首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
The geochemical characteristics of melt inclusions and their host olivines provide important information on the processes that create magmas and the nature of their mantle and crustal source regions. We report chemical compositions of melt inclusions, their host olivines and bulk rocks of Xindian basalts in Chifeng area, North China Craton. Compositions of both bulk rocks and melt inclusions are tholeiitic. Based on petrographic observations and compositional variation of melt inclusions, the crystallizing sequence of Xindian basalts is as follows: olivine (at MgO > ~5.5 wt%), plagioclase (beginning at MgO = ~5.5 wt%), clinopyroxene and ilmenite (at MgO < 5.0 wt%). High Ni contents and Fe/Mn ratios, and low Ca and Mn contents in olivine phenocrysts, combining with low CaO contents of relatively high MgO melt inclusions (MgO > 6 wt%), indicate that Xindian basalts are possibly derived from a pyroxenite source rather than a peridotite source. In the CS-MS-A diagram, all the high MgO melt inclusions (MgO > 6.0 wt%) project in the field between garnet + clinopyroxene + liquid and garnet + clinopyroxene + orthopyroxene + liquid near 3.0 GPa, further suggesting that residual minerals are mainly garnet and clinopyroxene, with possible presence of orthopyroxene, but without olivine. Modeling calculations using MELTS show that the water content of Xindian basalts is 0.3–0.7 wt% at MgO = 8.13 wt%. Using 20–25 % of partial melting estimated by moderately incompatible element ratios, the water content in the source of Xindian basalts is inferred to be ≥450 ppm, much higher than 6–85 ppm in dry lithospheric mantle. The melting depth is inferred to be ~3.0 GPa, much deeper than that of tholeiitic lavas (<2.0 GPa), assuming a peridotite source with a normal mantle potential temperature. Such melting depth is virtually equal to the thickness of lithosphere beneath Chifeng area (~100 km), suggesting that Xindian basalts are derived from the asthenospheric mantle, if the lithospheric lid effect model is assumed.  相似文献   

2.
R. V. Conceio  D. H. Green 《Lithos》2004,72(3-4):209-229
A model metasomatized lherzolite composition contains phlogopite and pargasite, together with olivine, orthopyroxene, clinopyroxene and spinel or garnet as subsolidus phases to 3 GPa. Previous works established that at ≥1.5 GPa, phlogopite is stable above the dehydration solidus, determined by the melting behaviour of pargasite and coexisting phases. At 2.8 GPa, melts with residual phlogopite+garnet lherzolite mineralogy at 1195 °C and with garnet lherzolite mineralogy at 1250 °C are both olivine nephelinite with K/Na (atomic)=0.51 and K/Na=0.65, respectively. Recent work shows that melting along the dehydration (fluid-absent) solidus of the phlogopite+pargasite lherzolite at pressures <1.5 GPa is very different with the presence of phlogopite, decreasing the solidus below that of pargasite lherzolite. At 1.0 GPa, both phlogopite and pargasite disappear at temperatures at or slightly above the solidus. The compositions of two melts at 1.0 GPa, 1075 °C (with different water contents), in equilibrium with residual spinel lherzolite mineralogy are silica-saturated trachyandesite (5% melt fraction, 3% H2O) to silica-oversaturated basaltic andesite (8% melt fraction, 4.5% H2O). Both compositions may be classified as ‘shoshonites’ on the basis of normative compositions, silica-saturation, and K/Na ratio. Decompression melting of metasomatized lithospheric lherzolite with minor phlogopite and pargasite may produce primary ‘shoshonitic’ magmas by dehydration melting at 1 GPa, 1050–1150 °C. Such magmas may be parental to Proterozoic batholithic syenites occurring in Brazil.  相似文献   

