首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper presents the simulation outputs of changes of hydrological characteristics of reservoirs of different kind (changes in residence time and in water column stratification) in case of forecast warming according to the most adverse scenario for Moscow water supply, when annual flow and springflood flow depth decrease.  相似文献   

2.
黄河流域未来气候-水文变化的模拟研究   总被引:3,自引:0,他引:3  
将大尺度半分布式水文模型VIC应用到黄河上中游流域(花园口水文断面以上),并利用区域气候模式RegCM4.0单向嵌套全球气候模式BCC_CSM1.1,动力降尺度到黄河流域的模拟结果驱动VIC模型,开展在新的典型浓度路径下(RCP4.5和RCP8.5)黄河流域未来气候和水文变化的离线模拟。模拟结果显示,在RCP4.5和RCP8.5排放情景下,黄河流域21世纪平均地表气温相对于1971—2000年均呈显著上升趋势,2019—2048年上升1.2—1.5℃,2069—2098年上升2.19—3.9℃。未来年平均降水量有微弱的增大,2019—2048年增幅为6%左右,2069—2098年增幅为1.4%—5.6%。未来蒸发量增大明显,2069—2098年年平均蒸发量最大可增加9.6%。2019—2048年花园口水文站的年平均径流量增大3.4%—7.4%,2069—2098年年平均径流量转为减少,减幅为3.3%—5.3%。黄河上游地区未来气候和水文变化趋势与黄河流域基本一致,但未来年径流量变幅低于黄河流域,相对比较稳定。  相似文献   

3.
The variations in average annual surface air temperature, precipitation, and runoff in the Selenga River basin (within Russia) are analyzed. It is demonstrated that the considerable increase in average annual temperature of surface air layers occurred in the 1980s-1990s. The decrease in peak water discharge in the rivers and the increase in the frequency of low-water periods were revealed in the forest-steppe and steppe zones of the Selenga River basin in 2001-2010. In the southwestern mountain regions (the Dzhida River basin) the river runoff increased during that period.  相似文献   

4.
王守荣  康丽莉  石英 《气象学报》2008,66(3):320-328
该文建立了气候 水文嵌套模式,用于气候变化情景下流域气候、水文模拟,并在此基础上进行水资源评估。首先应用20 km高分辨率的区域气候模式RegCM3,嵌套全球环流模式FvGCM的大气部分,在中国东部地区进行了两组30 a积分的模拟试验,即控制试验和未来预测试验。控制试验(1961—1990年)结果表明,RegCM3能较细致地刻画浙江省的地形分布,模拟的浙江省的多年平均气温和降水均呈现出明显的地形特征,与实况较为符合。兰江流域年平均气温模拟较好,但夏季降水模拟量明显偏低。在未来预测试验中,构建了SRES A2排放情景下兰江流域2071—2100年的气候变化情景。然后,用兰江流域的历史观测资料对分布式水文模型DHSVM进行了率定和验证,该模型较好地再现了兰江流域的历史径流过程,具有较好的模拟特性。最后,将RegCM3的两组试验结果输入到DHSVM中,驱动模型进行水文模拟。模拟结果表明:相对于1961—1990年,兰江流域2071—2100年各月的平均气温均呈上升趋势,年平均气温上升幅度达2.84 ℃;年降水量也将增加,主要发生在4—7月的汛期,可能会导致汛期洪涝灾害发生频率上升;年径流深变化与年降水量变化基本一致,汛期径流将明显增加。在全球持续变暖的背景下,兰江流域未来高温热浪和洪涝等气候、水文极端事件有可能进一步加剧。  相似文献   

