首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

2.
Zusammenfassung Röntgenographische Untersuchungen an Einkristallen von Arsenbrackebuschit, Pb2(Fe, Zn)(OH, OH2) (AsO4)2 (mit FeZn21), ergaben die RaumgruppeP21/m mita 0=7,763(1) Å,b 0=6.046(1) Å,c 0=9.022(1)Å, =112,5(1)°,V=391,2(1) Å3,Z=2 und x =6,54 g/cm3. Dreidimensionale Fouriersynthesen und Verfeinerungen nach der Methode der kleinsten Quadrate bis zu einemR-Wert von 0,073 zeigten, daß das neue Mineral strukturell einer Gruppe von Blei-Mineralen der allgemeinen Formel Pb2 Me(Z) (XO4) (YO4) — mitMe=Cu2+, Mn2+, Zn2+, Fe3+;X=S, Cr, V, As;Y=P, As, V;Z=OH, OH2 — zuzuordnen ist. Vertreter dieser Gruppe sind z. B. Tsumebit Pb2Cu(OH) (SO4) (PO4), Vauquelinit Pb2Cu(OH) (CrO4) (PO4) und auch Brackebuschit Pb2(Mn, Fe) (OH2) (VO4)2. Strukturelle Verwandtschaft besteht mit Tsumcorit Pb(Zn, Fe)2(OH, OH2)2(AsO4)2, einem weiteren Blei-Arsenat der gleichen Lagerstätte.
Structural investigation of arsenbrackebuschite
Summary X-ray single crystal work on arsenbrackebuschite, Pb2(Fe, Zn) (OH, OH2) (AsO4)2 (with FeZn21), gave space groupP21/m witha 0=7.763(1),b 0=6.046(1),c 0=9.022(1) Å, =112.5(1)°,V=391.2(1) Å3,Z=2 and x =6,54 g/cm3. 3-dimensional Fourier syntheses and least-squares refinement (finalR=0.073) showed that the new mineral belongs to a group of lead minerals with the general formula Pb2 Me(Z) (XO4) (YO4)Me=Cu2+, Mn2+, Zn2+, Fe2+, Fe3+;X=S, Cr, V, As; Y=P, As, V;Z=OH, OH2. Members of this group, are for example tsumebite, Pb2Cu(OH) (SO4)(PO4), vauquelinite, Pb2Cu(OH) (CrO4) (PO4), and brackebuschite, Pb2 (Mn, Fe) (OH2) (VO4)2. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(OH, OH2)2 (AsO4)2, another lead-arsenate from Tsumeb.


Mit 2 Abbildungen  相似文献   

3.
 The magnetic behavior of the Jahn-Teller structure braunite, (Mn2+ 1−yM y )(Mn3+ 6− x Mx)SiO12, is strongly influenced by the incorporation of elements substituting manganese. Magnetic properties of well-defined synthetic samples were investigated in dependence on the composition. The final results are presented in magnetic phase diagrams. To derive the necessary data, ac susceptibility and magnetization of braunites with the substitutional elements M = Mg, Fe, (Cu+Ti) and Cu were measured. Whereas the antiferromagnetic ordering temperature, T N , of pure braunite is hardly affected by the substitution of nonmagnetic Mg, it is rapidly suppressed by the substitution of magnetic atoms at the Mn positions. Typically for a concentration (x, y) ≥ 0.7 of the substituted elements, a spin glass phase occurs in the magnetic phase diagrams. Additionally, for the braunite system with Fe3+ substitutions, we observe in the concentration range 0.2 < x< 0.7 a double transition from the paramagnetic state, first to the antiferromagnetic state, followed by a transition to a spin glass state at lower temperatures. The unusual change of the magnetic properties with magnetic substitution at the Mn positions is attributed to the peculiar antiferromagnetic structure of braunite, which has been resolved recently. Received: 19 April 2001 / Accepted: 6 September 2001  相似文献   

