首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The isotopic composition and mass balances of sources and sinks of sulfur are used to constrain the limnological–hydrological evolution of the last glacial Lake Lisan (70–14 ka BP) and the Holocene Dead Sea. Lake Lisan deposited large amounts of primary gypsum during discrete episodes of lake level decline. This gypsum, which appears in massive or laminated forms, displays δ34S values in the range of 14–28‰. In addition, Lake Lisan’s deposits (the Lisan Formation) contain thinly laminated and disseminated gypsum as well as native sulfur which display significantly lower δ34S values (−26 to 1‰ and −20 to −10‰, respectively). The calculated bulk isotopic compositions of sulfur in the sources and sinks of Lake Lisan lacustrine system are similar (δ34S ≈ 10‰), indicating that freshwater sulfate was the main source of sulfur to the lake. The large range in δ34S found within the Lisan Formation (−26 to +28‰) is the result of bacterial sulfate reduction (BSR) within the anoxic lower water body (the monimolimnion) and bottom sediments of the lake.

Precipitation of primary gypsum from the Ca-chloride solution of Lake Lisan is limited by sulfate concentration, which could not exceed 3000 mg/l. The Upper Gypsum Unit, deposited before ca. 17–15 ka, is the thickest gypsum unit in the section and displays the highest δ34S values (25–28‰). Yet, our calculations indicate that no more than a third of this Unit could have precipitated directly from the water column. This implies that during the lake level decline that instigated the precipitation of the Upper Gypsum Unit, significant amounts of dissolved sulfate had to reach the lake from external sources. We propose a mechanism that operated during cycles of high-low stands of the lakes that occupied the Dead Sea basin during the late Pleistocene. During high-stand intervals (i.e., Marine Isotopic Stages 2 and 4), lake brine underwent BSR and infiltrated the lake’s margins and adjacent strata. As lake level dropped, these brines, carrying 34S-enriched sulfate, were flushed back to the shrinking lake and replenished the water column with sulfate, thereby promoting massive gypsum precipitation.

The Holocene Dead Sea precipitated relatively small amounts of primary gypsum, mainly in the form of thin laminae. δ34S values of these laminae and disseminated gypsum are relatively constant (15 ± 0.7‰) and are close to present-day lake composition. This reflects the lower supply of freshwater to the lake and the limited BSR activity during the arid Holocene time and possibly during former arid interglacials in the Levant.  相似文献   


2.
The presence of heavy metals at high concentrations (percent levels) in soils has been a growing concern to human health and the environment, and the cement stabilization is considered to be an effective and practical approach to remediate such soils. The compressibility of such stabilized soils is an important consideration for redevelopment of the remediated sites for building and/or roadway construction. This paper investigates the effects of high levels of zinc concentration on the compressibility of natural clay stabilized by cement additive. Several series of laboratory compression (oedometer) tests were conducted on the soil specimens prepared with the zinc concentrations of 0, 0.1, 0.2, 0.5, 1, and 2 %, cement contents of 12 and 15 %, and curing time of 28 days. The results show that the yield stress and compression index at the post-yield state decrease with an increase in the zinc concentration regardless of the cement content. The observed results are attributed to the decrease in the cement hydration of the soil. Overall, this study demonstrates that the cementation structure of the soils is weakened, and the compressibility increases with the elevated zinc concentration, particularly at relatively high levels of zinc concentration.  相似文献   

3.
The occurrence of sulfate-induced heave of roadways that were chemically stabilized with either lime or cement can require expensive road repairs. Previous research attributed the heave to the formation of an expansive mineral named ettringite. However, not all chemically stabilized soils will exhibit heave. The overall goal of this research was to determine if the sulfate concentration in water can contribute to, or even cause, sulfate induced heave. Two soils, one with a soluble sulfate level below 3000 mg/kg and one with >8000 mg/kg sulfate, were stabilized with either lime or cement and subjected to a capillary soak with distilled water or saturated sulfate water. The low sulfate soils did not swell above the accepted limit of 1.5 %. The high sulfate soils swelled significantly (p < 0.05) above accepted level regardless of the stabilizer used. Overall, stabilized soils subjected to a capillary soak with saturated sulfate water swelled more than soils soaked with distilled water. The results found in this study demonstrated that cement will increase the axial load capacity of the soil, but the soil will still have the potential to heave excessively if sulfate and aluminum are present above the stoichiometric requirements to from ettringite.  相似文献   