3.
Primitive magmas in the Trans-Mexican Volcanic Belt (TMVB) span a wide geochemical range that includes calc-alkaline basalt and basaltic andesite, potassic shoshonites, and intraplate alkaline basalts, indicating that the subarc mantle wedge is chemically heterogeneous. The aim of this study is to experimentally constrain the origins of potassic lavas that have erupted along the volcanic front in the TMVB. We used a piston-cylinder apparatus to determine the P–T–H2O near-liquidus phase relations for two primitive potassic lavas: a hornblende trachybasalt (shoshonite) from Cerro La Pilita in the central TMVB and a high-K calc-alkaline basalt from Ayutla in the western TMVB. Experiments were conducted at mantle pressures (0.8–2.5 GPa) and temperatures (1,100–1,400 °C) with 1.5–6 wt% H2O. Results show that both samples were last equilibrated with an olivine + clinopyroxene assemblage at upper mantle pressures. Integrating our results with trace element characteristics, we conclude that the potassic magmas formed by a complex, multistage process in which melts from the hottest part of the mantle wedge either reequilibrated with clinopyroxene-rich veins in the shallow upper mantle or caused melting of such veins by advective heating. We combine our results with previous experiments on TMVB lavas to provide an along-arc perspective of melt equilibration depths in the mantle wedge. The results suggest that although melts may initially form deep in the wedge, they commonly reequilibrate with heterogeneous mantle at shallower depths. Primitive, medium-K basaltic andesites in the TMVB form by reequilibration with harzburgite, which we infer to be a common lithology in the upper mantle, whereas some potassic magmas like the ones studied here form through reequilibration with or melting of veins of olivine + clinopyroxene ± phlogopite. Though somewhat rare at the volcanic front relative to the more abundant medium-K volcanic rocks, the potassic magmas are an important lava type for revealing mantle chemical heterogeneities.  相似文献   

4.
We present field relationships, petrography, and mineral major and trace element data for the Neoproterozoic Dariv Igneous Complex of the Altaids of Western Mongolia. This unique complex of high-K plutonic rocks is composed of well-exposed, km-scale igneous intrusions of wehrlites, phlogopite wehrlites, apatite-bearing phlogopite clinopyroxenites, monzogabbros, monzodiorites, and clinopyroxene-bearing monzonites, all of which are intruded by late stage lamprophyric and aplitic dikes. The biotite-dominated igneous complex intrudes depleted harzburgitic serpentinite. The observed lithological variability and petrographic observations suggest that the plutonic rocks can be ascribed to a fractionation sequence defined by olivine + clinopyroxene ± Fe–Ti oxides → phlogopite + apatite → K-feldspar + plagioclase → amphibole + quartz. Notably, phlogopite is the dominant hydrous mafic mineral. Petrogenesis of the observed lithologies through a common fractionation sequence is supported by a gradual decrease in the Mg# [molar Mg/(Fetotal + Mg) × 100] of mafic minerals. Crystallization conditions are derived from experimental phase petrology and mineral chemistry. The most primitive ultramafic cumulates crystallized at ≤0.5 GPa and 1,210–1,100 °C and oxygen fugacity (fO2) of +2–3 ?FMQ (log units above the fayalite–quartz–magnetite buffer). Trace element modeling using clinopyroxene and apatite rare earth element compositions indicates that the dominant mechanism of differentiation was fractional crystallization. The trace element composition of a parental melt was calculated from primitive clinopyroxene compositions and compares favorably with the compositions of syn-magmatic lamprophyres that crosscut the fractionation sequence. The parental melt composition is highly enriched in Th, U, large ion lithophile elements, and light rare earth elements and has a pronounced negative Nb–Ta depletion, suggestive of an alkaline primitive melt originating from a subduction-imprinted mantle. Comparison with a global compilation of primitive arc melts demonstrates that Dariv primitive melts are similar in composition to high-K primitive melts found in some continental arcs. Thus, the high-K fractionation sequence exposed in the Dariv Igneous Complex may be a previously unrecognized important fractionation sequence resulting in alkali-rich upper crustal granitoids in continental arc settings.  相似文献   

