首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze results of 15 global climate simulations contributed to the Coupled Model Intercomparison Project (CMIP). Focusing on the western USA, we consider both present climate simulations and predicted responses to increasing atmospheric CO2. The models vary in their ability to predict the present climate. In the western USA, a few models produce a seasonal cycle for spatially averaged temperature and/or precipitation in good agreement with observational data. Other models tend to over-predict precipitation in the winter or exaggerate the amplitude of the seasonal cycle of temperature. The models also differ in their ability to reproduce the spatial patterns of temperature and precipitation in the USA. Considering the monthly mean precipitation responses to doubled atmospheric CO2, averaged over the western USA, we find some models predict increases while others predict decreases. The predicted temperature response, on the other hand, is invariably positive over this region; however, for each month, the range of values given by the different models is large compared to the mean model response. We look for possible relationships between the models temperature and precipitation responses to doubled CO2 concentration and their ability to simulate some aspects of the present climate. We find that these relationships are weak, at best. The precipitation response over the western USA in DJF and the precipitation response over the mid- and tropical latitudes seem to be correlated with the RMS error in simulated present-day precipitation, also calculated over the mid- and tropical latitudes. However, considering only the responses of the models with the smallest RMS errors does not provide a different estimate of the precipitation response to a doubled CO2 concentration, because even among the most accurate models, the range of model responses is so large. For temperature, we find that models that have smaller RMS errors in present-climate temperature in the north eastern Pacific region predict a higher temperature response in the western USA than the models with larger errors. A similar relation exists between the temperature response over Europe in DJF and the RMS error calculated over the Northern Atlantic.  相似文献   

2.
The fifth-generation Canadian Regional Climate Model (CRCM5) was used to dynamically downscale two Coupled Global Climate Model (CGCM) simulations of the transient climate change for the period 1950–2100, over North America, following the CORDEX protocol. The CRCM5 was driven by data from the CanESM2 and MPI-ESM-LR CGCM simulations, based on the historical (1850–2005) and future (2006–2100) RCP4.5 radiative forcing scenario. The results show that the CRCM5 simulations reproduce relatively well the current-climate North American regional climatic features, such as the temperature and precipitation multiannual means, annual cycles and temporal variability at daily scale. A cold bias was noted during the winter season over western and southern portions of the continent. CRCM5-simulated precipitation accumulations at daily temporal scale are much more realistic when compared with its driving CGCM simulations, especially in summer when small-scale driven convective precipitation has a large contribution over land. The CRCM5 climate projections imply a general warming over the continent in the 21st century, especially over the northern regions in winter. The winter warming is mostly contributed by the lower percentiles of daily temperatures, implying a reduction in the frequency and intensity of cold waves. A precipitation decrease is projected over Central America and an increase over the rest of the continent. For the average precipitation change in summer however there is little consensus between the simulations. Some of these differences can be attributed to the uncertainties in CGCM-projected changes in the position and strength of the Pacific Ocean subtropical high pressure.  相似文献   

3.
Sahelian rainfall has recorded a high variability during the last century with a significant decrease (more than 20 %) in the annual rainfall amount since 1970. Using a linear regression model, the fluctuations of the annual rainfall from the observations over Burkina Faso during 1961–2009 period are described through the changes in the characteristics of the rainy season. The methodology is then applied to simulated rainfall data produced by five regional climate models under A1B scenario over two periods: 1971–2000 as reference period and 2021–2050 as projection period. As found with other climate models, the projected change in annual rainfall for West Africa is very uncertain. However, the present study shows that some features of the impact of climate change on rainfall regime in the region are robust. The number of the low rainfall events (0.1–5 mm/d) is projected to decrease by 3 % and the number of strong rainfall events (>50 mm/d) is expected to increase by 15 % on average. In addition, the rainy season onset is projected by all models to be delayed by one week on average and a consensus exists on the lengthening of the dry spells at about 20 %. Furthermore, the simulated relationship between changed annual rainfall amounts and the number of rain days or their intensity varies strongly from one model to another and some changes do not correspond to what is observed for the rainfall variability over the last 50 years.  相似文献   