5.
Future variations in precipitation due to the effects of topography and possible trends in land-use change in Central Asia are evaluated by utilizing numerical experiments based on a case study. Considering possible changes in land cover, oasification leads to a 0.23 mm increase in regional-averaged precipitation, accounting for 3.0% of the total. Meanwhile, desertification and urbanization decrease precipitation, by about ?5.3% and ?4.7% proportionally, mainly through changing the near-surface humidity and thermal environment and related upward transport of heat fluxes in the boundary layer. Relatively, varied terrain height produces a more prominent impact on precipitation (up to ?13.1% and ?24.9% in the 1/2 and 1/4 original terrain height runs), mainly via varying the wind field and microphysical processes (low-level jet and cloud). Furthermore, the heavier rainfall happens over the mountains, while the more sensitive response of precipitation to varied topography and land use occurs over the plains. As the main microphysical conversion pathways of the rainwater budget, the greater peaks of PSMLT (snow melting into raindrops) and PGMLT (graupel melting into raindrops) present over the mountains but not the plains are responsible for the difference in precipitation between the mountains and plains. However, the more sensitive response of plain rainfall might be related to the rapid transit of rainfall over the plains but prolonged mountainous precipitation lasting together with relatively slowly varying microphysical conversion processes when airflows climb the mountains. The findings of this study have important strategic significance for improving the environment of ecosystems and strengthening the capacity for disaster prevention.摘要本研究利用数值试验方法, 定量评估了地形效应和土地利用类型的变化对中亚降水事件的影响. 考虑到可能的地表覆盖变化趋势, 绿洲化, 沙漠化和城市化可改变近地表湿热环境和边界层向上热通量, 导致区域平均降水增加3.0%, 减少5.3%和4.7%; 相对而言, 地形效应对降水的影响更为显著 (1/2和1/4原始地形高度时, 降水减少13.1%和24.9%), 主要影响途径是风场和微物理过程 (低空急流和云) 的变化. 以上研究结果对改善生态环境, 加强防灾能力具有重要战略意义.  相似文献   

6.
The Thornthwaite moisture index is useful as an indicator of the supply of water in an area relative to the demand under prevailing climatic conditions. This study examines the effects of long-term changes in climate (temperature and precipitation) on the Thornthwaite moisture index in the Delaware River basin. Temperature and precipitation estimates for doubled-CO2 conditions derived from three general circulation models (GCMs) are used to study the response of the moisture index for steady-state doubled-CO2 conditions and for gradual changes from present to doubled-CO2 conditions.Results of the study indicate that temperature and precipitation under doubled-CO2 conditions will cause the Thornthwaite moisture index to decrease, implying significantly drier conditions in the Delaware River basin than currently exist. The amount of decrease depends, however, on the GCM climatic-change scenario used. The results also indicate that future changes in the moisture index will be partly masked by natural year-to-year variability in temperature and precipitation.  相似文献   

7.
8.
Modern climatic changes in cloud cover over Russia are analyzed from standard ground-based meteorological observations in 1951–2000 and information on cloudiness obtained from the actinometrical observations in 1976–2000. In addition to studies of changes in total cloud amount, a special attention is paid to the distribution of basic forms of cloudiness with respect to their frequency. A spatial generalization of the results for large-scale regions (the European and Asian parts of Russia) allowed revealing dominant tendencies in cloud cover changes that are slightly related to seasons of year and reflect large-scale changes in cloud characteristics in the second half of the 20th century.  相似文献   

9.
A complex analysis is made of the variability of climatic, hydrological, and oceanological processes and environmental factors in the Baltic Sea region in the 20th century and at the beginning of the 21st century. The cause-and-effect relations between the climate dynamics over the North Atlantic and hydrometeorological conditions in the Baltic basin are established. Different variants of the North Atlantic Oscillation (NAO) indices were used as an atmospheric circulation intensity measure.  相似文献   