4.
以四川省宣汉县黄金口钾盐普查ZK001井钻探工程为背景,从井身结构、钻具组合、钻井液工艺、取心技术、井斜控制、深部抽水试验等方面,总结研究了钾盐参数井的钻井施工技术。针对施工过程中超长裸眼段钻进、井漏、长段膏盐层钻进等技术难题,通过优化钻具组合,调整钻井液性能,随钻堵漏等措施,工程得以顺利完成。  相似文献   

5.
In the taiga gypsum karst ecosystems, gypsum soils formed on the hard gypsum substrates predominate in the soil cover. In these soils, the mineral horizons consist of 95–99% gypsum (CaSO4·2H2O) and the litter is the main horizon for nutrient accumulation. For this reason, the ecosystems are vulnerable to fire and erosion by walkers, from which they only recover slowly. Gypsum mining for industrial uses is also leading to the destruction of this unique ecosystem.  相似文献   

6.
In this study, the compressive and tensile behavior of polymer treated sulfate contaminated CL soil was investigated. Based on the information in the literature, a field soil was contaminated with up to 4 % (40,000 ppm) of calcium sulfate in this study. In addition to characterizing the behavior of sulfate contaminated CL soil, the effect of treating the soil with a polymer solution was investigated and the performance was compared to 6 % lime treated soil. In treating the soil, acrylamide polymer solution (15 g of polymer dissolved in 85 g of water) content was varied up to 15 % (by dry soil weight). Addition of 4 % calcium sulfate to the soil decreased the compressive and tensile strengths of the compacted soils by 22 and 33 % respectively with the formation of calcium silicate sulfate [ternesite Ca5(SiO4)2SO4)], magnesium silicate sulfate (Mg5(SiO4)2SO4) and calcium-magnesium silicate (merwinite Ca3Mg(SiO4)2). With the polymer treatment the strength properties of sulfate contaminated CL soil was substantially improved. Polymer treated sulfate soils had higher compressive and tensile strengths and enhanced compressive stress–strain relationships compared to the lime treated soils. Also polymer treated soils gained strength more rapidly than lime treated soil. With 10 % of polymer solution treatment, the maximum unconfined compressive and splitting tensile strengths for 4 % of calcium sulfate soil were 625 kPa (91 psi) and 131 kPa (19 psi) respectively in 1 day of curing. Similar improvement in the compressive modulus was observed with polymer treated sulfate contaminated CL soil. The variation of the compacted compressive strength and tensile strength with calcium sulfate concentrations for the treated soils were quantified and the parameters were related to calcium sulfate content in the soil and polymer content. Compressive stress–strain relationships of the sulfate soil, with and without lime and polymer treatment, have been quantified using two nonlinear constitutive models. The constitutive model parameters were sensitive to the calcium sulfate content and the type of treatment.  相似文献   

7.
蒋坤  丁文其  陈宝  施笃铮 《岩土力学》2009,30(4):1078-1082
利用气相法和渗吸法,对郑州至开封下穿越工程降水施工引起的非饱和砂质粉土和粉质黏土的土-水特征曲线进行了室内试验研究。研究结果表明,非饱和砂质粉土和粉质黏土的进气值约为2 kPa和250 kPa,残余饱和度对应的吸力值约为15 MPa和28 MPa,两种非饱和土的减饱和过程都具有明显的阶段特征。通过该工程非饱和土土土-水特征曲线的分段性研究,对于工程降水施工以及掌子面加固等有重要的指导意义。  相似文献   

