首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A small lake, Kaksoislammi (60° 3830N, 24° 4550E), in southern Finland was studied for Cladocera, diatoms and pollen from a core which covers the entire Holocene. The diatom remains indicate a steady development from alkaliphilous taxa towards the dominance of acidophilous forms and lowering pH in the late Holocene. About 1800–1700 BP, dramatic changes took place in the microfauna, mainly the planktonic Cladocera. Bosmina longirostris, the dominant species, suddenly disappeared, and Daphnia, Chydorus sphaericus and Chaoborus increased. The change is simultaneous with a decline of the diatom-inferred pH to 4.8. It is probable that there was a sudden, profound change in predator-prey relationships. The acidity of the lake water probably increased to such a low level that it led to the disappearance of even the most acid-tolerant fish. Consequently invertebrate predators increased and quickly altered the species composition in the lake. There is also pollen evidence of the onset of Iron Age cultivation and grazing almost simultaneously with the faunal change. Therefore, it cannot be ruled out that the sudden lowering of pH was indirectly caused by prehistoric human activity; possibly the acidic peatland surrounding the lake was disturbed.  相似文献   

2.
A 95-cm-thick peat sequence obtained from Daping Swamp in the western Nanling Mountains provides evidence for climate variability in the past ~3,000 year. Multi-proxy records (including organic carbon isotopes, humification degree, organic matter content, and dry bulk density) revealed three intensified Asian summer monsoon (ASM) intervals (i.e.~2900–2700, 2500–1700 and 1000–600 cal. yr BP) and three weakened ASM intervals (i.e.~2800–2500, 1700–1000 and 600–200 cal. yr BP). Our δ13C record shows a possible correlation with the sunspot number and residual atmospheric 14C records on multi-centennial scale, especially for the period between 2960 and 2200 cal. yr BP. A spectral analysis of δ13C record reveals three significant cycles (i.e., 396, 110 and 102 yr) and all these cycles could be related to solar activity, suggesting that solar output may have influenced the late Holocene climate variability in the study region.  相似文献   

3.
Journal of Paleolimnology - Analysis of the oxygen isotopic composition (δ18O) of sedimentary carbonates in Turquoise Lake (N50.83°, W121.69°, 807 m), southwestern British...  相似文献   

4.
5.
Cladocerans are valuable indicators of environmental change in lakes. Their fossils provide information on past changes in lake environments. However, few studies have quantitatively examined the relationships between contemporary and sub-fossil cladoceran assemblages and no investigations are available from Mediterranean lakes where salinity, eutrophication and top-down control of large-bodied cladocerans are known to be important. Here we compared contemporary Cladocera assemblages, sampled in summer, from both littoral and pelagic zones, with their sub-fossil remains from surface sediment samples from 40 Turkish, mainly shallow, lakes. A total of 20 and 27 taxa were recorded in the contemporary and surface sediment samples, respectively. Procrustes rotation was applied to both the principal components analysis (PCA) and redundancy analysis (RDA) ordinations in order to explore the relationship between the cladoceran community and the environmental variables. Procrustes rotation analysis based on PCA showed a significant accord between both littoral and combined pelagic–littoral contemporary and sedimentary assemblages. RDA ordinations indicated that a similar proportion of variance was explained by environmental variation for the contemporary and fossil Cladocera data. Total phosphorus and salinity were significant explanatory variables for the contemporary assemblage, whereas salinity emerged as the only significant variable for the sedimentary assemblage. The residuals from the Procrustes rotation identified a number of lakes with a high degree of dissimilarity between modern and sub-fossil assemblages. Analysis showed that high salinity, deep water and high macrophyte abundance were linked to a lower accord between contemporary and sedimentary assemblages. This low accord was, generally the result of poor representation of some salinity tolerant, pelagic and macrophyte-associated taxa in the contemporary samples. This study provides further confirmation that there is a robust relationship between samples of modern cladoceran assemblages and their sedimentary remains. Thus, sub-fossil cladoceran assemblages from sediment cores can be used with confidence to track long-term changes in this environmentally sensitive group and in Mediterranean lakes, subjected to large inter-annual variation in water level, salinity and nutrients.  相似文献   