10.
The climatic impact of albedo changes associated with land-surface alterations has been examined. The total surface global albedo change resulting from major land-cover transformations (i.e. deforestation, desertification, irrigation, dam-building, urbanization) has been recalculated, modifying the estimates of Sagan et al., (1979). Tropical deforestation (11.1 million ha yr-1, or 0.6% yr-1, Lanly, 1982) ranks as a major cause of albedo change, although uncertainties in the areal extent of desertification could conceivably render this latter process of similar significance. The maximum total global albedo change over the last 30 yr for the various processes lies between 0.000 33 and 0.000 64, corresponding to a global temperature decrease of between 0.06 K and 0.09 K (scaled from the 1-D radiative convective model of Hansen et al., 1981), which falls well below the interannual and longer period variability.An upper bound to the impact of tropical deforestation was obtained by concentrating all vegetation change into a single region. The magnitude of this modification is equivalent to 35–50 yr of global deforestation at the current rate, but centered on the Brazilian Amazon. The climatic consequences of such tropical deforestation were simulated, using the GISS GCM (Hansen et al., 1983). In the simulation, a total area of 4.94 × 106 km2 of tropical moist forest was removed and replaced by a grass/crop cover. Although surface albedo increased from 0.11 to 0.19, the effect upon surface temperature was negligible. However, other climate parameters were altered. Rainfall decreased by 0.5–0.7 mm day-1 and both evapotranspiration and total cloud cover were reduced. The absence of a temperature decrease in spite of the increased surface albedo arises because the reduction in evapotranspiration has offset the effects of radiative cooling. The decrease in cloud cover also counteracts the increase in surface albedo. These locally significant changes had no major impact on regional (Hadley or Walker cells) or the global circulation patterns.We conclude that the albedo changes induced by current levels of tropical deforestation appear to have a negligibly small effect on the global climate.  相似文献   

11.
Using an ensemble of four high resolution (~25 km) regional climate models, this study analyses the future (2021–2050) spatial distribution of seasonal temperature and precipitation extremes in the Ganges river basin based on the SRES A1B emissions scenario. The model validation results (1989–2008) show that the models simulate seasonality and spatial distribution of extreme temperature events better than precipitation. The models are able to capture fine topographical detail in the spatial distribution of indices based on their ability to resolve processes at a higher regional resolution. Future simulations of extreme temperature indices generally agree with expected warming in the Ganges basin, with considerable seasonal and spatial variation. Significantly warmer summers in the central part of the basin along with basin-wide increase in night temperature are expected during the summer and monsoon months. An increase in heavy precipitation indices during monsoon, coupled with extended periods without precipitation during the winter months; indicates an increase in the incidence of extreme events.  相似文献   

12.
Recent land cover changes on the Tibetan Plateau: a review   总被引:6,自引:0,他引:6  
This paper reviews the land cover changes on the Tibetan Plateau during the last 50 years partly caused by natural climate change and, more importantly, influenced by human activities. Recent warming trends on the plateau directly influence the permafrost and snow melting and will impact on the local ecosystem greatly. Human activities increased rapidly on the plateau during the last half century and have significant impacts on land use. Significant land cover changes on the Tibetan Plateau include permafrost and grassland degradation, urbanization, deforestation and desertification. These changes not only impact on local climate and environment, but also have important hydrological implications for the rivers which originate from the plateau. The most noticeable disasters include the flooding at the upper reaches of Yangtze River and droughts along the middle and lower reaches of Yellow River. Future possible land cover changes under future global climate warming are important but hard to assess due to the deficits of global climate model in this topographically complex area. Integrated investigation of climate and ecosystems, including human-beings, are highly recommended for future studies.  相似文献   

13.
Presented is a method of studying possible climate-driven changes of river runoff characteristics, according to which the atmosphere-ocean general circulation models are used for computing the climate system impact, whereas the response of a watershed to given disturbance is estimated using the model of runoff formation in a river basin. The study is carried out for the Northern Dvina River basin. Estimates of possible changes (relative to the reference period) by the middle and late 21st century of such water regime characteristics as mean annual and maximum water discharge, as well as mean discharge values for the spring, summer-fall and winter seasons, are presented.  相似文献   