4.
Here we investigate simulated changes in the precipitation climate over the Baltic Sea and surrounding land areas for the period 2071–2100 as compared to 1961–1990. We analyze precipitation in 10 regional climate models taking part in the European PRUDENCE project. Forced by the same global driving climate model, the mean of the regional climate model simulations captures the observed climatological precipitation over the Baltic Sea runoff land area to within 15% in each month, while single regional models have errors up to 25%. In the future climate, the precipitation is projected to increase in the Baltic Sea area, especially during winter. During summer increased precipitation in the north is contrasted with a decrease in the south of this region. Over the Baltic Sea itself the future change in the seasonal cycle of precipitation is markedly different in the regional climate model simulations. We show that the sea surface temperatures have a profound impact on the simulated hydrological cycle over the Baltic Sea. The driving global climate model used in the common experiment projects a very strong regional increase in summertime sea surface temperature, leading to a significant increase in precipitation. In addition to the common experiment some regional models have been forced by either a different set of Baltic Sea surface temperatures, lateral boundary conditions from another global climate model, a different emission scenario, or different initial conditions. We make use of the large number of experiments in the PRUDENCE project, providing an ensemble consisting of more than 25 realizations of climate change, to illustrate sources of uncertainties in climate change projections.  相似文献   

5.
对5组区域气候模式集合模拟的中国径流深进行评估,并且预估了温室气体高排放情景RCP8.5下的未来变化。结果表明:多区域气候模式集合结果能够基本模拟出径流深的观测特征,对年径流深的空间分布特征模拟较好,但量值存在一定的系统偏差,特别是黄河中游、海河和松辽河存在明显的正偏差,且对全国9个流域片中东南、西南和西北诸河的年内分配总体模拟效果相对较差。未来到21世纪末,全国平均年径流深在各个时段都以增加为主,增加幅度多在5%以内。未来变化存在明显的空间差异,大致表现为“北增南减”的分布特征,但不会改变中国水资源南多北少的空间格局;其中,黄河、西南和西北诸河流域片呈显著的增加趋势,淮河、长江和东南诸河流域片呈现显著的减少趋势,海河、松辽和珠江流域的变化趋势不显著。21世纪末期各地的变化多在±30%以内,且多模式预估的正负变化一致性较高。到21世纪末期,各流域片平均的径流深季节分配总体特征没有明显变化,径流深的最大月份基本维持不变,分配比例的数值有±2%以内的变化,且各季节的增减变化存在明显流域间差异。  相似文献   

6.
This study analyses the length and onset of the four seasons based on the annual climatic cycle of maximum and minimum temperatures. Previous studies focused over climatically homogeneous mid-high latitude areas, employing fixed temperature thresholds (related to climatic features such as freezing point) that can be inadequate when different climate conditions are present. We propose a method related to the daily minimum and maximum temperature 25th and 75th point-dependent climatic percentiles. It is applied to an ensemble of regional climate models (RCMs) of 25-km horizontal resolution over the peninsular Spain and Balearic Islands, where a large variety of climatic regimes, from alpine to semi-desertic conditions, are present. First, baseline climate (1961–2000) ERA40-forced RCM simulations are successfully compared with the Spain02 daily observational database, following astronomical season length (around 90 days). This result confirms the validity of the proposed method and capability of the RCMs to describe the seasonal features. Future climate global climate model-forced RCMs (2071–2100) compared with present climate (1961–1990) simulations indicate the disappearance of winter season, a summer enlargement (onset and end) and a slight spring and autumn increase.  相似文献   

7.
8.
Air-sea heat and freshwater water fluxes in the Mediterranean Sea play a crucial role in dense water formation. Here, we compare estimates of Mediterranean Sea heat and water budgets from a range of observational datasets and discuss the main differences between them. Taking into account the closure hypothesis at the Gibraltar Strait, we have built several observational estimates of water and heat budgets by combination of their different observational components. We provide then three estimates for water budget and one for heat budget that satisfy the closure hypothesis. We then use these observational estimates to assess the ability of an ensemble of ERA40-driven high resolution (25 km) Regional Climate Models (RCMs) from the FP6-EU ENSEMBLES database, to simulate the various components, and net values, of the water and heat budgets. Most of the RCM Mediterranean basin means are within the range spanned by the observational estimates of the different budget components, though in some cases the RCMs have a tendency to overestimate the latent heat flux (or evaporation) with respect to observations. The RCMs do not show significant improvements of the total water budget estimates comparing to ERA40. Moreover, given the large spread found in observational estimates of precipitation over the sea, it is difficult to draw conclusions on the performance of RCM for the freshwater budget and this underlines the need for better precipitation observations. The original ERA40 value for the basin mean net heat flux is ?15 W/m2 which is 10 W/m2 less than the value of ?5 W/m2 inferred from the transport measurements at Gibraltar Strait. The ensemble of heat budget values estimated from the models show that most of RCMs do not achieve heat budget closure. However, the ensemble mean value for the net heat flux is ?7 ± 21 W/m2, which is close to the Gibraltar value, although the spread between the RCMs is large. Since the RCMs are forced by the same boundary conditions (ERA40 and sea surface temperatures) and have the same horizontal resolution and spatial domain, the reason for the large spread must reside in the physical parameterizations. To conclude, improvements are urgently required to physical parameterizations in state-of-the-art regional climate models, to reduce the large spread found in our analysis and to obtain better water and heat budget estimates over the Mediterranean Sea.  相似文献   