6.
Lake Mattamuskeet, North Carolina, USA is a large (162 km2) and shallow (mean depth = 1 m) coastal lake, which was significantly modified to support agricultural activities following European settlement in 1850. Paleolimnological proxies measured on a 400-cm sediment core collected from Lake Mattamuskeet reveal shifts in organic matter input and primary producer community structure in response to climatic and human impacts on the lake during the late Holocene. Stratigraphic changes in organic matter content, nutrients, metals, lignin phenols and photosynthetic pigments were used to divide the sediment core into three intervals. Interval I includes sediment deposited between A.D. 360–1584 and indicates a clear-water, sand-bottom state with low algal abundance. In addition, the lake catchment area experienced two significant fires during this interval that were recorded as charcoal layers in the core around A.D. 360 and A.D. 1435 (calibrated 14C AMS dates). Trophic structure changed with the onset of Interval II (A.D. 1584–1860) when total algal abundance increased, and the primary producer community was comprised primarily of diatoms, chrysophytes, cryptophytes and cyanobacteria. During this interval there was also an increase in terrestrial organic material input into the lake as well as a shift in plant type from woody gymnosperms to non-woody angiosperms as determined from lignin data. Sediment deposited in Lake Mattamuskeet following European settlement (Interval III, A.D. 1860-present) suggests a dramatic increase in organic-matter deposition, metals, primary-producer abundance and the onset of cyanobacterial dominance. Sedimentary evidence indicates that shallow-water primary producers can respond rapidly to climate change and human development.  相似文献   

7.
Ecosystem variability must be assessed over a range of timescales in order to fully understand natural ecosystem processes. Long-term climate change, at millennial and centennial scales, is a major driver of natural ecosystem variability, but identifying evidence of past climate change is frequently confounded by human-induced impacts on the ecosystem. Iceland is a location where it is possible to separate natural from anthropogenic change in environmental archives, as the date of settlement is accepted to be around AD 874, prior to which the island was free from proven human impacts. We used a lake sediment core from Breieavatn, near Reykholt, a major farm of the Norse period in western Iceland, to examine landscape development. A change in pollen concentration in the sediments, especially the decline in Betula, indicated initial landscape degradation immediately post-settlement, whereas the chironomid fauna and reconstructed temperatures were relatively complacent during this period. The pollen evidence is corroborated by 14C analyses, which indicate an increase in older carbon entering the lake, inferred to have been caused by increased erosion following settlement. Further decreases in Betula pollen occurred around AD 1300, pre-dating a drop in chironomid-inferred temperatures (CI-T) of ~1°C over 100–200 years. The CI-T reconstruction also shows a significant cooling after ~AD 1800, likely indicative of the coldest phase of the Little Ice Age. The evidence suggests that the chironomid record was relatively unaffected by the increased landscape degradation and hence reveals a temperature reconstruction independent of human impact.  相似文献   

8.
The sedimentary record from Lake Baikal (Siberia, Russia) has been an important source of information about paleoclimatic variability in the northern hemisphere and dynamics of continental rift development. A lack of reliable chronology has, however, been a major obstacle to fully utilizing the Baikal archive for time scales beyond about 4-5 Myr. In this paper we use the distribution of 10Be to establish a new chronology for the longest core drilled in Lake Baikal so far. The 10Be-based chronology spans the last 8 Myr and provides better constraints on sedimentation rates and consequently on an east-west tectonic extension in the lake, which has been apparently coeval with other rifts in Asia that are related to the Tibetan plateau uplift. Our data also show higher 10Be flux in the sediment section older then 5 Myr compared with the younger period. This can be explained partly by warm and humid climatic conditions of the Miocene and partly by a high cosmic ray flux to the Earth resulting from possible low geomagnetic field intensity during that time.  相似文献   