14.
如何量化土地利用/覆盖变化(LUCC)对区域气候的影响,是人类活动影响气候变化研究中的一个难点。本文利用卫星遥感反映过去三十年东亚区域土地利用变化数据,基于Mosaic近似考虑土地利用及其变化次网格尺度过程,量化了LUCC对地表辐射收支及气温的影响。过去三十年土地利用/覆盖变化对东亚区域总体呈降温效应(中国东部地区增温效应),LUCC导致的地表反照率变化影响地表辐射收支,中国和东亚区域的辐射强迫分别为-0.56 W m~(-2)和-0.50 W m~(-2)。  相似文献   

15.
We present an assessment of climate change impacts on the hydrologic regime of the 600,000 km2 Upper Paraguay River basin, located in central South America based on predictions of 20 Atmospheric/Ocean General Circulation Models (AOGCMs). We considered two climate change scenarios from the Intergovernmental Panel on Climate Change (IPCC) and two 30-years time intervals centered at 2030 and 2070. Projected temperature and precipitation anomalies estimated by the AOGCMs for the study site are spatially downscaled. Time series of projected temperature and precipitation were estimated using the delta change approach. These time series were used as input to a detailed coupled hydrologic-hydraulic model aiming to estimate projected streamflow in climate change scenarios at several control points in the basin. Results show that impacts on streamflow are highly dependent on the AOGCM used to obtain the climate predictions. Patterns of temperature increase persist over the entire year for almost all AOGCMs resulting in an increase in the evapotranspiration rate of the hydrological model. The precipitation anomalies show large dispersion, being projected as either an increase or decrease in precipitation rates. Based on these inputs, results from the coupled hydrologic-hydraulic model show nearly one half of projections as increasing river discharge, and other half as decreasing river discharge. If the mean or median of the predictions is considered, no discernible change in river discharge should be expected, despite the dispersion among results of the AOGCMs that reached +/?10 % in the short horizon and +/? 20 % in the long horizon, at several control points.  相似文献   

16.
Land cover is a crucial, spatially and temporally varying component of global carbon and climate systems. Therefore accurate estimation and monitoring of land cover changes is important in global change research. Although, land cover has dramatically changed over the last few centuries, until now there has been no consistent way of quantifying the changes globally.In this study we used long-term climate, soils data along with coarse resolution satellite observations to quantify the magnitude and spatial extent of global land cover changes due to anthropogenic processes. Differences between potential leaf area index, derived from climate-soil-leaf area equilibrium and actual leaf area index obtained from satellite data were used to estimate changes in land cover.Forest clearing for agriculture and irrigated farming in arid and semi-arid lands are found to be two major sources of climatically important land cover changes. Satellite derived Spectral Vegetation indices (SV I) and surface temperatures (T s) show strong impact of land cover changes on climatic processes. Irrigated agriculture in dry areas increased energy absorption and evapotranspiration (ET) compared to natural vegetation. On the other hand, forest clearing for crops decreased energy absorption andET. A land cover classification and monitoring system is proposed using satellite derivedSV I andT s that simultaneously characterize energy absorption and exchange processes. This completely remote sensing based approach is useful for monitoring land cover changes as well as their impacts on climate. Monitoring the spatio-temporal dynamics of land cover is possible with current operational satellites, and could be substantially improved with the Earth Observing System (EOS) era satellite sensors.  相似文献   

17.
To assess the influence of global climate change at the regional scale, we examine past and future changes in key climate, hydrological, and biophysical indicators across the US Northeast (NE). We first consider the extent to which simulations of twentieth century climate from nine atmosphere-ocean general circulation models (AOGCMs) are able to reproduce observed changes in these indicators. We then evaluate projected future trends in primary climate characteristics and indicators of change, including seasonal temperatures, rainfall and drought, snow cover, soil moisture, streamflow, and changes in biometeorological indicators that depend on threshold or accumulated temperatures such as growing season, frost days, and Spring Indices (SI). Changes in indicators for which temperature-related signals have already been observed (seasonal warming patterns, advances in high-spring streamflow, decreases in snow depth, extended growing seasons, earlier bloom dates) are generally reproduced by past model simulations and are projected to continue in the future. Other indicators for which trends have not yet been observed also show projected future changes consistent with a warmer climate (shrinking snow cover, more frequent droughts, and extended low-flow periods in summer). The magnitude of temperature-driven trends in the future are generally projected to be higher under the Special Report on Emission Scenarios (SRES) mid-high (A2) and higher (A1FI) emissions scenarios than under the lower (B1) scenario. These results provide confidence regarding the direction of many regional climate trends, and highlight the fundamental role of future emissions in determining the potential magnitude of changes we can expect over the coming century.
Katharine HayhoeEmail:
  相似文献   