8.
Overbank deposits in the Komissarovka River valley consist of alternating silt, clay silt, sand, and soils produced by lacustrine, alluvial, and aeolian deposition and by soil formation. Silt and sand layers in the lower part of the section correlate with the events of Early Holocene transgression and Middle Holocene regression of Lake Khanka. Deposition in the lowermost reaches of the Komissarovka River provides a faithful record of local Holocene landscapes controlled by level changes in Lake Khanka.  相似文献   

9.
Acta Geotechnica - Gypseous soils are soils that contain sufficient quantities of gypsum that are considered collapsible soil. The present study's objective is to predict the shear strength...  相似文献   

10.
Evaluation of amendments used to prevent sodification of irrigated fields   总被引:1,自引:0,他引:1  
Gypsum and S are applied to soils being irrigated with Na–HCO3 dominated coalbed natural gas (CBNG) produced water to protect soil structure and fertility. Wyoming law requires beneficial use of produced water and irrigation with CBNG produced water in the semi-arid Powder River Basin is becoming more common. Strontium isotopes were used to evaluate the effectiveness of the gypsum and S applications in preventing sodification of these irrigated soils. The isotope ratio of Sr on the cation exchange complex of irrigated soil falls between that of the gypsum amendment (0.7074) and that of local soil (0.712–0.713). Strontium isotopes indicate that, to a depth of 30 cm, as much as 50% of the Sr on the irrigated soil cation exchange sites originated from the applied gypsum amendment on a field irrigated for 3 a. This was also true to a depth of 5 cm on a field irrigated less than 1 a. Strontium isotope ratio measurements of vegetation illustrate plant utilization of Sr from gypsum amendments, thereby reinforcing the conclusions about the presence of Sr from gypsum on the soil’s exchange sites. This Sr tracing technique may be useful in a wide variety of settings where monitoring soil health is necessary, especially in settings where poor quality water is used for irrigation: a more common occurrence as demand for fresh water increases.  相似文献   

11.
Soil stabilization with cement is a good solution for the construction of subgrades for roadway and railway lines, especially under the platforms and mostly in transition zones between embankments and rigid structures, where the mechanical properties of supporting soils are very influential. These solutions are especially attractive in line works where other ground improvement techniques are extensive and, therefore, very expensive. On the other hand, the economic and environmental costs of such works should be optimized with good balances between excavation and embankment volumes. For this purpose, the improvement of locally available soils can bring great advantages, avoiding a great amount in borrowing appropriate material, as well as the need of disposing huge volumes in deposits. This paper focus on the characteristics of two soils, Osorio sand and Botucatu residual sandstone, which can be converted to well acceptable materials for this purpose, if stabilized with cement. The study of soil stabilization with cement relies on the quantification of the influence of percentage of cement and porosity adopted in the admixing process for different state and stress conditions. This influence will be evaluated from the analysis of unconfined compression strength (UCS or q u ) test results. This experimental framework will enable a good definition of mechanical parameters used in design of foundations and subgrades of railways platforms and for their execution quality control.  相似文献   

12.
随着我国能源消费的急剧增加,原油储备的建设已经刻不容缓,目前国内外常用的原油储存方式为地面油罐储存,其技术成熟、建设周期较短、全世界已经建设有大量的地面原油罐,而另外一种储备型式地下存储原油,则是近年来国内兴起的一种新兴石油储备方式。国内目前一般都选则花岗岩体作为建库岩体,采用此方法建设地下洞库对岩石条件限定较严格,目前国内在建的几座地下洞库都分布于东部沿海花岗岩地区。本文主要研究利用废弃石膏矿存储原油的可行性,通过对国内某石膏矿区的工程地质特性、水文地质特性、围岩稳定性分析、室内原油浸泡试验、原油储备综合分析等综合手段研究,初步得出了该石膏矿区具有较好的地质条件; 场区区域稳定性好无断层通过,石膏矿体平均厚度为458.42m,石膏矿岩样的单轴饱和抗压强度平均为55.45MPa、石膏矿体的岩体质量为Ⅱ级,采房及各种巷道围岩稳定,石膏矿吸水率范围在0.014% ~0.036%,吸油率范围在0.060% ~0.083%。同时石膏矿储备原油具有节约土地、投资省、运营定员少、安全性高、环保污染少、使用寿命长等特点。通过以上研究,本文得出该石膏矿区已经具备建设地下原油储备的基本地质条件。  相似文献   