4.
Tetraethylenepentamine-modified sugarcane bagasse (SCB) was prepared to improve its adsorption capacity and selectivity toward Cu2+. Adsorption performances of the modified sorbent for Cu2+ were studied in batch system. Separation of Cu2+ from Pb2+ by the modified sorbent fixed-bed column were studied under dynamic system with initial molar concentration ratio \(\left( {C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}} } \right)\) ranging from 1:1 to 1:100. The amount of Cu2+ and Pb2+ adsorbed on the saturated column was calculated by the elution curve. Batch experimental results showed that the adsorption capacity of the sorbent for Cu2+ increased from 0.12 to 0.21 mmol g?1 after modification. Dynamic adsorption results showed that the modified SCB had higher adsorption affinity toward Cu2+ than Pb2+. 0.07 mmol g?1 of adsorbed Pb2+ was pushed off by Cu2+ during the competitive adsorption process at \(C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}} = {\text{1:1}}.\) The breakthrough curves and adsorption kinetics of Cu2+ in the column could be fitted well by the Yoon–Nelson and modified Yoon–Nelson model, respectively. According to the elution curve, the amount of Cu2+ adsorbed on the fixed-bed column were 0.16, 0.16 and 0.15 mmol g?1, while that of Pb2+ were 0.0016, 0.0051 and 0.0094 mmol g?1 when \(C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}}\) increased from 1:1 to 1:10 and 1:100. Cu2+ could be selectively adsorbed and separated from Pb2+ by using the modified sorbent fixed-bed column.  相似文献   

5.
The crystal structure of a new compound, (H3O)[(UO2)(SeO4)(SeO2OH)] (monoclinic, P21/n, a = 8.6682(19), b = 10.6545(16), c = 9.846(2) Å, β = 97.881(17)°, V = 900.7(3) Å3), was solved by direct methods and refined to R 1 = 0.050. The structure contains two symmetrically different Se atoms. The Se1 site is coordinated by three O atoms as is characteristic of Se4+ cations. The Se2 site is coordinated by four O atoms and forms selenate anion SeO 4 2? . The structure is based on selenite-selenate sheets [(UO2)(SeO4)(SeO2OH)]? linked by the interlayer H3O? ions. The sheets are parallel to (101). The structure is compared to that of schmiederite, Pb2Cu2(SeO3)(SeO4)(OH)4.  相似文献   

6.
Zinclipscombite, a new mineral species, has been found together with apophyllite, quartz, barite, jarosite, plumbojarosite, turquoise, and calcite at the Silver Coin mine, Edna Mountains, Valmy, Humboldt County, Nevada, United States. The new mineral forms spheroidal, fibrous segregations; the thickness of the fibers, which extend along the c axis, reaches 20 μm, and the diameter of spherulites is up to 2.5 mm. The color is dark green to brown with a light green to beige streak and a vitreous luster. The mineral is translucent. The Mohs hardness is 5. Zinclipscombite is brittle; cleavage is not observed; fracture is uneven. The density is 3.65(4) g/cm3 measured by hydrostatic weighing and 3.727 g/cm3 calculated from X-ray powder data. The frequencies of absorption bands in the infrared spectrum of zinclipscombite are (cm?1; the frequencies of the strongest bands are underlined; sh, shoulder; w, weak band) 3535, 3330sh, 3260, 1625w, 1530w, 1068, 1047, 1022, 970sh, 768w, 684w, 609, 502, and 460. The Mössbauer spectrum of zinclipscombite contains only a doublet corresponding to Fe3+ with sixfold coordination and a quadrupole splitting of 0.562 mm/s; Fe2+ is absent. The mineral is optically uniaxial and positive, ω = 1.755(5), ? = 1.795(5). Zinclipscombite is pleochroic, from bright green to blue-green on X and light greenish brown on Z (X > Z). Chemical composition (electron microprobe, average of five point analyses, wt %): CaO 0.30, ZnO 15.90, Al2O3 4.77, Fe2O3 35.14, P2O5 33.86, As2O5 4.05, H2O (determined by the Penfield method) 4.94, total 98.96. The empirical formula calculated on the basis of (PO4,AsO4)2 is (Zn0.76Ca0.02)Σ0.78(Fe 1.72 3+ Al0.36)Σ2.08[(PO4)1.86(AsO4)0.14]Σ2.00(OH)1. 80 · 0.17H2O. The simplified formula is ZnFe 2 3+ (PO4)2(OH)2. Zinclipscombite is tetragonal, space group P43212 or P41212; a = 7.242(2) Å, c = 13.125(5) Å, V = 688.4(5) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern (d, (I, %) ((hkl)) are 4.79(80)(111), 3.32(100)(113), 3.21(60)(210), 2.602(45)(213), 2.299(40)(214), 2.049(40)(106), 1.663(45)(226), 1.605(50)(421, 108). Zinclipscombite is an analogue of lipscombite, Fe2+Fe 2 3+ (PO4)2(OH)2 (tetragonal), with Zn instead of Fe2+. The mineral is named for its chemical composition, the Zn-dominant analogue of lipscombite. The type material of zinclipscombite is deposited in the Mineralogical Collection of the Technische Universität Bergakademie Freiberg, Germany.  相似文献   