5.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   

6.
We determined the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotite compositions (ACP: alkali-rich peridotite + 5.0 wt % CO2 and PERC: fertile peridotite + 2.5 wt % CO2) at 10–20 GPa and 1,500–2,100 °C and constrain isopleths of the CO2 contents in the silicate melts in the deep mantle. At 10–20 GPa, near-solidus (ACP: 1,400–1,630 °C) carbonatitic melts with < 10 wt % SiO2 and > 40 wt % CO2 gradually change to carbonated silicate melts with > 25 wt % SiO2 and < 25 wt % CO2 between 1,480 and 1,670 °C in the presence of residual majorite garnet, olivine/wadsleyite, and clinoenstatite/clinopyroxene. With increasing degrees of melting, the melt composition changes to an alkali- and CO2-rich silicate melt (Mg# = 83.7–91.6; ~ 26–36 wt % MgO; ~ 24–43 wt % SiO2; ~ 4–13 wt % CaO; ~ 0.6–3.1 wt % Na2O; and ~ 0.5–3.2 wt % K2O; ~ 6.4–38.4 wt % CO2). The temperature of the first appearance of CO2-rich silicate melt at 10–20 GPa is ~ 440–470 °C lower than the solidus of volatile-free peridotite. Garnet + wadsleyite + clinoenstatite + carbonatitic melt controls initial carbonated silicate melting at a pressure < 15 GPa, whereas garnet + wadsleyite/ringwoodite + carbonatitic melt dominates at pressure > 15 GPa. Similar to hydrous peridotite, majorite garnet is a liquidus phase in carbonated peridotites (ACP and PERC) at 10–20 GPa. The liquidus is likely to be at ~ 2,050 °C or higher at pressures of the present study, which gives a melting interval of more than 670 °C in carbonated peridotite systems. Alkali-rich carbonated silicate melts may thus be produced through partial melting of carbonated peridotite to 20 GPa at near mantle adiabat or even at plume temperature. These alkali- and CO2-rich silicate melts can percolate upward and may react with volatile-rich materials accumulate at the top of transition zone near 410-km depth. If these refertilized domains migrate upward and convect out of the zone of metal saturation, CO2 and H2O flux melting can take place and kimberlite parental magmas can be generated. These mechanisms might be important for mantle dynamics and are potentially effective metasomatic processes in the deep mantle.  相似文献   

7.
Amphibole + phlogopite + diopside bearing veins are observed in a large number of upper mantle xenoliths, but the composition of the melt that forms them is poorly constrained. Recent data from the Heldburg Phonolite, Central Germany, has shown that phonolite melt will react with olivine and orthopyroxene xenocrysts to form reaction rims of amphibole + phlogopite + diopside at mid-lower crustal pressures. This is the first example of where a melt has reacted with peridotite to form the mineralogy of the metasomatic veins. It is therefore necessary to explore whether a phonolite melt could be the parent melt that forms amphibole + phlogopite + diopside metasomatic veins. Experimental reactions between single crystals of olivine and orthopyroxene with phonolite melt were conducted at upper mantle conditions of 1.0–1.5 GPa and 900–1,000 °C. Melt water contents were varied from anhydrous to >12 wt. H2O. Olivine reacts to form phlogopite reaction rims with overgrowths of diopside <1,000 °C or rims of secondary olivine >1,000 °C. Orthopyroxene reacts to form amphibole with epitaxial diopside overgrowths <1,000 °C. No reaction rims form when the bulk melt H2O is lower than ~3.8 wt%. Pressure has little effect over the small range tested. These experiments reproduce reaction rims on olivine and orthopyroxene observed in the Heldburg Phonolite, Central Germany, and suggest that a relatively narrow range of temperatures and melt water contents is required for rim formation. The compositions of rim amphibole, phlogopite and diopside from the experiments have very similar compositions to those from Heldburg but do not match those from metasomatic veins. Phenocrysts from Heldburg are similar to the metasomatic veins, suggesting that a phonolite could potentially form the veins if vein formation is dominated by crystallization rather than reaction and replacement of wall rock phases.  相似文献   

8.
The pressure–temperature (PT) conditions for producing adakite/tonalite–trondhjemite–granodiorite (TTG) magmas from lower crust compositions are still open to debate. We have carried out partial melting experiments of mafic lower crust in the piston-cylinder apparatus at 10–15 kbar and 800–1,050 °C to investigate the major and trace elements of melts and residual minerals and further constrain the PT range appropriate for adakite/TTG formation. The experimental residues include the following: amphibolite (plagioclase + amphibole ± garnet) at 10–15 kbar and 800 °C, garnet granulite (plagioclase + amphibole + garnet + clinopyroxene + orthopyroxene) at 12.5 kbar and 900 °C, two-pyroxene granulite (plagioclase + clinopyroxene + orthopyroxene ± amphibole) at 10 kbar and 900 °C and 10–12.5 kbar and 1,000 °C, garnet pyroxenite (garnet + clinopyroxene ± amphibole) at 13.5–15 kbar and 900–1,000 °C, and pyroxenite (clinopyroxene + orthopyroxene) at 15 kbar and 1,050 °C. The partial melts change from granodiorite to tonalite with increasing melt proportions. Sr enrichment occurs in partial melts in equilibrium with <20 wt% plagioclase, whereas depletions of Ti, Sr, and heavy rare earth elements (HREE) occur relative to the starting material when the amounts of residual amphibole, plagioclase, and garnet are >20 wt%, respectively. Major elements and trace element patterns of partial melts produced by 10–40 wt% melting of lower crust composition at 10–12.5 kbar and 800–900 °C and 15 kbar and 800 °C closely resemble adakite/TTG rocks. TiO2 contents of the 1,000–1,050 °C melts are higher than that of pristine adakite/TTG. In comparison with natural adakite/TTG, partial melts produced at 10–12.5 kbar and 1,000 °C and 15 kbar and 1,050 °C have elevated HREE, whereas partial melts at 13.5–15 kbar and 900–1,000 °C in equilibrium with >20 wt% garnet have depressed Yb and elevated La/Yb and Gd/Yb. It is suggested that the most appropriate PT conditions for producing adakite/TTG from mafic lower crust are 800–950 °C and 10–12.5 kbar (corresponding to a depth of 30–40 km), whereas a depth of >45–50 km is unfavorable. Consequently, an overthickened crust and eclogite residue are not necessarily required for producing adakite/TTG from lower crust. The lower crust delamination model, which has been embraced for intra-continental adakite/TTG formation, should be reappraised.  相似文献   