13.
干旱化对成土碳酸盐碳同位素组成的影响   总被引:12,自引:1,他引:12       下载免费PDF全文
土壤碳酸盐的碳同位素组成可以作为古环境变化的指标.本文对黄土高原地区S1以来成土碳酸盐和红粘土中碳酸盐的碳同位素进行了研究.根据渭南、吉县、长武和会宁4个剖面末次间冰期以来土壤碳酸盐的碳同位素分析结果,探讨了不同气候条件下成土碳酸盐碳同位素组成的特征及其环境意义,指出气候的干湿程度可能是影响黄土地区成土碳酸盐δ13C值的主要原因;西峰红粘土序列碳酸盐的碳同位素记录表明,δ13C值在4.0Ma B.P.前后有一个明显增加的趋势,反映了我国西北地区上新世干旱化的发展,可能与青藏高原在这一时期发生较大规模的隆升有关.  相似文献   

14.
阿拉斯加输油管道公司曾经研发和使用了3种主要施工方案和技术:传统地埋式、特殊埋设和地上敷设方式.在传统地埋式施工方案中,管顶埋深变化于0.9~2.7 m.这主要是考虑了地形变化,而不是沿途的岩性和土壤类型.在特殊埋设方案中,在原油管道必须埋设的地段,如大规模动物迁徙常用地段则使用通道冷液循环降(保)温系统和(或)热管(桩)降(保)温,来保护多年冻土.地上敷设方案包括桩基架设和地上洁净砾石管堤(垫护层).后者只在管道进入和离开多年冻土时采用.架设桩基横梁方案中使用有或没有热管保温的垂直支架梁(单元)(VSM).在初步规划和设计阶段,管道的业主公司(即横穿阿拉斯加管道系统,或TAPS)和随后的阿拉斯加管道服务公司(APSC)不容商量的坚决要求100%的埋设方案.但是,随着勘察工作的进展和设计方案的细化,施工设计方案在不断变化.1977年管道施工结束时,只有57%的管道采用了埋设方式.管道运行30 a后的今天(考虑运行期间维护中所产生的问题),很多经验丰富的工程师认为53%的埋设可能更合理.设计和施工方案变更的原因主要有:1)为了获得通过联邦政府所属的土地所需的许可证,政府有特殊的规定和要求;2)管道公司的设计、施工和管理人员进行了现场野外调查、研究,并积极参与了详细设计和研发;3)美国环境政策法案(NEPA)的最新要求(启用了核准制).阿拉斯加管道服务公司是7家主要石油公司的服务机构.由于这个项目的巨大规模和所涉及的高昂费用,致使各大石油公司的工程师非同寻常程度的参与.在文章中,笔者论述了与阿拉斯加管道施工有关的阿拉斯加管道服务公司、美国联邦和阿拉斯加州政府相关组织机构的形成历史,管道设计演变过程及其背后的哲学思想,以及阿拉斯加管道工程项目的经验和教训.  相似文献   