7.
The effect of CaO, Na2O, and K2O on ferric/ferrous ratio in model multicomponent silicate melts was investigated in the temperature range 1450–1550?°C at 1-atm total pressure in air. It is demonstrated that the addition of these network modifier cations results in an increase of Fe3+/Fe2+ ratio. The influence of network modifier cations on the ferric/ferrous ratio increases in the order Ca?<?Na?<?K. Some old controversial conceptions concerning the effect of potassium on Fe3+/Fe2+ ratio in simple model liquids are critically evaluated. An empirical equation is proposed to predict the ferric/ferrous ratio in SiO2–TiO2–Al2O3–FeO–Fe2O3–MgO–CaO–Na2O–K2O–P2O5 melts at air conditions.  相似文献   

8.
In the oxidation zone of the Berezovskoe gold deposit in the middle Urals, Russia, minerals of the beudantite–segnitite series (idealized formulas PbFe3 3+ AsO4)(SO4)(OH)6 and PbFe3 3+ AsO4)(AsO3OH)(OH)6, respectively) form a multicomponent solid solution system with wide variations in the As, S, Fe, Cu, and Sb contents and less variable P, Cr, Zn, Pb, and contents K. The found minerals of this system correspond to series from beudantite with 1.25 S apfu to S-free segnitite, with segnitite lacking between 1.57 and 1.79 As apfu. Segnitite at the Berezovskoe deposit contains presumably pentavalent Sb (up to 15.2 wt % Sb2O5 = 0.76 Sb apfu, the highest Sb content in the alunite supergroup minerals), which replaces Fe3+. The Sb content increases with increasing As/S value. On the contrary, beudantite is free of or very poor in Sb (0.00–0.03 Sb apfu). Many samples of segnitite are enriched in Cu (up to 8.2 wt% CuO = 0.83 Cu apfu, uncommonly high Cu content for this mineral) and/or in Zn (up to 2.0 wt% ZnO = 0.19 Zn apfu). Both Cu and Zn replace Fe. The generalized formula of a hypothetic end member of the segnitite series with 1 Sb apfu is Pb(Fe3+ M 2+Sb5+)(AsO4)2(OH)6, where M = Cu, Zn, Fe2+. The chemical evolution of beudantite–segnitite series minerals at the Berezovskoe deposit is characterized by an increase in the S/As value with a decrease in the Sb content from early to late generations.  相似文献   

9.
Comparison of polarized optical absorption spectra of natural Ca-rich diopsides and synthetic NaCrSi2O6 and LiCrSi2O6 clinopyroxenes, evidences as vivid similarities, as noticeable differences. The similarities reflect the fact that in all cases Cr3+ enters the small octahedral M1-site of the clinopyroxene structure. The differences are due to some iron content in the natural samples causing broad intense near infrared bands of electronic spin-allowed dd transitions of Fe2+(M1, M2) and intervalence Fe2+/Fe3+ charge-transfer transition, and by different symmetry and different local crystal fields strength of Cr3+ in the crystal structures. The positions of the spin-allowed bands of Cr3+, especially of the low energy one caused by the electronic 4 A 2g → 2 T 1g transition, are found to be in accordance with mean M1–O distances. The local relaxation parameter ε calculated for limCr 3+ → 0 from the spectra and interatomic á Cr - O ñ \left\langle {Cr - O} \right\rangle and á Mg - O ñ \left\langle {Mg - O} \right\rangle distances yields a very high value, 0.96, indicating that in the clinopyroxene structure the local lattice relaxation around the “guest” ion, Cr3+, deviates greatly from the “diffraction” value, ε = 0, than in any other known Cr3+-bearing systems studied so far. Under pressure the spin-allowed bands of Cr3+ shift to higher energies and decrease in intensity quite in accordance with the crystal field theoretical expectations, while the spin-forbidden absorption lines remain practically unshifted, but also undergo a strong weakening. There is no evident dependence of the Racah parameter B of Cr3+ reflecting the covalence of the oxygen-chromium bond under pressure: within the uncertainty of determination it may be regarded as practically constant. The values of CrO6 octahedral modulus, k\textpoly\textloc k_{\text{poly}}^{\text{loc}} , derived from high-pressure spectra of natural chromium diopside and synthetic NaCrSi2O6 kosmochlor are very close, ~203 and ~196 GPa, respectively, being, however, nearly twice higher than that of MgO6 octahedron in diopside, 105(4) GPa, obtained by Thompson and Downs (2008). Such a strong stiffening of the structural octahedron, i.e. twice higher value of k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} comparing with that of k\textMg2 + \textloc k_{{{\text{Mg}}^{2 + } }}^{\text{loc}} , may be caused by simultaneous substitution of Ca2+ by larger Na+ in the neighboring M2 sites at so-called jadeite-coupled substitution Mg2+ + Ca2+ → Cr3+ + Na+. It is also remarkable that the values of CrO6 octahedral modulus of NaCrSi2O6 kosmochlor obtained here are nearly twice larger than that of 90(16) GPa, evaluated by high-pressure X-ray structural refinement by Origlieri et al. (2003). Taking into account that the overall compressibility of the clinopyroxene structure should mainly be due to the compressibility of M1- and M2-sites, our k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} -value, ~196 GPa, looks much more consistent with the bulk modulus value, 134(1) GPa.  相似文献   

