首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.  相似文献   

2.
Neural adaptive beamformers (NABFs) utilize neural paradigms to accomplish desired adaptations that are associated with sensory-field-responsive partitioning and selection processes. Kohonen-type organization and Hopfield-type optimization have been formulated as NABF mechanisms and have been applied to test data. Formulations and results are included. NABFs are also used in conjunction with a learning network for interpretation of weight sets as population codings of direction. An example is included. Desirable qualities of human auditory response are being interpreted in the context of neural adaptive beamforming for the purpose of creating an integrated processing structure that incorporates NABFs, a cochlear model, and an associative memory as part of a total spatiotemporal processing scheme for selective attention  相似文献   

3.
Sidescan sonar image processing techniques   总被引:1,自引:0,他引:1  
A four-step processing sequence is described to produce image mosaics from the various segments of a sidescanned acoustic imaging survey of a given seafloor area. Starting with data consisting for each ping of acoustic backscatter levels versus horizontal range across-track, median prefiltering is used first to reduce the influence of outliers on subsequent linear processes. Artifacts that are clearly unrelated to the backscattering properties of the seafloor are then isolated on a ping by ping basis through a spectral analysis that relies on a decomposition using Chebyshev polynomials to filter the low spatial frequency components of the image. Contrast enhancement is then achieved through an original implementation of the classical gray level histogram equalization technique by balancing local versus global histogram contributions. Pixels are mapped on a geographic grid taking due account of the geometry of the measurement and of the spacing between pings to minimize along-track smearing of features. Examples of results obtained with these processing techniques are given for SeaMARC II data recorded during a complete survey of Fieberling Guyot (32°.5 N, 128° W)  相似文献   

4.
A dominant source of errors in swath bathymetry is acoustic interference. In 1989 the author published an analysis of these errors and predicted depth accuracies for a system which reduced their effect by averaging. This present paper shows how a considerable improvement in performance may be obtained by a variety of signal processing strategies that include the use of several widely spaced receivers and the elimination of the most unsatisfactory measurements before averaging. Simulations show how impressive sea bed profiles can be produced with a single ping, even at low signal-to-interference ratios  相似文献   

5.
针对侧扫声呐数据采集的特点,提出了一种基于图像边缘检测技术中LOG算子的海底线检测新方法,用于准确检测海底线从而对侧扫声呐资料进行斜距改正。通过实验数据处理,表明该方法较传统方法具有明显的优势。  相似文献   

6.
This paper discusses the evolutionary development, which has taken place over the last decade, in digital sonar systems architecture with the application of first, second, and third generation computers as system controllers for sonar systems. It is the opinion of the authors that, with the arrival of microprocessors, the system controller tasks in real time digital sonars will diminish. We present, as the "fourth generation," the present systems which still have a relatively large CPU, assisted by an array of microprocessors under their control for several subtasks which can be handled, more efficiently, locally in the systems. The "fifth generation" concept is postulated as a further development of this concept. A distributed processing scheme is presented in which the processing elements are actually highly functionally distributed themselves at the lowest level of architecture; consequently, the user views them as uniprocessors within the tightly coupled network. This approach should result in relatively high throughput utilizing a fairly small repertoire of modular hardware components and requiring minimal software effort by implementing, via firmware, very high level macros. This concept allows adaptive system architecture for the various advanced sonar data processing requirements for multielement linear, spatial, or blanket type array systems postulated for the future.  相似文献   

7.
A programmable microcomputer-based sonar echo processor has been developed and field tested to process echo data in real time. The device was designed for use in fisheries acoustics and to analyze echoes from the sea floor. The instrument simultaneously performs the functions "echo integration" and "echo peak detection' on the sonar signal. The "echo integration" circuitry measures the relative acoustic energy of the echo while the "echo peak detection' electronics measure the probability density function (PDF) of the peak of the echo envelope. Each process is gated so the echoes may be processed in many short time intervals. In fisheries applications, estimates can be made of fish density (fish per unit volume), average backscattering cross section, and a combination of fish size and behavior. When using the device to analyze bottom echoes, it is possible to measure both the returned energy from the bottom sediment interfaces and the microrelief characteristics. The durability, flexibility, computer link, and floppy-disk data-storage features of the system are discussed. Data are presented of the processed echoes from biological organisms and the ocean bottom from a recent research cruise on the Atlantic Ocean near Cape Hatteras, NC. The biological results illustrated the organisms to be clearly divided into two separate spatial distributions-an observation not obvious from a standard echogram which was simultaneously used. The results from the bottom showed both 1) the difference in sub-bottom structure between two locations and 2) changes in microrelief of the water-bottom interface between another pair of locations.  相似文献   

8.
Suboptimal processing schemes, the application of which is not widespread in synthetic aperture sonar processing, are described with reference to seafloor imaging. It is shown that their application can result in a significant increase of the azimuth resolution of the sonar system with respect to the resolution due to its physical beamwidth, without imposing unreasonable constraints on the sonar platform trajectory.  相似文献   