9.
We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (\(D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}\)). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (T P < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher T P (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.  相似文献   

10.
This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H 2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine+orthopyroxene+clinopyroxene+spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H 2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H 2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H 2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H 2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca 2+ content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H 2O on the structure of silicate melts.  相似文献   

11.
This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments (~6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt–wall rock model closely approached equilibrium and experienced <5% Fe loss or gain. Experiments that experienced higher extents of Fe loss were used to critically evaluate the practice of “correcting” for Fe loss by adding iron. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. An important element ratio in mantle lherzolite composition, the Ca/Al ratio, can be significantly elevated through shallow mantle melt–wall rock reaction. Wall rock temperature is a key variable; over a span of <80 °C, reaction with deeper melt creates the entire range of mantle lithologies from a depleted dunite to a harzburgite to a refertilized lherzolite. Together, the experimental phase equilibria, melt compositions, and reaction coefficients provide a framework for understanding how melt–wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.  相似文献   

12.
Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.  相似文献   

13.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

14.
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.  相似文献   

15.
Melting experiments were conducted on a mica–clinopyroxenite xenolith brought up in a minette dyke in southern Alberta, Canada, near Milk River. Both the minettes and mica–clinopyroxenite xenoliths were studied by Buhlmann et al. (Can J Earth Sci 37:1629–1650, 2000), who hypothesized that the minettes formed by partial melting of a mantle source containing clinopyroxene + phlogopite ± olivine, at pressures ≥1.7 GPa. In liquidus experiments performed on the most primitive minette in our previous study (Funk and Luth in Contrib Mineral Petrol 164:999–1009, 2012), we found a multiple saturation point where olivine and orthopyroxene coexisted with liquid at 1.77 GPa and 1,350 °C. We argued that the minette originally formed by partial melting of clinopyroxene + phlogopite, but had re-equilibrated with a harzburgite during ascent. In the current study, we wanted to test both the source region hypothesis of Buhlmann et al. and our re-equilibration hypothesis by studying the near-solidus phase equilibria of a mica + clinopyroxene assemblage. We found the solidus for our xenolith has a steep slope in P–T space and lies at temperatures above those of a normal cratonic geotherm, implying that this mica–clinopyroxenite is stable in the cratonic mantle. Melting could occur at greater depths, where the solidus is extrapolated to cross the geotherm or must be induced either by raising the temperatures of the surrounding rocks or by introducing hydrous fluids into the source. Our melts are in equilibrium with clinopyroxene and olivine. The compositions of the liquids derived from melting this xenolith are similar to madupitic lamproites from the Leucite Hills, Wyoming, studied by Carmichael (Contrib Mineral Petrol 15:24–66, 1967) and Barton and Hamilton (Contrib Mineral Petrol 66:41–49, 1978; Contrib Mineral Petrol 69:133–142, 1979). Barton and Hamilton (Contrib Mineral Petrol 69:133–142, 1979) proposed that the madupitic lamproites may have come from a source containing mica and pyroxene. This study supports their hypothesis. The composition of the most primitive minette from southern Alberta lies between our experimental melt and a population of representative mantle orthopyroxenes. We conclude from our study that the Milk River minettes were likely derived from a source containing phlogopite, clinopyroxene and trace amounts of apatite, which formed olivine upon melting. During ascent, the melts changed composition by reacting with orthopyroxene.  相似文献   