10.
Natural alexandrite Al2BeO4:Cr from Malyshevo near Terem Tschanka, Sverdlovsk, Ural, Russia, has been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine oxidation state and location of iron. The sample contains 0.3 wt% of total iron oxide. The 57Fe Mössbauer spectrum can be resolved into three doublets. Two of them with hyperfine parameters typical for octahedrally coordinated high-spin Fe3+ and Fe2+, respectively, are assigned to iron substituting for Al in the octahedral M2-site. The third doublet is attributed to Fe3+ in hematite. Electronic structure calculations in the local spin density approximation are in reasonable agreement with experimental data provided that expansion and/or distortion of the coordination octahedra are presumed upon iron substitution. The calculated hyperfine parameters of Fe3+ are almost identical for the M1 and M2 positions, but the calculated ligand-field splitting is by far too large for high-spin Fe3+ on M1.  相似文献   

11.

Background

The interaction between Ca-HAP and Pb2+ solution can result in the formation of a hydroxyapatite–hydroxypyromorphite solid solution [(PbxCa1?x)5(PO4)3(OH)], which can greatly affect the transport and distribution of toxic Pb in water, rock and soil. Therefore, it’s necessary to know the physicochemical properties of (PbxCa1?x)5(PO4)3(OH), predominantly its thermodynamic solubility and stability in aqueous solution. Nevertheless, no experiment on the dissolution and related thermodynamic data has been reported.

Results

Dissolution of the hydroxypyromorphite–hydroxyapatite solid solution [(PbxCa1?x)5(PO4)3(OH)] in aqueous solution at 25 °C was experimentally studied. The aqueous concentrations were greatly affected by the Pb/(Pb + Ca) molar ratios (XPb) of the solids. For the solids with high XPb [(Pb0.89Ca0.11)5(PO4)3OH], the aqueous Pb2+ concentrations increased rapidly with time and reached a peak value after 240–720 h dissolution, and then decreased gradually and reached a stable state after 5040 h dissolution. For the solids with low XPb (0.00–0.80), the aqueous Pb2+ concentrations increased quickly with time and reached a peak value after 1–12 h dissolution, and then decreased gradually and attained a stable state after 720–2160 h dissolution.

Conclusions

The dissolution process of the solids with high XPb (0.89–1.00) was different from that of the solids with low XPb (0.00–0.80). The average K sp values were estimated to be 10?80.77±0.20 (10?80.57–10?80.96) for hydroxypyromorphite [Pb5(PO4)3OH] and 10?58.38±0.07 (10?58.31–10?58.46) for calcium hydroxyapatite [Ca5(PO4)3OH]. The Gibbs free energies of formation (ΔG f o ) were determined to be ?3796.71 and ?6314.63 kJ/mol, respectively. The solubility decreased with the increasing Pb/(Pb + Ca) molar ratios (XPb) of (PbxCa1?x)5(PO4)3(OH). For the dissolution at 25 °C with an initial pH of 2.00, the experimental data plotted on the Lippmann diagram showed that the solid solution (PbxCa1?x)5(PO4)3(OH) dissolved stoichiometrically at the early stage of dissolution and moved gradually up to the Lippmann solutus curve and the saturation curve for Pb5(PO4)3OH, and then the data points moved along the Lippmann solutus curve from right to left. The Pb-rich (PbxCa1?x)5(PO4)3(OH) was in equilibrium with the Ca-rich aqueous solution.
Graphical abstractLippmann diagrams for dissolution of the hydroxypyromorphite–hydroxyapatite solid solution [(PbxCa1?x)5(PO4)3OH] at 25??C and an initial pH of 2.00.
  相似文献   

