首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
Letn2 mass points with arbitrary masses move circularly on a rotating straight-line central-configuration; i.e. on a particular solution of relative equilibrium of then-body problem. Replacing one of the mass points by a close pair of mass points (with mass conservation) we show that the resultingN-body problem (N=n+1) has solutions, which are periodic in a rotating coordinate system and describe precessing nearlyelliptic motion of the binary and nearlycircular collinear motion of its center of mass and the other bodies; assuming that also the mass ratio of the binary is small.  相似文献   

2.
We analyze the families of central configurations of the spatial 5-body problem with four masses equal to 1 when the fifth mass m varies from 0 to \(+\infty \). In particular we continue numerically, taking m as a parameter, the central configurations (which all are symmetric) of the restricted spatial (\(4+1\))-body problem with four equal masses and \(m=0\) to the spatial 5-body problem with equal masses (i.e. \(m=1\)), and viceversa we continue the symmetric central configurations of the spatial 5-body problem with five equal masses to the restricted (\(4+1\))-body problem with four equal masses. Additionally we continue numerically the symmetric central configurations of the spatial 5-body problem with four equal masses starting with \(m=1\) and ending in \(m=+\infty \), improving the results of Alvarez-Ramírez et al. (Discrete Contin Dyn Syst Ser S 1: 505–518, 2008). We find four bifurcation values of m where the number of central configuration changes. We note that the central configurations of all continued families varying m from 0 to \(+\infty \) are symmetric.  相似文献   

3.
We supplement the following result of C. Marchal on the Newtonian N-body problem: A path minimizing the Lagrangian action functional between two given configurations is always a true (collision-free) solution when the dimension d of the physical space \({\mathbb {R}}^d\) satisfies \(d\ge 2\). The focus of this paper is on the fixed-ends problem for the one-dimensional Newtonian N-body problem. We prove that a path minimizing the action functional in the set of paths joining two given configurations and having all the time the same order is always a true (collision-free) solution. Considering the one-dimensional N-body problem with equal masses, we prove that (i) collision instants are isolated for a path minimizing the action functional between two given configurations, (ii) if the particles at two endpoints have the same order, then the path minimizing the action functional is always a true (collision-free) solution and (iii) when the particles at two endpoints have different order, although there must be collisions for any path, we can prove that there are at most \(N! - 1\) collisions for any action-minimizing path.  相似文献   

4.
In this paper we prove, for all p ≥ 2, the existence of central configurations of the pn-body problem where the masses are located at the vertices of p nested regular polyhedra having the same number of vertices n and a common center. In such configurations all the masses on the same polyhedron are equal, but masses on different polyhedra could be different.  相似文献   

5.
Résumé On sait que les positions d'équilibre relatif dans le problème des trois corps, où les corps se trouvent aux sommets d'un triangle équilatéral, existent lorsque les masses sont quelconques; tandis que pourn=4 (voir [3]) et pourn=5 (voir [4]), les positions d'équilibre relatifs, où les corps se trouvent aux sommets d'un polygone régulier de n cotés, existent seulement si les masses sont égales. L'objet de cet article est de montrer que ce dernier résultat est vrai pour toutn4.
It is known that in the three body problem, the equilateral configuration of relative equilibrium exists for all values of masses, while in then-body problem, forn=4 (see [3]) andn=5 (see [4]), the position of relative equilibrium where the bodies are at the vertices of a regular polygon withn sides, exists only if the masses are equal.We prove in this paper, that this last result is true for alln4.
  相似文献   

6.
7.
In this paper, we consider the elliptic collinear solutions of the classical n-body problem, where the n bodies always stay on a straight line, and each of them moves on its own elliptic orbit with the same eccentricity. Such a motion is called an elliptic Euler–Moulton collinear solution. Here we prove that the corresponding linearized Hamiltonian system at such an elliptic Euler–Moulton collinear solution of n-bodies splits into \((n-1)\) independent linear Hamiltonian systems, the first one is the linearized Hamiltonian system of the Kepler 2-body problem at Kepler elliptic orbit, and each of the other \((n-2)\) systems is the essential part of the linearized Hamiltonian system at an elliptic Euler collinear solution of a 3-body problem whose mass parameter is modified. Then the linear stability of such a solution in the n-body problem is reduced to those of the corresponding elliptic Euler collinear solutions of the 3-body problems, which for example then can be further understood using numerical results of Martínez et al. on 3-body Euler solutions in 2004–2006. As an example, we carry out the detailed derivation of the linear stability for an elliptic Euler–Moulton solution of the 4-body problem with two small masses in the middle.  相似文献   