16.
Phase relations of phlogopite with magnesite from 4 to 8 GPa   总被引:2,自引:2,他引:0  
To evaluate the stability of phlogopite in the presence of carbonate in the Earth’s mantle, we conducted a series of experiments in the KMAS–H2O–CO2 system. A mixture consisting of synthetic phlogopite (phl) and natural magnesite (mag) was prepared (phl90-mag10; wt%) and run at pressures from 4 to 8 GPa at temperatures ranging from 1,150 to 1,550°C. We bracketed the solidus between 1,200 and 1,250°C at pressures of 4, 5 and 6 GPa and between 1,150 and 1,200°C at a pressure of 7 GPa. Below the solidus, phlogopite coexists with magnesite, pyrope and a fluid. At the solidus, magnesite is the first phase to react out, and enstatite and olivine appear. Phlogopite melts over a temperature range of ~150°C. The amount of garnet increases above solidus from ~10 to ~30 modal% to higher pressures and temperatures. A dramatic change in the composition of quench phlogopite is observed with increasing pressure from similar to primary phlogopite at 4 GPa to hypersilicic at pressures ≥5 GPa. Relative to CO2-free systems, the solidus is lowered such, that, if carbonation reactions and phlogopite metasomatism take place above a subducting slab in a very hot (Cascadia-type) subduction environment, phlogopite will melt at a pressure of ~7.5 GPa. In a cold (40 mWm−2) subcontinental lithospheric mantle, phlogopite is stable to a depth of 200 km in the presence of carbonate and can coexist with a fluid that becomes Si-rich with increasing pressure. Ascending kimberlitic melts that are produced at greater depths could react with peridotite at the base of the subcontinental lithospheric mantle, crystallizing phlogopite and carbonate at a depth of 180–200 km.  相似文献   

17.
We performed modified iterative sandwich experiments (MISE) to determine the composition of carbonatitic melt generated near the solidus of natural, fertile peridotite + CO2 at 1,200–1,245°C and 6.6 GPa. Six iterations were performed with natural peridotite (MixKLB-1: Mg# = 89.7) and ∼10 wt% added carbonate to achieve the equilibrium carbonatite composition. Compositions of melts and coexisting minerals converged to a constant composition after the fourth iteration, with the silicate mineral compositions matching those expected at the solidus of carbonated peridotite at 6.6 GPa and 1,230°C, as determined from a sub-solidus experiment with MixKLB-1 peridotite. Partial melts expected from a carbonated lherzolite at a melt fraction of 0.01–0.05% at 6.6 GPa have the composition of sodic iron-bearing dolomitic carbonatite, with molar Ca/(Ca + Mg) of 0.413 ± 0.001, Ca# [100 × molar Ca/(Ca + Mg + Fe*)] of 37.1 ± 0.1, and Mg# of 83.7 ± 0.6. SiO2, TiO2 and Al2O3 concentrations are 4.1 ± 0.1, 1.0 ± 0.1, and 0.30 ± 0.02 wt%, whereas the Na2O concentration is 4.0 ± 0.2 wt%. Comparison of our results with other iterative sandwich experiments at lower pressures indicate that near-solidus carbonatite derived from mantle lherzolite become less calcic with increasing pressure. Thus carbonatitic melt percolating through the deep mantle must dissolve cpx from surrounding peridotite and precipitate opx. Significant FeO* and Na2O concentrations in near solidus carbonatitic partial melt likely account for the ∼150°C lower solidus temperature of natural carbonated peridotite compared to the solidus of synthetic peridotite in the system CMAS + CO2. The experiments demonstrate that the MISE method can determine the composition of partial melts at very low melt fraction after a small number of iterations.  相似文献   