12.
Homogenized samples of raw clays resulting from two (2) different lots of natural clays from Maghnia (Algeria) have been assessed for their potential use in the removal of Pb2+ and Zn2+ ions from industrial liquid wastes (LW). Raw and acid-activated samples have been characterized by powder X-ray diffraction, FT-IR spectroscopy, electron microscopy (SEM), and X-ray fluorescence (XRF) and used as adsorbents for the removal of Pb2+ and Zn2+ ions from aqueous system using adsorption method under different conditions. The effect of factors including contact time, pH, and dosage on the adsorption properties of Pb2+ and Zn2+ ions onto clays was investigated at 25 °C. The obtained results revealed that the removal percentages of Pb2+ and Zn2+ ions, from both aqueous solution (AS) and LW, were varying between 90 and 98% for 40 min and optimal pH values ranged from 5 to 6 for Pb2+ and Zn2+ ions, respectively. The kinetics of both Pb2+ and Zn2+ ion adsorption fitted well with the pseudo-second-order model. Langmuir, Freundlich, and Temkin adsorption isotherms were used, and their constants were evaluated. The values of thermodynamic parameters, ΔH°, ΔS°, and ΔG° indicated that the adsorption of Pb2+ and Zn2+ ions was spontaneous and exothermic process in nature. The adsorption and desorption isotherms indicated that Pb2+ and Zn2+ adsorption to raw clays was reversible. The experimental results obtained showed that the raw clays from Maghnia (Algeria) had a great potential for removing Pb2+ and Zn2+ ions from industrial liquid wastes using adsorption method.  相似文献   

13.
Summary The stability of members of the lazulite-scorzalite solid-solution series, (Mg,Fe)Al2 (OH)2(PO4)2, was investigated as a function of T (505 to 675 °C), P (0.1 to 0.3 GPa) and Fe/Mg ratio in hydrothermal synthesis experiments. The oxygen fugacity was controlled by means of the Ni/NiO buffer. It was found that starting from end-member lazulite the stability of the solid-solution members strongly decreases with increasing content of scorzalite component. At 0.2 GPa pure lazulite decomposes at about 660 °C whereas at the same pressure a solid-solution with 80% of lazulite component is only stable up to 590 °C under the oxygen fugacity of the Ni/NiO buffer. The members of the lazulite-scorzalite solid-solution series with limiting composition coexist with an Fe-richer member of the (Mg,Fe)Al(PO4)O series and berlinite. The mixing behaviour of both the lazulite-scorzalite and the (Mg,Fe)Al(PO4)O solid-solution series disregarding small amounts of Fe3+ is interpreted in terms of a model on the basis of a simple mixture for the lazulite-scorzalite system and of an ideal mixture for the (Mg,Fe)Al(PO4)O series. With this model the interaction parameter which expresses the non-ideality of the lazulite-scorzalite solid-solution series amounts to . Zusammenfassung P-T Stabilit?t von Lazulith-Scorzalith Mischkristallen Die Stabilit?t der Glieder der Lazulith-Scorzalith Mischkristallreihe, (Mg, Fe)Al2(OH)2(PO4)2 wurde als Funktion der Temperatur (505 bis 675 °C), des Druckes (0.1 bis 0.3 GPa) und des Fe/Mg-Verh?ltnisses in hydrothermalen Syntheseversuchen untersucht. Die Sauerstoffugazit?t wurde mittels eines Ni/NiO-Puffer kontrolliert. Es konnte festgestellt werden, da? ausgehend vom Lazulith-Endglied die Stabilit?t der Mischkristalle mit zunehmendem Scorzalith-Gehalt stark abnimmt. Reiner Lazulith, MgAl2(OH)2(PO4)2 zerf?llt unter 0.2 GPa bei 660 °C, w?hrend ein Mischkristall mit 80 mol% Gehalt an Lazulith-Komponente nur bis 590 °C unter der Sauerstoffugazit?t des Ni/NiO-Puffers stabil ist. Hierbei koexistieren die Lazulith-Scorzalith Mischkristalle mit Grenzzusammensetzung mit eisenreicheren Mischphasen des Systems (Mg,Fe)Al(PO4)2O und Berlinit. Das Mischungsverhalten sowohl der Lazulith-Scorzalith- als auch der (Mg,Fe)Al(PO4)2O-Reihe wurde mit Hilfe eines quantitativen Modelles auf der Basis einer symmetrischen Mischung für Lazulith-Scorzalith und einer idealen Mischung für das System (Mg,Fe)Al(PO4)2O interpretiert. Mit Hilfe dieses Modelles wurde der Wechelwirkungsparameter , der die Nichtidealit?t der Lazulith-Scorzalith Mischreihe ausdrückt zu bestimmt. Received August 26, 1998; revised version accepted July 30, 1999  相似文献   