9.
10.
11.
A remote sediment classification technique based on attenuation measurements from Chirp sub-bottom profiler data is described. This differs from previously published work in that attenuation measurements are obtained for each stratigraphic unit within a complex, thinly interbedded sedimentary sequence. Compressional wave attenuation measurements are obtained for a wide variety of lithologies, including muds, silts, sands, clayey sands, silty clays and gravel lags, with grain sizes ranging from 8 Phi to -4 Phi. In addition, attenuation measurements from sub-bottom profiler data were calibrated against laboratory acoustic measurements of vibracores and seabed samples from corresponding geographic locations, under simulated in-situ conditions using a Pulse Tube method. We adapt an instantaneous frequency matching method using a causal attenuation filter to model the decay of the Chirp transmitted waveform. From this modelling, a relationship between t* (a causal attenuation operator) and change in instantaneous frequency is established. The Hilbert transform is used to extract instantaneous frequency information from Chirp seismic, which is used to derive attenuation information for selected individual stratigraphic layers imaged by the sub-bottom profiler. This paper draws attention to the limitations in comparing attenuation measurements derived from Chirp sub-bottom profiler data against previously published literature on experimental attenuation measurements, which are limited by the wide variance of these data, and the difficulty in finding a meaningful best fit to these data. This demonstrates the importance of calibrating remote sediment classification observations using complimentary acoustic analysis of seabed samples to generate a site-specific geoacoustic database. A positive correlation between laboratory and sub-bottom profiler attenuation measurements was obtained, with a correlation coefficient of 0.885. Poorly sorted gravels with a mixed lithic and biogenic pebble component are characterised by very high attenuation with values of Q from 4 to 19. These sediments are considerably coarser-grained than those typically described in previously published experimental studies.  相似文献   

12.
Multibeam echosounders are becoming widespread for the purposes of seafloor bathymetry mapping, but the acquisition and the use of seafloor backscatter measurements, acquired simultaneously with the bathymetric data, are still insufficiently understood, controlled and standardized. This presents an obstacle to well-accepted, standardized analysis and application by end users. The Marine Geological and Biological Habitat Mapping group (Geohab.org) has long recognized the need for better coherence and common agreement on acquisition, processing and interpretation of seafloor backscatter data, and established the Backscatter Working Group (BSWG) in May 2013. This paper presents an overview of this initiative, the mandate, structure and program of the working group, and a synopsis of the BSWG Guidelines and Recommendations to date. The paper includes (1) an overview of the current status in sensors and techniques available in seafloor backscatter data from multibeam sonars; (2) the presentation of the BSWG structure and results; (3) recommendations to operators, end-users, sonar manufacturers, and software developers using sonar backscatter for seafloor-mapping applications, for best practice methods and approaches for data acquisition and processing; and (4) a discussion on the development needs for future systems and data processing. We propose for the first time a nomenclature of backscatter processing levels that affords a means to accurately and efficiently describe the data processing status, and to facilitate comparisons of final products from various origins.  相似文献   

13.
通过分析GeoAcoustics公司的GeoSwath相干多波束系统的二进制原始文件结构,使用VC 6.0设计出各传感器字段的数据结构,并编程实现相干多波束数据的提取和图形可视化。该技术方法对于GeoSwath系统多波束数据的提取和分析处理有参考意义。  相似文献   

14.
多波束测深数据具有海量性与冗余性特征,海量的多波束数据不利于海底DEM构建与海图生产。因此,对于离散的多波束测深数据,行之有效的抽稀算法在多波束测深数据处理与应用中尤为重要。文中分析了常用的数据抽稀算法在数据处理速度以及特征地形保留方面的缺陷,提出一种通过改进基于TIN的数据处理流程的抽稀算法,并对比分析了抽稀前后海底地形特征。实验结果表明,改进的抽稀算法在数据量增大时依然可以保持较高的抽稀速度,能有效地提高数据抽稀的效率,准确保留海底地形特征。  相似文献   

15.
Acoustic signals received by platform mounted sonar arrays can be spatially processed to enhance the detection of targets in the presence of both ambient and platform generated (self) noise. Ambient noise in the ocean, such as that due to distant shipping or biological choruses, are known to be spatially correlated. The platform generated noise will be of near-field origin and may not be received by all elements in the array. In this paper we investigate the performance of the minimum variance distortionless response (MVDR) beamformer and the recently introduced Fourier integral method (FIM) and compare their performances with the conventional beamformer. Real passive sonar data, obtained from a platform mounted sparse linear array of hydrophones, is used to study the performance of the beamformers in a typical sonar environment. It is shown that in the absence of self noise, when the array is accurately calibrated the MVDR beamformer will perform very well, but when sensor gain or phase errors are present the performance of the MVDR beamformer is degraded. Further, the MVDR beamformer is unable to reject the self noise which is not "seen" by the entire array. FIM however seems to perform well and a modified version of FIM, which we call weighted FIM (WFIM), is shown to perform better and is at worst comparable to a well calibrated MVDR beamformer  相似文献   

