimates of the stellar radius are shown to agree with radius measurements by the Baade–Wesselink technique within 3% for RS Pup and GY Sge whereas for SV Vul the disagreement between theory and observations does not exceed 10%.  相似文献   

17.
Data of geomagnetic indices (aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967–2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (\(\mathbf{T}\)) and Away (\(\mathbf{A}\)) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of \(\mathbf{A}\) polarity predominated over the \(\mathbf{T}\) polarity days by 4.3% during the positive magnetic polarity epoch (1991–1999). While the days of \(\mathbf{T}\) polarity exceeded the days of \(\mathbf{A}\) polarity by 5.8% during the negative magnetic polarity epoch (2001–2012). (ii) Considerable yearly North–South (N–S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for \(aa\) and \(Ap\) indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for \(aa\) and \(Ap\) indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N–S asymmetry of \(Kp\) index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices (aa, Ap, and \(Kp\)) all have northern dominance during positive magnetic polarity epoch (1971–1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001–2012).  相似文献   

18.
In this note a study of the convergence properties of some starters \( E_0 = E_0(e,M)\) in the eccentricity–mean anomaly variables for solving the elliptic Kepler’s equation (KE) by Newton’s method is presented. By using a Wang Xinghua’s theorem (Xinghua in Math Comput 68(225):169–186, 1999) on best possible error bounds in the solution of nonlinear equations by Newton’s method, we obtain for each starter \( E_0(e,M)\) a set of values \( (e,M) \in [0, 1) \times [0, \pi ]\) that lead to the q-convergence in the sense that Newton’s sequence \( (E_n)_{n \ge 0}\) generated from \( E_0 = E_0(e,M)\) is well defined, converges to the exact solution \(E^* = E^*(e,M)\) of KE and further \( \vert E_n - E^* \vert \le q^{2^n -1}\; \vert E_0 - E^* \vert \) holds for all \( n \ge 0\). This study completes in some sense the results derived by Avendaño et al. (Celest Mech Dyn Astron 119:27–44, 2014) by using Smale’s \(\alpha \)-test with \(q=1/2\). Also since in KE the convergence rate of Newton’s method tends to zero as \( e \rightarrow 0\), we show that the error estimates given in the Wang Xinghua’s theorem for KE can also be used to determine sets of q-convergence with \( q = e^k \; \widetilde{q} \) for all \( e \in [0,1)\) and a fixed \( \widetilde{q} \le 1\). Some remarks on the use of this theorem to derive a priori estimates of the error \( \vert E_n - E^* \vert \) after n Kepler’s iterations are given. Finally, a posteriori bounds of this error that can be used to a dynamical estimation of the error are also obtained.  相似文献   

19.
Profile variations in the \(\hbox {H}\alpha \) and \(\hbox {H}\beta \) lines in the spectra of the star HD14134 are investigated using observations carried out in 2013–2014 and 2016 with the 2-m telescope at the Shamakhy Astrophysical Observatory. The absorption and emission components of the \(\hbox {H}\alpha \) line are found to disappear on some observational days, and two of the spectrograms exhibit inverse P-Cyg profile of \(\hbox {H}\alpha \). It was revealed that when the \(\hbox {H}\alpha \) line disappeared or an inversion of the P-Cyg-type profile is observed in the spectra, the \(\hbox {H}\beta \) line is displaced to the longer wavelengths, but no synchronous variabilities were observed in other spectral lines (CII \( \lambda \) 6578.05 Å, \( \lambda \) 6582.88 Å  and HeI \( \lambda \) 5875.72 Å) formed in deeper layers of the stellar atmosphere. In addition, the profiles of the \(\hbox {H}\alpha \) and \(\hbox {H}\beta \) lines have been analysed, as well as their relations with possible expansion, contraction and mixed conditions of the atmosphere of HD14134. We suggest that the observational evidence for the non-stationary atmosphere of HD14134 can be associated in part with the non-spherical stellar wind.  相似文献   

20.
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号