8.
We consider the case of (2n+1) bodies (n0) each of mass m, which are placed on a circle with radius r, such that they form a regular polygon: an equilateral (2n+1)-angle. In the centre of the circle a body of mass b times m is placed, where b is chosen large enough to ensure stability of the system; only gravitational interaction is considered. Each of the bodies rotates uniformly around the centre with angular velocity . In addition to the (2n+2) bodies, considered to be point masses, we have another point mass with negligible mass compared to the former ones; we are then interested in the motion of the small body in the gravitational field of force generated by the large ones, moving themselves in an equilibrium configuration reacting to each other's fields of force but not to the (2n+3)-d body.  相似文献   

9.
In this paper, we deal with a Hill’s equation, depending on two parameters \(e\in [0,1)\) and \(\varLambda >0\), that has applications to some problems in Celestial Mechanics of the Sitnikov type. Due to the nonlinearity of the eccentricity parameter e and the coexistence problem, the stability diagram in the \((e,\varLambda )\)-plane presents unusual resonance tongues emerging from points \((0,(n/2)^2),\ n=1,2,\ldots \) The tongues bounded by curves of eigenvalues corresponding to \(2\pi \)-periodic solutions collapse into a single curve of coexistence (for which there exist two independent \(2\pi \)-periodic eigenfunctions), whereas the remaining tongues have no pockets and are very thin. Unlike most of the literature related to resonance tongues and Sitnikov-type problems, the study of the tongues is made from a global point of view in the whole range of \(e\in [0,1)\). Indeed, an interesting behavior of the tongues is found: almost all of them concentrate in a small \(\varLambda \)-interval [1, 9 / 8] as \(e\rightarrow 1^-\). We apply the stability diagram of our equation to determine the regions for which the equilibrium of a Sitnikov \((N+1)\)-body problem is stable in the sense of Lyapunov and the regions having symmetric periodic solutions with a given number of zeros. We also study the Lyapunov stability of the equilibrium in the center of mass of a curved Sitnikov problem.  相似文献   

10.
In this paper we address an \(n+1\)-body gravitational problem governed by the Newton’s laws, where n primary bodies orbit on a plane \(\varPi \) and an additional massless particle moves on the perpendicular line to \(\varPi \) passing through the center of mass of the primary bodies. We find a condition for the described configuration to be possible. In the case when the primaries are in a rigid motion, we classify all the motions of the massless particle. We study the situation when the massless particle has a periodic motion with the same minimal period as the primary bodies. We show that this fact is related to the existence of a certain pyramidal central configuration.  相似文献   

11.
We analyze the properties of the clusters of galaxies in the region of the Ursa Major (UMa) supercluster using observational data from SDSS and 2MASS catalogs. The region studied includes a supercluster (with a galaxy and cluster overdensity of 3 and 15, respectively) and field clusters inside the 150-Mpc diameter surrounding region. The total dynamical mass of 10 clusters of galaxies in UMa is equal to 2.25 × 1015 M , and the mass of 11 clusters of galaxies in the UMa neighborhood is equal to 1.70 × 1015 M . The fraction of early-type galaxies brighter than M K * + 1 in the virialized regions of clusters is, on the average, equal to 70%, and it is virtually independent on the mass of the cluster. The fraction of these galaxies and their average photometric parameters are almost the same both for UMa clusters and for the clusters located in its surroundings. Parameters of the clusters of galaxies, such as infrared luminosities up to a fixed magnitude, the mass-to-luminosity ratio, and the number of galaxies have almost the same correlations with the cluster mass as in other samples of galaxies clusters. However, the scatter of these parameters for UMa member clusters is twice smaller than the corresponding scatter for field clusters, possibly, due to the common origin of UMa clusters and synchronized dynamical evolution of clusters in the supercluster.  相似文献   

12.
The saturation conditions for bending modes in inhomogeneous thin stellar disks that follow from an analysis of the dispersion relation are compared with those derived from N-body simulations. In the central regions of inhomogeneous disks, the reserve of disk strength against the growth of bending instability is smaller than that for a homogeneous layer. The spheroidal component (a dark halo, a bulge) is shown to have a stabilizing effect. The latter turns out to depend not only on the total mass of the spherical component, but also on the degree of mass concentration toward the center. We conclude that the presence of a compact (not necessarily massive) bulge in spiral galaxies may prove to be enough to suppress the bending perturbations that increase the disk thickness. This conclusion is corroborated by our N-body simulations in which we simulated the evolution of near-equilibrium, but unstable finite-thickness disks in the presence of spheroidal components. The final disk thickness at the same total mass of the spherical component (dark halo + bulge) was found to be much smaller than that in the simulations where a concentrated bulge is present.  相似文献   