16.
李志华  李秋峦 《海洋工程》2014,32(4):124-130
结合多核CPU硬件PC平台,设计了一种海底三维声学图像实时处理系统,主要包括声学前端信号处理子系统、数据传输控制子系统和PC客户端图像处理系统三个部分。声学前端信号处理子系统统根据接收到的多路声学换能器信号,通过两级FPGA信号处理,采集多通道水声信号,进行实时电子聚焦波束形成。为了解决海量声学数据快速传输问题,数据传输控制子系统未采用传统用户空间TCP/IP传输机制,而是直接通过嵌入式PowerPC处理器在Linux内核态采用DMA通道进行声学数据转发,减少系统调用和数据拷贝开销,有效提高网络传输效率。针对海量声学数据实时处理需求,PC客户端图像处理系统通过对复杂、耗时的单帧重建和数据拼接算法模块根据声学数据点的角度范围进行等分分割,对每个子范围声纳数据采用多线程并行处理,均衡多个CPU核之间负载,实现高性能三维声学图像实时处理。通过室内水池和湖试实验,结果表明该系统能够实时高效地进行三维声学图像采集、传输与处理。  相似文献   

17.
Processing and analysis of Simrad multibeam sonar data   总被引:1,自引:0,他引:1  
The common approach to analysing data collected with multibeam and sidescan sonars is to visually interpret charts of contoured bathymetry and mosaics of seabed images. However, some of the information content is lost by processing the data into charts because this involves some averaging; the analysis might uncover more information if done on the data at an earlier stage in the processing. Motivated by this potential, I have created a software system which can be used to analyse data collected with Simrad EM1000 (shallow water) and EM12 (deep water) multibeam sonars, as well as to generate bathymetry contour charts and backscatter mosaics. The system includes data preprocessing, such as navigation filtering, depth filtering (removal of outlying values), and amplitude mapping using the multibeam bathymetry to correctly position image pixels across the swath. The data attributes that can be analysed include the orientation and slope of the seafloor, and the mean signal strength for each sounding. To determine bathymetry attributes such as slope, the soundings across a number of beams and across a series of pings are grouped and a least-squares plane fitted to them. Bathymetric curvature is obtained by detrending the grouped data using the least-squares plane and fitting a paraboloid to the residuals. The magnitudes and signs of the paraboloid's coefficients reveal depressions and hills and their orientations. Furthermore, the seafloor geology can be classified using a simple combination of these attributes. For example, flat-lying sediments can be classified where the backscatter, slope and curvature fall below specified values.  相似文献   

18.
A paradigm for massively parallel processing of matched filters, replica correlators, ambiguity functions, and time-frequency distributions is presented, using a SIMD (single instruction stream, multiple data stream) programming methodology. It is shown that active sonar detection algorithms, as implemented by frequency domain processing, can be a natural match to a SIMD methodology, meeting the extensive computational needs of enhanced active sonar systems. The decomposition process is presented, and examples are given of the output of the computer program CMASP (Connection Machine Ambiguity Surface Processor). CMASP can provide real-time simultaneous multiple-beam, Doppler, and waveform replica correlations. Synthetic data are processed, and the corresponding CMASP outputs are displayed as three-dimensional ambiguity surfaces on networked graphic workstations. Because of efficient problem decomposition, other time-frequency processing can be exploited. Specifically, real-time instantaneous-like time-frequency distributions have been realized in which the data set is presented and processed as time-varying spectral representations  相似文献   

19.
多波束声呐图像是进行海底底质分类的主要数据源之一,由于受海洋噪声、声波散射和混响、仪器设备等因素影响,其经各项常规改正后仍存在明显残差,突出表现在中央波束区和条带重叠区,难以形成高质量的声呐图像。文中分析了多波束声呐图像残差的成因及影响,提出了一种基于多条带最小二乘拟合的多波束声呐图像残差处理方法。首先,得到相邻声脉冲(ping)信号中央区域、重叠区域以及整体趋势的拟合函数;然后,通过拟合函数计算得到中央和重叠区域的残差改正系数;最后,通过改正系数进行残差改正。实验分析表明,该方法在保留原始细节的基础上,有效削弱了残差对声呐图像的影响,对多波束声呐图像处理具有参考和应用价值。  相似文献   

20.
Bottom-penetrating sonar can be used to visualize large areas, for example by normal logging and printing of collected pings. In many applications, it is necessary to obtain an impression of three-dimensional (3-D) structures, but this is not easy because of the irregular spatial sampling due to coarse ship trajectories. Normally, the ping map and the ping data, cover only a very small part of a region of interest. In this paper, we describe a new method for interpolating irregularly spaced sonar data. The basic idea is to use a two-dimensional quadtree of the ping map in order to guide the 3-D interpolation process: since gaps between pings become smaller at higher tree levels, the volume can be filled by marking neighborhood relations in the quadtree and interpolating available pings when they become neighbors. Different marking schemes and their central processing unit times are compared. In the interpolation process, we apply cross correlations of ping data in order to construct continuity of sloping reflections. Our results show that excellent results can be obtained on real sonar data sets, even for volumes filled for less than 7%, for which processing times are reasonable even for large areas, and that the interpolated data can be used for volumetric interactive visualization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号