9.
Abstract

A þrst climate simulation performed with the novel Canadian Regional Climate Model (CRCM) is presented. The CRCM is based on fully elastic non‐hydrostatic þeld equations, which are solved with an efþcient semi‐implicit semi‐Lagrangian (SISL) marching algorithm, and on the parametrization package of subgrid‐scale physical effects of the second‐generation Canadian Global Climate Model (GCMII). Two 5‐year integrations of the CRCM nested with GCMII simulated data as lateral boundary conditions are made for conditions corresponding to current and doubled CO2 scenarios. For these simulations the CRCM used a grid size of 45 km on a polar‐stereographic projection, 20 scaled‐height levels and a time step of 15 min; the nesting GCMII has a spectral truncation of T32, 10 hybrid‐pressure levels and a time step of 20 min. These simulations serve to document: (1) the suitability of the SISL numerical scheme for regional climate modelling, (2) the use of GCMII physics at much higher resolution than in the nesting model, (3) the ability of the CRCM to add realistic regional‐scale climate information to global model simulations, and (4) the climate of the CRCM compared to that of GCMII under two greenhouse gases (GHG) scenarios.  相似文献   

10.
Arctic sea ice mass budgets for the twentieth century and projected changes through the twenty-first century are assessed from 14 coupled global climate models. Large inter-model scatter in contemporary mass budgets is strongly related to variations in absorbed solar radiation, due in large part to differences in the surface albedo simulation. Over the twenty-first century, all models simulate a decrease in ice volume resulting from increased annual net melt (melt minus growth), partially compensated by reduced transport to lower latitudes. Despite this general agreement, the models vary considerably regarding the magnitude of ice volume loss and the relative roles of changing melt and growth in driving it. Projected changes in sea ice mass budgets depend in part on the initial (mid twentieth century) ice conditions; models with thicker initial ice generally exhibit larger volume losses. Pointing to the importance of evolving surface albedo and cloud properties, inter-model scatter in changing net ice melt is significantly related to changes in downwelling longwave and absorbed shortwave radiation. These factors, along with the simulated mean and spatial distribution of ice thickness, contribute to a large inter-model scatter in the projected onset of seasonally ice-free conditions.  相似文献   

11.
Changes of the winter climate in the Mediterranean Basin (MB) for future A2 conditions are investigated for the period 2071–2100 and compared with the control period 1961–1990. The analysis is based on time-slice simulations of the latest version of the ECHAM model. First, the control simulation is evaluated with reanalysis data. The emphasis is given to synoptic and large-scale features and their variability in the MB. The model is found to be capable of reproducing the main features of the MB and southern Europe in the winter season. Second, the A2 simulation is compared with the control simulation, revealing considerable changes of the synoptic variability. Focusing on the synoptic spatio-temporal scale aims to unfold the dynamic background of the climatic changes. The Mediterranean cyclones, which are individually detected and tracked, decrease by 10% in the Western Mediterranean (WM) whereas no significant change is found in the Eastern Mediterranean. The cyclone intensity is slightly reduced in the entire region. To understand these changes, the underlying dynamical background is analyzed. It is found that changes in baroclinicity, static stability, transformation from eddy kinetic energy to kinetic energy of the mean flow and stationary wave activity are significant in particular in the WM and the coastline of North Africa. The reduction of cyclonic activity severely impacts the precipitation mainly in the southern part of the WM.  相似文献   