15.
Soils overlying two porphyry Cu deposits (Spence, Gaby Sur) and the Pampa del Tamarugal, Atacama Desert, Northern Chile were collected in order to investigate the extent to which saline groundwaters influence “soil” chemistry in regions with thick Miocene and younger sediment cover. Soil carbonate (calcite) was analyzed for C and O isotopes and pedogenic gypsum for S isotopes. Soil calcite is present in all soils at the Spence deposit, but increases volumetrically above two fracture zones that cut the Miocene gravels, including gravels that overlie the deposit. The C isotope composition of carbonate from the soils overlying fracture zones is indistinguishable from pedogenic carbonate elsewhere at the Spence deposit; all δ13CVPDB values fall within a narrow range (1.40–4.23‰), consistent with the carbonate having formed in equilibrium with atmospheric CO2. However, δ18OVPDB for carbonate over both fracture zones is statistically different from carbonate elsewhere (average δ18OVPDB = 0.82‰ vs. −2.23‰, respectively), suggesting involvement of groundwater in their formation. The composition of soils at the Tamarugal anomaly has been most strongly affected by earthquake-related surface flooding and evaporation of groundwater; δ13CVPDB values (−4.28‰ to −2.04‰) are interpreted to be a mixture of dissolved inorganic C (DIC) from groundwater and atmospheric CO2. At the Spence deposit, soils only rarely contain sufficient SO4 for S isotope analysis; the SO4-bearing soils occur only above the fracture zones in the gravel. Results are uniform (3.7–4.9‰ δ34SCDT), which is near the middle of the range for SO4 in groundwater (0.9–7.3‰). Sulfur in soils at the Gaby Sur deposit (3.8–6.1‰ δ34SCDT) is dominated by gypsum, which primarily occurs on the flanks and tops of hills, suggesting deposition from SO4-rich fogs. Sulfate in Gaby Sur deposit gypsum is possibly derived by condensation of airborne SO4 from volcanic SO2 from the nearby Andes. At the Gaby Sur deposit and Tamarugal anomaly, pedogenic stable isotopes cannot distinguish between S from porphyry or redeposited SO4 from interior salars.The three sites studied have had different histories of salt accumulation and display variable influence of groundwater, which is interpreted to have been forced to the surface during earthquakes. The clear accumulation of salts associated with fractures at the Spence deposit, and shifts in the isotopic composition of carbonate and sulfate in the fractures despite clear evidence of relatively recent removal of salts indicates that transfer from groundwater is an ongoing process. The interpretation that groundwaters can influence the isotopic composition of pedogenic calcrete and gypsum has important implications for previous studies that have not considered this mechanism.  相似文献   

16.
冻土是指0℃以下,含有冰的各种岩石和土壤,由于其复杂的物理力学特性,给青藏直流联网工程的施工和设计带来了很多难题。工程沿线冻土的长期抗剪强度,更是由于土质、含冰量以及密实度分布的复杂特性,影响了其在使用寿命内的安全运营和稳定性。为解决这一工程难题,室内制备重塑试样并在-2℃的温度下对3种土质类型(粉质黏土、粉砂和细砂)、3种含冰量(饱冰、富冰和多冰)的密实和松散冻土进行直剪快剪的蠕变试验,得到了不同土质、含冰量以及密实度类型的冻土剪切蠕变特性,并分析和预测了长期抗剪强度的变化规律和影响因素,结果表明:(1)短时间内冻土承受荷载的能力随含冰量的增加而增大;随着加载时间的延长,冰的流变特性表现出来,使冻土的蠕变变形加大,冻土的强度降低;(2)密实度越大、含冰量越大的冻土,初期强度越高;随着时间的增加,强度开始衰减,且含冰量越大,密实度越小的冻土衰减速度越快;(3)长期强度的变化规律不受土质的影响,说明在工程施工阶段,若单纯考虑长期强度时,只要不同土质冻土保持冻结状态,可同一对待和处理。以上结论为输电线路冻土基础设计、施工和安全运营提供了一定的理论基础,也为在青藏地区开展的其他工程活动提供了可借鉴的试验数据和资料。  相似文献   

17.
Prehistoric farmers in arid and semiarid ecosystems commonly used rock alignments to concentrate water and sediments on their fields. Previous research has emphasized the importance of runoff from organic matter‐rich uplands as a mechanism for soil nutrient replenishment. However, eolian inputs to these dryland ecosystems might also contribute substantially to mineral‐derived nutrient pools. We explored the relative importance of eolian deposition, prehistoric agriculture, and the presence of rock alignments on soil properties in a semiarid grassland in Arizona. Subsurface soils behind natural rock alignments are finer in texture than soils unbound by rock alignments, while subsurface soils behind agricultural rock alignments coarsen relative to unbound soils. Neither rock alignments nor estimated crop yields had detectable effects on mineral‐derived nutrient pools. In contrast, eolian deposition is an important source of soil mass and nutrients to modern soils. While dust deposition likely reduced soil heterogeneity across this landscape, it could have also contributed to the sustainability of prehistoric agriculture.  相似文献   