18.
Systematic variations in mineralogy and chemical composition across dunite-harzburgite (DH) and dunite-harzburgite-lherzolite (DHL) sequences in the mantle sections of ophiolites have been widely observed. The compositional variations are due to melt-rock reactions as basaltic melts travel through mantle peridotite, and may be key attributes to understanding melting and melt transport processes in the mantle. In order to better understand melt-rock reactions in the mantle, we conducted laboratory dissolution experiments by juxtaposing a spinel lherzolite against an alkali basalt or a mid-ocean ridge basalt. The charges were run at 1 GPa and either 1,300°C or 1,320°C for 8–28 h. Afterward, the charges were slowly cooled to 1,200°C and 1 GPa, which was maintained for at least 24 h to promote in situ crystallization of interstitial melts. Cooling allowed for better characterization of the mineralogy and mineral compositional trends produced and observed from melt-rock reactions. Dissolution of lherzolite in basaltic melts with cooling results in a clinopyroxene-bearing DHL sequence, in contrast to sequences observed in previously reported isothermal-isobaric dissolution experiments, but similar to those observed in the mantle sections of ophiolites. Compositional variations in minerals in the experimental charges follow similar melt-rock trends suggested by the field observations, including traverses across DH and DHL sequences from mantle sections of ophiolites as well as clinopyroxene and olivine from clinopyroxenite, dunite, and wehrlite dikes and xenoliths. These chemical variations are controlled by the composition of reacting melt, mineralogy and composition of host peridotite, and grain-scale processes that occur at various stages of melt-peridotite reaction. We suggest that laboratory dissolution experiments are a robust model to natural melt-rock reaction processes and that clinopyroxene in replacive dunites in the mantle sections of ophiolites is genetically linked to clinopyroxene in cumulate dunite and pyroxenites through melt transport and melt-rock reaction processes in the mantle.  相似文献   

19.
Accessory, homogeneous ilmenite and rutile are important oxide phases in amphibole-rich high-pressure cumulate veins which crosscut the Lherz orogenic lherzolite massif. Those veins crystallized from alkaline melts at P = 1.2–1.5 GPa within the uppermost lithospheric mantle. Transitional basalts contaminated by peridotitic wall-rocks and then uncontaminated alkali basalts (basanites) reused the same vein conduits. Petrographic observations give evidence that Fe–Ti oxide saturation depends on the silica contents of each parental melt. The water-poor silica-rich transitional melts that generated websterites and plagioclase-rich clinopyroxenites reached early Ti-oxide saturation (1,200°C; 1.5 GPa). Rutile is as abundant as ilmenite. It is enriched with Nb–Zr–Hf by a factor of 10–100 relative to either amphibole or ilmenite. The amphibole pyroxenites and hornblendites crystallized from basanites reached late Fe–Ti oxide saturation after precipitation of amphibole, with ilmenite crystallizing along with phlogopite in the latter. The Lherz ilmenites are devoid of exsolution and contain very little trivalent iron. This compositional feature indicates more reducing crystallization conditions than usually inferred for alkali lavas and their megacrysts (FMQ ± 1). The veins incompletely equilibrated for redox conditions with their wall-rock peridotites which record more oxidizing conditions (FMQ ± 1). The veins also exchanged magnesium and chromium, as suggested by Cr-bearing, Mg-rich ilmenite (up to 44 mol% MgTiO3) in veins less than 3–4 cm thick. Mg-rich ilmenite megacrysts occurring in alkali basalts could be actually xenocrysts from veins similar in thickness to those occurring at the Lherz massif, although crystallized from more oxidized magmas.  相似文献   

20.
This study presents the results of dehydration melting experiments on a basaltic composition amphibolite under conditions appropriate to a hot slab geotherm (1.5 and 2.0 GPa and temperatures of 850 to 1150° C). Dehydration melting produces an omphacitic augite and garnet bearing residue coexisting with rhyolitic to andesitic composition melts. At 1.5 GPa, the amphibolite melts in two stages between 800 and 1025° C. The 2.0 GPa data also define two melting stages. At 2.0 GPa, the first stage involves nearly modal melting of the original amphibolite minerals (qtz, pl, amp) to produce melt + cpx + grt. During the second stage, the eclogite restite melts non-modally (0.86 cpx + 0.14 grt = 1 melt). The experimental results were combined with data from the literature to generate a composite P-T phase diagram for basaltic composition amphibolites over the 800 to 1100° C temperature range for pressures up to 2.0 GPa. Comparison of the major element compositions of the experimentally produced melts with compositions of presumed slab melts (adakites) shows that partial melting of amphibolite at conditions appropriate to a hot-slab geotherm produces melts similar to andesitic and dacitic adakites except for significant MgO and CaO depletions. Trace element modelling of amphibolite dehydration melting using the 2.0 GPa melting reactions produces REE abundances similar to those of adakites at 10–15 wt% batch melting, but the models do not reproduce the high Sr/Y ratios characteristic of adakites. Taken together, the major and trace element results are not consistent with the derivation of adakites by dehydration melting of the subducted slab with little or no interaction with the mantle wedge or crust. If adakites are partial melts of the subducted slab, they must undergo significant interaction with the mantle and/or crust, during which they acquire a number of their distinctive characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号