12.
The present and twenty-first century near-surface wind climate of Greenland is presented using output from the regional atmospheric climate model RACMO2. The modelled wind variability and wind distribution compare favourably to observations from three automatic weather stations in the ablation zone of southwest Greenland. The Weibull shape parameter is used to classify the wind climate. High values (κ > 4) are found in northern Greenland, indicative of uniform winds and a dominant katabatic forcing, while lower values (κ < 3) are found over the ocean and southern Greenland, where the synoptic forcing dominates. Very high values of the shape parameter are found over concave topography where confluence strengthens the katabatic circulation, while very low values are found in a narrow band along the coast due to barrier winds. To simulate the future (2081–2098) wind climate RACMO2 was forced with the HadGEM2-ES general circulation model using a scenario of mid-range radiative forcing of +4.5 W m?2 by 2100. For the future simulated climate, the near-surface potential temperature deficit reduces in all seasons in regions where the surface temperature is below the freezing point, indicating a reduction in strength of the near-surface temperature inversion layer. This leads to a wind speed reduction over the central ice sheet where katabatic forcing dominates, and a wind speed increase over steep coastal topography due to counteracting effects of thermal and katabatic forcing. Thermally forced winds over the seasonally sea ice covered region of the Greenland Sea are reduced by up to 2.5 m s?1.  相似文献   

13.
Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS.
The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing.  相似文献   

14.
Theoretical and Applied Climatology - Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to...  相似文献   

15.
Precipitation amounts simulated by the regional climate model COSMO-CLM are compared with observations from rain gauges at German precipitation stations for the period 1960–2000. The model overestimates precipitation by about 26 %. This bias is accompanied with a shift of the frequency distribution of rain intensities. The model overestimation varies regionally. A correction function is derived which adjusts rain intensities at every model grid point to the observations.  相似文献   

16.
Summary We use the regional climate model RegCM nested within time-slice atmospheric general circulation model experiments to investigate the possible changes of intense and extreme precipitation over the French Maritime Alps in response to global climate change. This is a region with complex orography where heavy and/or extended precipitation episodes induced catastrophic floods during the last decades. Output from a 30-year simulation of present-day climate (1961–1990) is first analysed and compared with NCEP reanalysed 700 hPa geopotential heights (Z700) and daily precipitation observations from the Alpine Precipitation Climatology (1966–1999). Two simulations under forcing from the A2 and B2 IPCC emission scenarios for the period 2071–2100 are used to investigate projected changes in extreme precipitation for our region of interest. In general, the model overestimates the annual cycle of precipitation. The climate change projections show some increase of precipitation, mostly outside the warm period for the B2 scenario, and some increase in the variability of the annual precipitation totals for the A2 scenario. The model reproduces the main observed patterns of the spatial leading EOFs in the Z700 field over the Atlantic-European domain. The simulated large scale circulation (LSC) variability does not differ significantly from that of the reanalysis data provided the EOFs are computed on the same domain. Two similar clusters of LSC corresponding to heavy precipitation days were identified for both simulated and observed data and their patterns do not change significantly in the climate change scenarios. The analysis of frequency histograms of extreme indices shows that the control simulation systematically underestimates the observed heavy precipitation expressed as the 90th percentile of rainday amounts in all seasons except summer and better reproduces the greatest 5-day precipitation accumulation. The main hydrological changes projected for the Maritime Alps consist of an increase of most intense wet spell precipitation during winters for both scenarios and during autumn for the B2 scenario. Case studies of heavy precipitation events show that the RegCM is capable to reproduce the physical mechanisms responsible for heavy precipitation over our region of interest.  相似文献   

17.
G. M. Flato 《Climate Dynamics》2004,23(3-4):229-241
The simulation of sea-ice in global climate models participating in the Coupled Model Intercomparison Project (CMIP1 and CMIP2) is analyzed. CMIP1 simulations are of the unpertubed control climate whereas in CMIP2, all models have been forced with the same 1% yr–1 increase in CO2 concentration, starting from a near equilibrium initial condition. These simulations are not intended as forecasts of climate change, but rather provide a means of evaluating the response of current climate models to the same forcing. The difference in modeled response therefore indicates the range (or uncertainty) in model sensitivity to greenhouse gas and other climatic perturbations. The results illustrate a wide range in the ability of climate models to reproduce contemporary sea-ice extent and thickness; however, the errors are not obviously related to the manner in which sea-ice processes are represented in the models (e.g. the inclusion or neglect of sea-ice motion). The implication is that errors in the ocean and atmosphere components of the climate model are at least as important. There is also a large range in the simulated sea-ice response to CO2 change, again with no obvious stratification in terms of model attributes. In contrast to results obtained earlier with a particular model, the CMIP ensemble yields rather mixed results in terms of the dependence of high-latitude warming on sea-ice initial conditions. There is an indication that, in the Arctic, models that produce thick ice in their control integration exhibit less warming than those with thin ice. The opposite tendency appears in the Antarctic (albeit with low statistical significance). There is a tendency for models with more extensive ice coverage in the Southern Hemisphere to exhibit greater Antarctic warming. Results for the Arctic indicate the opposite tendency (though with low statistical significance).A list of the CMIP modeling groups is included in the Acknowledgements section.  相似文献   