9.
Two lake-sediment cores from the western and central Canadian Arctic were used to investigate late Holocene climate variability in the region. Both cores were analyzed for pollen, organic matter, biogenic silica, and magnetic susceptibility, and were dated using a combination of 210Pb and 14C techniques. Core MB01, from southwestern Victoria Island, provides a 2600-year-long record. Fossil pollen percentages, along with other parameters, suggest the occurrence of a cold period around 2400 cal year BP (450 BC), followed by slightly warmer conditions by 1800 cal year BP (150 AD), and a return to cooler conditions throughout much of the last millennium. Core SL06, from southern Boothia Peninsula, shows more subtle changes in pollen percentages over its 2500-year duration, but an increase in Cyperaceae and decrease in Oxyria pollen around 1400 cal year BP (550 AD) are indicative of warmer conditions at that time. Quantitative climate reconstructions from these pollen sequences were compared to two other pollen-based climate records from the region and indicate the presence of a widespread wet period ~1500 cal year BP (450 AD), and a cool and dry Little Ice Age. In the reconstructions based on pollen percentage data, the twentieth century summer temperature and annual precipitation in the central and western Canadian Arctic were comparable to that which occurred over the last 2500 years. However, pollen-influx values increase in the most recent sediments, suggesting high plant productivity during the late twentieth century.
Matthew C. PerosEmail:
  相似文献   

10.
The Arcellacean (Thecamoebian) fauna was assessed in five Holocene sediment cores obtained from James and Granite lakes in the Temagami region of northeastern Ontario. In addition, palynological analysis was carried out on two of these cores, one each from James and Granite lakes. The first indication of postglacial colonization by plants was the appearance of rare Cupressaceae pollen, dated to 10,800 yr BP. Plant diversity began to increase by 10,770 yr BP when Pinus spp. and Larix migrated into the area. The first appearance of arcellaceans occurred after 9650 yr BP in assemblages dominated by Centropyxis constricta and opportunistic Centropyxis aculeata. High abundances of charophytes in the cores until 8800 yr BP indicated that macroalgae were proliferating at this time. This deposition is interpreted to have occurred during the draining of an ice-marginal lake following the retreat of the Laurentide Ice Sheet. Based on pollen analysis, warmer conditions associated with the Holocene Hypsithermal prevailed in the area from 6250 to 4115 yr BP. The stable, open Great Lakes – St. Lawrence type forest that developed here at the beginning of the Hypsithermal continues to prevail to the present. The periodic colonization of the lake by beavers (Castor canadensis) acted as a control on water-level and eutrophication through the Holocene. Evidence of eutrophication was indicated in the core samples by the abundance of high levels of the alga Pediastrum and the arcellacean Cucurbitella tricuspis. Eutrophication periodically developed when beavers dammed a site, causing the rate of flow in drainage streams to slow and stagnant conditions occurred. When the site became depleted of the nearby trees, which were preferred by beaver (Betula, Alnus and Populus), the dam would be abandoned, causing the water-level to drop. Stagnant conditions were reduced as flow levels increased, reducing eutrophication and resulting in recovering forest stands. In addition, the lowering water levels would result in encroachment of the forest along the lake shore. This cycle occurred many times in the history of this lake as indicated by fluctuations in the size of arcellacean populations.  相似文献   

11.
The 14 papers in this Special Issue of the Journal of Paleolimnology report new records of Holocene climate and environmental change from Arctic lakes, with emphasis on the last 2000 years. The study sites span the high latitudes of North America and extend into northwestern Europe. The studies rely on multiple proxy indicators to reconstruct past climate, including: varve thicknesses, chironomid, diatom, and pollen assemblages, biogenic-silica and organic-matter content, oxygen-isotope ratios in diatoms, and the frequency of lake-ice-rafted aggregates. These proxies primarily document changes in past summer temperatures, the main control on physical and biological processes in lakes at high latitudes. The records will be integrated into a larger network of paleoclimate sites to investigate the spatial and temporal variability of climate change and to compare the paleoclimate inferences with the output of general circulation models. This is the Introduction to a series of fourteen papers published as a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.  相似文献   

12.
Continuous terrestrial records of paleoclimate and paleovegetation that extend to the late Pleistocene are rare for the circum-Caribbean uplands. In this study we analyzed the bulk and compound-specific carbon isotope composition of lake sediments spanning this period from Lago de las Morrenas 1 (LM1), a glacial lake in the highlands of southern Costa Rica, for evidence of climate and vegetation changes that may not have been apparent in previous analyses. The stable carbon isotope ratios of n-alkanes typically derived from terrestrial plants (δ13CC27–C33) indicate an increased abundance of C4 plant taxa during the late Pleistocene and earliest Holocene that may be related to decreased atmospheric carbon dioxide concentrations, increased aridity, or habitat availability. These n-alkane isotope ratios also provide evidence of more arid conditions during the early and late Holocene, and more mesic conditions during the middle Holocene, a pattern prevalent in other paleoclimate records from the region that is thought to be related to millennial-scale dynamics of the intertropical convergence zone (ITCZ). The sensitivity of the LM1 paleorecord to trade wind dynamics provides further support for the role of millennial-scale shifts in ITCZ dynamics in driving neotropical environmental change, and indicates that the effects of ITCZ migration were not limited to the lowlands.  相似文献   