13.
In this paper we give a short analytical proof of the inequalities proved by Albouy–Moeckel through computer algebra, in the cases $n=5$ and $n=6$ . These inequalities guarantee that, in the $n$ -body problem, the family of mass vectors making a given collinear configuration a central configuration is 2-dimensional. The induction techniques here may be used to prove the inequalities for general $n$ with more subtle estimation but currently the inequalities still remains unproved for $n\ge 7$ .  相似文献   

14.
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting–Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L1, L2 and L3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov’s first method of stability.  相似文献   

15.
An iterative approach is used to construct spherically symmetric equilibrium models with an anisotropic velocity distribution. The potentialities of the method have been tested on models with known distribution functions, the Osipkov-Merritt models. It is shown that models that differ significantly from the Osipkov-Merritt models can be constructed. An N-body model of a dark halo with a density distribution that approximates the results of cosmological simulations (the Navarro-Frenk-White model) has been constructed. The anisotropy profile has been taken to be similar to that yielded by cosmological simulations. The constructed models can serve as direct input data for investigating the dynamics and stability of such systems in N-body simulations.  相似文献   

16.
The method of “virtual magnetic charges” is used to analyze the structure of the magnetic field of the CP star HD32633. The phase relation of its magnetic field differs strongly from a sine wave. The structure of the star’s field can be described fairly well by two dipoles located in the opposite regions of the star near its rotation equator. Each of these dipoles produces two pairs of magnetic spots of opposite polarity similar to sunspots. The dipoles are located at a distance of Δa=0.6 R from the center, where R is the radius of the star. The field strength at the poles is equal to ±42 and ±19 kG.  相似文献   

17.
The orbits about Lagrangian equilibrium points are important for scientific investigations. Since, a number of space missions have been completed and some are being proposed by various space agencies. In light of this, we consider a more realistic model in which a disk, with power-law density profile, is rotating around the common center of mass of the system. Then, we analyze the periodic motion in the neighborhood of Lagrangian equilibrium points for the value of mass parameter $0<\mu\leq\frac{1}{2}$ . Periodic orbits of the infinitesimal mass in the vicinity of equilibrium are studied analytically and numerically. In spite of the periodic orbits, we have found some other kind of orbits like hyperbolic, asymptotic etc. The effects of radiation factor as well as oblateness coefficients on the motion of infinitesimal mass in the neighborhood of equilibrium points are also examined. The stability criteria of the orbits is examined with the help of Poincaré surfaces of section (PSS) and found that stability regions depend on the Jacobi constant as well as other parameters.  相似文献   

18.
We investigate the nonlinear growth stages of the bending instability in stellar disks with exponential radial density profiles. We found that the unstable modes are global (the wavelengths are larger than the disk scale lengths) and that the instability saturation level is much higher than that following from a linear criterion. The instability saturation time scales are of the order of one billion years or more. For this reason, the bending instability can play an important role in the secular heating of a stellar disk in the z direction. In an extensive series of numerical N-body simulations with a high spatial resolution, we were able to scan in detail the space of key parameters (the initial disk thickness z0, the Toomre parameter Q, and the ratio of dark halo mass to disk mass Mh/Md). We revealed three distinct mechanisms of disk heating in the z direction: bending instability of the entire disk, bending instability of the bar, and heating on vertical inhomogeneities in the distribution of stellar matter.  相似文献   

19.
An analysis of the data concerning high-velocity stars from Eggen's catalogue aimed at a determination of the approximate slope of the mass function for the spherical component of our Galaxy, and at estimating the local circular velocity, as well as the local rotation velocity, as by-products, has been performed. Our conclusions are that:
  1. A linear dependence of the mass on the radius is very likely;
  2. the value of the limiting radius is most likely equal to (40±10) kpc;
  3. the two local velocities are approximately equal to each other, being both equal to (230±30) km s?1;
  4. the local escape velocity appears to be most likely equal to (520±30) km s?1;
  5. the total mass of a corona, obtained in this way, is (5±1)×1011 M .
  相似文献   

20.
The McGehee's study of the triple collision of the 3-body problem is here applied for the stability of an equilibrium. Let us consider the homogeneous Lagrangian: $$L = \frac{{\dot x^2 + \dot y^2 }}{2} + U(x,y)$$ whereU is polynomial, with degreek. We establish a necessary and sufficient condition onU for the stability of \(\omega (x = y = \dot x = \dot y = 0)\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号