18.
A 15-m sedimentary core from Lake Salpeten provides the first complete Holocene sequence for the lowlying Peten District, Guatemala. Today, Lake Salpeten is a brackish, calcium sulfate lake near saturation surrounded by tropical semievergreen forest. The basal pollen record depicts sparse juniper scrub surrounding a lake basin that held ephermal pools and halophytic marshes. The lake rapidly deepened to > 27 m in the early Holocene and may have been meromictic, because nearly 2 m of gypsum “mush” was deposited. Mesic forests were quickly established and persisted until the Maya entered the district 3000 yr ago and caused extensive deforestation. Any climatic information contained in the pollen record of the Maya period is thus masked, but a regional pollen sequence linked to the archaeological record is substantiated because environmental disturbance was pervasive. Local intensification of occupation and population growth are seen as an increased deposition of pollen of agricultural weeds and colluviation into the lake, while the Classic Maya collapse is marked by a temporary decline in Compositae pollen. Effects of perturbations induced by the Maya persist in the pollen and limnetic record 400 yr after the Spanish conquest.  相似文献   

19.
刘庆宇 《地质与勘探》2022,58(3):609-618
青海省门源县内林草地面积大于44万公顷,耕地仅不到4.2万公顷,林草地资源丰富。2016年在门源县地区开展了1:25万土地质量地球化学评价工作,是青海省首次在大面积林草地区开展1:25万土地质量地球化学调查工作,具有较好的示范作用。通过评价土壤养分、土壤环境等级划分了土壤质量地球化学综合等级,结果表明:门源县土壤质量一等优质土壤占比92.4%,二等良好土壤占0.8%,三等中等土壤占5.6%,四等差等土壤占0.9%,五等劣等土壤占0.3%。通过项目实施可服务门源县土地资源管理,为门源县土地规划利用、农业种植结构调整及生态环境治理等提供依据,助力门源县绿色有机农畜产品输出地建设。  相似文献   

20.
塔里木盆地(简称塔,下同)西南凹陷古新世阿尔塔什组发育巨厚层海相石膏岩,夹薄层泥岩、粉砂岩及灰岩,是塔西南凹陷断续海侵环境下多期次蒸发沉积的产物。野外调查显示,该层海相石膏岩出现于皮拉里、阿尔塔什、麻扎塔格及大山口地区的阿尔塔什组露头剖面。石膏岩在凹陷内分布广泛,在西昆仑山前、南天山山前及麦盖提斜坡带均有发育且沉积厚度比较稳定。石膏岩中主要盐类矿物为石膏、硬石膏。扫描电镜分析发现,石膏岩中尚含石盐、钙芒硝及含钾镁的硫酸盐等;石膏岩样品中石盐、石膏、硬石膏等多呈细晶或自形微晶,推测阿尔塔什组沉积期,古盐湖曾出现过富钾卤水;通过对皮拉里剖面石膏岩样品进行地球化学分析,揭示该地区古新世古盐湖演化过程中出现2个相对富钾峰值。在古盐湖演化过程中,由于多期次特提斯海水的侵入,凹陷内部阿尔塔时期发育了碎屑岩—巨厚层石膏岩—碎屑岩的沉积韵律,古盐湖卤水表现为淡—咸—淡的变化规律。伴随着阿尔塔时期4次大规模的海侵,石膏岩沉积从西昆仑山前扩展到麦盖提斜坡地带,海侵范围也逐渐扩大。在阿尔塔什组顶部发育中厚层灰岩,显示在阿尔塔什组沉积晚期,塔西南凹陷沉积环境从●湖相逐渐向浅海相环境演变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号