13.
Hwajinpo is the largest lagoon in Korea and is located along the east coast of the country. It possesses Holocene sediments that provide an important record of past climate change. We studied the evolution of Hwajinpo Lagoon using grain size data and diatom assemblages in an 11.0-m core (HJ02), which was obtained at the mouth of a small river that drains into the lagoon. Core chronology was established with accelerator mass spectrometry 14C dates and optically stimulated luminescence dates. Diatom assemblages and grain size analysis revealed that estuarine conditions in the inner lagoon area transitioned to an open embayment ca. 8 ka as a result of sea-level rise. Around 7.8 ka, the open bay became a semi-closed bay as a consequence of development of a sand barrier. After the bay was semi-closed, marine water inflow was increasingly restricted as the sand barrier developed, and the semi-closed bay became a completely enclosed, low-salinity, brackish lagoon around 6 ka. There was an erosional hiatus between 5.5 and 1.7 ka (7.0 m depth), likely caused by river flooding and a switch in the location of drainage along the delta. The lagoon became oligohaline around 1.6 ka, likely because of increasing precipitation associated with an intensified Asian summer monsoon. This increase in precipitation resulted in expansion of the sand bar by sediment inflow, driven by agricultural development in the area. About 1000 years ago, the diatom assemblage was similar to the modern assemblage, suggesting the lagoon’s current geomorphic conditions had been established.  相似文献   

14.
选取位于中亚哈萨克斯坦中南部的VA剖面作为研究对象,剖面厚7 m,野外采样以及实验分析间距均为5 cm。在AMS 14C测年基础上,综合野外地层考察和实验室指标(包括磁化率、碳酸盐、有机质和粒度)分析,结果表明:I:该剖面过去~25 000 14C a BP以来地层主要可以分为五个地层单元:(1) ~26 000 14C a BP—~22 000 14C a BP,河流作用过的黄土层;(2) ~22 000 14C a BP—~19 000 14C a BP,潜育化的黄土层;(3) ~19 000 14C a BP—~10 000 14C aBP,弱土壤层;(4) ~10 000 14C a BP—~5 000 14C a BP,典型的黄土层;(5) 过去~5 000 14C a BP以来,土壤层。II:将VA剖面与欧洲区以及东亚区黄土沉积对比发现:研究区过去~25 000 14C a BP 以来地层沉积与欧洲黄土沉积类似,全新世地层序列与东亚区具有反相位关系:中亚区早全新世为黄土沉积,晚全新世发育土壤层,说明研究区过去25 000 14C a以来主要受西风带和地中海气候控制,具有西风区气候特征。III:VA剖面MIS2记录到的潜育化黄土层以及弱土壤层显示研究区在MIS2时段气候相比东亚区更为湿润。  相似文献   

15.
Evidence from lake sediments and glacier forefields from two hydrologically isolated lake basins is used to reconstruct Holocene glacier and climate history at Hallet and Greyling Lakes in the central Chugach Mountains of south-central Alaska. Glacial landform mapping, lichenometry, and equilibrium-line altitude reconstructions, along with changes in sedimentary biogenic-silica content, bulk density, and grain-size distribution indicate a dynamic history of Holocene climate variability. The evidence suggests a warm early Holocene from 10 to 6 ka, followed by the onset of Neoglaciation in the two drainage basins, beginning between 4.5 and 4.0 ka. During the past 2 ka, the glacial landforms and lacustrine sediments from the two valleys record a remarkably similar history of glaciation, with two primary advances, one during the first millennium AD, from ~500 to 800 AD, and the second during the Little Ice Age (LIA) from ~1400 to 1900 AD. During the LIA, the reconstructed equilibrium-line altitude in the region was no more than 83 ± 44 m (n = 21) lower than the modern, which is based on the extent of glaciers during 1978. Differences between the summer temperature inferred from the biogenic-silica content and the evidence for glacial advances and retreats suggest a period of increased winter precipitation from 1300 to 1500 AD, and reduced winter precipitation from 1800 to 1900 AD, likely associated with variability in the strength of the Aleutian Low.
Darrell S. KaufmanEmail:
  相似文献   