18.
In this study the potential future changes in various aspects of daily precipitation events over Europe as a consequence of the anticipated future increase in the atmospheric greenhouse gas concentrations are investigated. This is done by comparing two 3-member ensembles of simulations with the HIRHAM regional climate model for the period 1961–1990 and 2071–2100, respectively. Daily precipitation events are characterized by their frequency and intensity, and heavy precipitation events are described via 30-year return levels of daily precipitation. Further, extended periods with and without rainfall (wet and dry spells) are studied, considering their frequency and length as well as the average and extreme amounts of precipitation accumulated during wet spells, the latter again described via 30-year return levels. The simulations show marked changes in the characteristics of daily precipitation in Europe due to the anticipated greenhouse warming. In winter, for instance, the frequency of wet days is enhanced over most of the European continent except for the region on the Norwegian west coast and the Mediterranean region. The changes in the intensity and the 30-year return level of daily precipitation are characterized by a similar pattern except for central Europe with a tendency of decreased 30-year return levels and increased precipitation intensity. In summer, on the other hand, the frequency of wet days is decreased over most of Europe except for northern Scandinavia and the Baltic Sea region. In contrast, the precipitation intensity and the 30-year return level of daily precipitation are increased over entire Scandinavia, central and eastern Europe. The changes in the 30-year return level of daily precipitation are generally stronger than the corresponding changes in the precipitation intensity but can have opposite signs in some regions. Also the distribution of wet days is changed in the future. During summer, for instance, both the frequency and the length of dry spells are substantially increased over most of the European continent except for the Iberian Peninsula. The frequency and the length of wet spells, on the other hand, are generally reduced during summer and increased during winter, again, with the exception of the Iberian Peninsula. The future changes in the frequency of wet days in winter are related to a change in the large-scale flow over the North Atlantic and a corresponding shift of the North Atlantic storm track. The reduction in the frequency of wet days in summer is related to a northward extension of the dry subtropical region in the future, with a reduction of the convective activity because of the large-scale sinking motion in the downward branch of the Hadley cell. Because the atmosphere contains more moisture in the warmer future climate, the amount of precipitation associated with individual low-pressure systems or with individual convective events is increased, leading to a general increase in the intensity of individual precipitation events. Only in regions, where all the moisture evaporates from the ground already in spring, the intensity of precipitation events is reduced in summer.  相似文献   

19.
基于1980—2016年长江流域站点观测降水,评估了CWRF区域气候模式对长江流域面雨量和极端降水气候事件的模拟能力.结果表明:CWRF模式能较好地再现1980—2016年长江流域及不同分区降水空间分布及月/季面雨量年际变率,且在冬、春季表现较好,夏、秋季次之.CWRF模式对长江流域面雨量存在系统性高估,对面雨量的模拟...  相似文献   

20.
In an ensemble of general circulation models, the global mean albedo significantly decreases in response to strong CO2 forcing. In some of the models, the magnitude of this positive feedback is as large as the CO2 forcing itself. The models agree well on the surface contribution to the trend, due to retreating snow and ice cover, but display large differences when it comes to the contribution from shortwave radiative effects of clouds. The ??cloud contribution?? defined as the difference between clear-sky and all-sky albedo anomalies and denoted as ??CC is correlated with equilibrium climate sensitivity in the models (correlation coefficient 0.76), indicating that in high sensitivity models the clouds to a greater extent act to enhance the negative clear-sky albedo trend, whereas in low sensitivity models the clouds rather counteract this trend. As a consequence, the total albedo trend is more negative in more sensitive models (correlation coefficient 0.73). This illustrates in a new way the importance of cloud response to global warming in determining climate sensitivity in models. The cloud contribution to the albedo trend can primarily be ascribed to changes in total cloud fraction, but changes in cloud albedo may also be of importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号