18.
Under consideration are results of solving the problem of the river water content estimation under conditions of uncertainties of climate change forecasts and the catchment state with a reference to the Amu Darya River basin. When constructing regional climate models, one selected a multimodel approach using the results of several global models and a statistical downscaling method that made the climate scenarios more detailed. The estimates demonstrated that in the medium- and long-term perspective, the Amu Darya River runoff is expected to decrease. As a result of the Bayesian ideology application, using the calculations got with a total probability formula, a prognostic probability curve of an annual river runoff supply of the basin rivers was derived based on different weights given to the estimates of a mean value for different climate scenarios. Prognostic characteristics of the annual runoff for the Amu Darya basin rivers are estimated in a form acceptable for hydrologic and hydroeconomic application.  相似文献   

19.
This paper examines the impacts of climate change on various forms of water resources and on some critical water management issues. The study area is the Aliakmon river basin including three subbasins of hydrological interest located in northern Greece. A monthly conceptual water balance model was calibrated for each subbasin separately, using historical hydrometeorological data. This model was applied to estimate runoff values at the outlet of each subbasin under different climate change scenarios. Two equilibrium scenarios (UKHI, CCC) referring to years 2020, 2050 and 2100 and one transient scenario (UKTR) referring to years 2032 and 2080 were implied. It was found that reduction of the mean annual runoff and mean winter runoff values, as well as serious reduction of the summer runoff values would occur in all cases and basins. However, the runoff values for November, December and January were increased, whereas the spring runoff values were decreased, leading to a shifting of the wet period towards December and severe prolongation of the dry period. Moreover, the results indicate that all subbasins exhibit almost the same behavior under the different climate change scenarios, while the equilibrium scenarios (UKHI, CCC) seem to give more reasonable and consistent results than the transient scenario (UKTR). Finally, the negative effects of the climatically induced changes on the hydroelectric production and the water use for agricultural purposes in the study basin were assessed.  相似文献   

20.
Lake ice records used to detect historical and future climatic changes   总被引:1,自引:0,他引:1  
Historical ice records, such as freeze and breakup dates and the total duration of ice cover, can be used as a quantitative indicator of climatic change if long homogeneous records exist and if the records can be calibrated in terms of climatic changes. Lake Mendota, Wisconsin, has the longest uninterrupted ice records available for any lake in North America dating back to 1855. These records extend back prior to any reliable air temperature data in the midwestern region of the U.S. and demonstrate significant warming of approximately 1.5 °C in fall and early winter temperatures and 2.5 °C in winter and spring temperatures during the past 135 years. These changes are not completely monotonie, but rather appear as two shorter periods of climatic change in the longer record. The first change was between 1875 and 1890, when fall, winter, and spring air temperatures increased by approximately 1.5 °C. The second change, earlier ice breakup dates since 1979, was caused by a significant increase in winter and early spring air temperatures of approximately 1.3 °C. This change may be indicative of shifts in regional climatic patterns associated with global warming, possibly associated with the Greenhouse Effect.With the relationships between air temperature and freeze and break up dates, we can project how the ice cover of Lake Mendota should respond to future climatic changes. If warming occurs, the ice cover for Lake Mendota should decrease approximately 11 days per 1 °C increase. With a warming of 4 to 5 °C, years with no ice cover should occur in approximately 1 out of 15 to 30 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号