16.
Small lakes and wetlands from high elevation within the Sierra Nevada Range (southern Spain) preserve a complete post-glacial Holocene record. Isotopic, TOC and C/N analyses, carried out on a sediment core, show various stages in the evolution of the Borreguiles de la Virgen, which today constitute a small bog at about 2,950?m above sea level. Glacial erosion generated a cirque depression, which became a small lake during the first phase of infilling (from?8,200 to 5,100?cal?yr BP), as suggested by sedimentary evidence, including an atomic C/N ratio generally below 20, low TOC values and the highest ??13C and ??15N values of the record. These results imply significant algal productivity, which is confirmed by the microscopic algal remains. Drier conditions became established progressively in this area from?5,100 to 3,700?cal?yr BP. Subsequently, the lake evolved into a bog as shown by geochemical evidence (C/N ratios above 20, high TOC content and low ??13C values). Unstable conditions prevailed from?3,600 to 700?cal?yr BP; an extremely low sedimentation rate and scarcity of data from this period do not allow us to make a coherent interpretation. Fluctuating conditions were recorded during the last?~700?cal?yr BP, with wetter conditions prevailing during the first part of the interval (with C/N rate below 20) up to 350?years ago. In general, a gradual trend toward more arid conditions occurred since?~6,900?cal?yr BP, with a further increase in aridity since?~5,100?cal?yr BP. This evidence is consistent with other contemporaneous peri-Mediterranean records.  相似文献   

17.
A late Holocene palaeolimnological record for central Mexico has been obtained from Lake Pátzcuaro, using recent and fossil ostracods. Lake Pátzcuaro, Michoacán, is a closed-basin lake which responds rapidly to changes in the ratio of precipitation/evaporation in the region. The record from a single lake-sediment core, dated by AMS radiocarbon method, covers the last ~3,530 yrs, and is based on ostracod faunal palaeoecology coupled with analysis of the stable-isotope (18O/16O and 13C/12C) composition of ostracod valves. The faunal distribution is determined by the presence or absence of aquatic vegetation and, to a lesser extent, salinity. The 18O/16O and 13C/12C ratios in ostracod calcite show good agreement with palaeolimnological inferences from the faunal assemblages, principally recording changing precipitation/evaporation and primary-productivity levels, respectively. Wetter conditions existed in central Mexico between approximately ~3,600 and ~2,390 yr BP, between ~1,330 to ~1,120 yr BP, and from ~220 yr BP to present, characterised by fluctuating lake levels. A dilution of the sediment load in the lake reduced turbidity levels allowing for a marked increase in productivity. During these phases, the combination of a deeper lake and increased macrophyte cover reduced the degree of mixing of the waterbody. In the earliest of these phases there was sufficient stratification of the waterbody for methanogenesis to occur in the sediment interstices. The wet phases were separated by prolonged dry periods, during which time the climatic conditions were relatively stable. Good agreement was found between the findings of this study and others from the central Mexican/Caribbean region suggesting that abrupt climate changes occurred at least at a regional scale.  相似文献   

18.
The Kangerlussuaq area of southwest Greenland is a lake-rich landscape that covers a climate gradient: a more maritime, cooler and wetter coastal zone contrasts with a dry, continental interior. Radiocarbon-dated sediment sequences (covering ~11,200?C8,300?cal?year) from paired lakes at the coast and the head of the fjord were analysed for lithostratigraphic variables (organic-matter content, bulk density, Ti, Ca). Minerogenic and carbon accumulation rates from the four lakes were compared to determine catchment and lake response to Holocene climatic variability. Catchment erosion at the coast was dominated by cryonival processes, with considerable sediment production due to the limited vegetation cover and exposed rock faces. Input of minerogenic sediment at one site (AT4) was high (>1?gDW?cm?2?year?1) during the period 5,800?C4,000?cal?year BP, perhaps reflecting intensification of cryogenic processes on northeast-facing slopes and rapid delivery to the lake. This period of erosional activity was not observed at the nearby, higher elevation site (AT1) due to the lower catchment relief; instead, there was an abrupt decline in carbon and minerogenic accumulation rates at ~5,800?cal?year BP. Sediment accumulation rates at the inland sites were much lower (<0.005?gDW?cm?2?year?1) reflecting greater catchment stability (more extensive vegetation cover), lower relief and substantially lower precipitation, but synchronous increases in mineral accumulation rates from ~1,200 to 1,000?cal?year BP may reflect wind erosion associated with regional cooling and local aridity. Carbon-accumulation-rate profiles were similar at the two inland sites, with higher-than-average accumulation (~6?C8?g?C?m?2?year?1) during the early Holocene and a subsequent decline after ~6,000?cal?year BP. At the inland lakes, both mineral and carbon accumulation rates exhibited a stronger link to climate, driven by trends in effective precipitation and regional aeolian activity. Catchment differences (relief, altitude) lead to more individualistic records in both erosion history and lake productivity at the coast.  相似文献   

19.
Microlaminated sediment cores from the Kalya slope region of Lake Tanganyika provide a near-annually resolved paleoclimate record between ∼∼2,840 and 1,420 cal. yr B.P. demonstrating strong linkages between climate variability and lacustrine productivity. Laminae couplets comprise dark, terrigenous-dominated half couplets, interpreted as low density underflows deposited from riverine sources during the rainy season, alternating with light, planktonic diatomaceous ooze, with little terrigenous component, interpreted as windy/dry season deposits. Laminated portions of the studied cores consist of conspicuous dark and light colored bundles of laminae couplets. Light and dark bundles alternate at decadal time scales. Within dark bundles, both light and dark half couplets are significantly thinner than within light bundles, implying slower sediment accumulation rates during both seasons over those intervals.Time series analyses of laminae thickness patterns demonstrate significant periodicities at interannual–centennial time scales. Longer time scale periodicities (multidecadal to centennial scale) of light and dark half couplet thicknesses are coherent and in some cases are similar to solar cycle periods on these time scales. Although laminae thickness cycles do not strongly covary with the actual Δ14C record for this same time period, two large Δ14C anomalies are associated with substantial decreases in both light and dark laminae thickness. In contrast to the multidecadal– centennial time scale, significant annual to decadal periodicities, which are broadly consistent with ENSO/PDO forcing and their impact on East African climate, are not coherent between light and dark half couplets. The coherency of light–dark couplets at decadal–centennial time scales, but not at shorter time scales, is consistent with a model of a long-term relationship between precipitation (recorded in wet season dark laminae thickness) and productivity (light laminae thickness), which is not manifest at shorter time scales. We hypothesize that this coupling results from long-term recharging of internal nutrient loading during wet periods (higher erosion of soil P) and reduced loading during drought intervals. The relationship is not expressed on short time scales during which the dominant control on productivity is wind-driven, dry season upwelling, which is uncorrelated with wet-season precipitation. Our record greatly extends the temporal record of this quasi-periodic behavior throughout the late Holocene and provides the first evidence linking decade- to century-scale episodes of enhanced productivity to enhanced precipitation levels and nutrient recharge in a productive tropical lake.  相似文献   

20.
In the southern coastal area of Finland, many studies exist on shore displacements related to the higher Ancylus Lake and Litorina Sea altitudes. However, the late- Holocene shore displacement history is much less known and the shore displacement models are based on interpolations. Kruunuvuorenlampi, a small lake located at an altitude of 8.6 m a.s.l., was studied to test the reliability of the interpolated models. The cores revealed an unusual bottom lithostratigraphy, with a coarse gravel and sand layer sandwiched between the lower marine clays and upper shallow-water clay-gyttja. Analysis of diatoms, pollen and loss-on-ignition, together with radiocarbon datings, were carried out to determine and date the isolation event of the lake. The results show that the lake was isolated ca. 2400 14C years BP and that the coarse grained layer was deposited prior to the isolation. The reconstruction of the emergence of the lake basin area suggests that the coarse grained layer originated from strong wave erosion of the shores before the isolation. This interpretation is supported by the presence of a wave-washed boulder belt on the NE slope of the basin. The isolation of Kruunuvuorenlampi lies exactly on the interpolated shore displacement model of the 30 m Litorina isobase. This placement suggests that no significant transgressions took place between the Litorina transgression and the isolation of Kruunuvuorenlampi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号