14.
Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.  相似文献   

15.
Health hazards from heavy metal pollution in water systems are a global environmental problem. Of similar concern is sludge that results from wastewater treatment due to unsatisfactory sludge management technology. Therefore, the effectiveness of using Mg–Al-layered double hydroxide in the removal of heavy metals from mine wastewater was tested and compared with that of calcium hydroxide [Ca(OH)2], which is a common treatment method for heavy metal removal. Initially, the mine wastewater contained cations of the heavy metals iron (Fe), zinc (Zn), copper (Cu), and lead (Pb). The Mg–Al-layered double hydroxides were able to remove 371, 7.2, 121, and 0.4 mg/L of these pollutants, respectively, using the co-precipitation method. The removal of these metals is most effective using 0.5 g Mg–Al-layered double hydroxide (Mg/Al molar ratio 4) and 20 min of shaking. Zn was removed by the formation of Zn(NO3)(OH)·H2O and Zn5(NO3)2(OH)8 when LDH, Mg/Al molar ratios of 4 and 2, respectively, were used. Similarly, Fe, Cu, and Pb were removed by the formation of Fe–Al-layered double hydroxide, Cu2(OH)3·NO3 and Pb4(OH)4(NO3)4, respectively. While Ca(OH)2 is also capable of reducing the heavy metal concentrations below the Japanese recommended values, this analysis shows that using 0.5 g Mg–Al-layered double hydroxide is a better treatment condition for mine wastewater, because it generates lower sludge volumes than 0.1 g of Ca(OH)2. The measured sludge volume was 1.5 mL for Mg–Al-layered double hydroxide and 2.5 mL for Ca(OH)2, a nearly twofold further reduction.  相似文献   

16.
Electron paramagnetic resonance (EPR) study of single crystals of chromium-doped forsterite grown by the Czochralski method in two different research laboratories has revealed, apart from the known paramagnetic centers Cr3+(M1), Cr3+(M2) and Cr4+, a new center \textCr 3+ (M 1)-V\textMg 2+ (M 2) {\text{Cr}}^{ 3+ } (M 1){-}V_{{{\text{Mg}}^{ 2+ } }} (M 2) formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values and A values of the 53Cr hyperfine splitting have been determined as follows: D = 33.95(3) GHz, E = 8.64(1) GHz, g = [1.9811(2), 1.9787(2), 1.9742(2)], A = [51(3), 52(2), 44(3)] MHz. The center has been identified by comparing EPR spectra with those of the charge-uncompensated ion Cr3+(M1) and the ion pair Cr3+(M1)–Li+(M2) observed in forsterite crystals codoped with chromium and lithium. It has been found that the concentration of the new center decreases to zero, whereas that of the Cr3+(M1) and Cr3+(M1)–Li+(M2) centers increases with an increase of the Li content from 0 up to ~0.03 wt% (at the same Cr content ~0.07 wt%) in the melt. The known low-temperature luminescence data pertinent to the centers under consideration are also discussed.  相似文献   

17.
Based on the results of more than 600 electron microprobe analyses of 25 minerals the distribution pattern of the Cr6+ impurity in vanadates, phosphates, and arsenates collected in oxidation zones of six ore deposits of the Urals was studied. Among them are Pb minerals of the brackebuschite, apatite, adelite, and tsumcorite groups and alunite supergroup, as well as carminite, cornwallite, and bayidonite. Vanadates and arsenates with brackebuschite-type structures show a high affinity to Cr6+. The maximum content of the Cr6+ impurity is characteristic of minerals with specified Fe3+ trivalent cations (ferribushmakinite, arsenbrackebuschite, and gartrellite) or Al3+ (plumbogummite and bushmakinite). The prevailing scheme of isomorphous substitution, according to which chromium enters into the compositions of these minerals, is heterovalent: Cr6+ + M 2+Т 5+ + M 3+ (where Т = V, As, P; M 3+ = Fe, Al; M 2+ = Сu, Zn), whereas the role of isovalent substitutions Cr6+ → S6+ and Cr6+ → Mo6+ in oxosalts that formed in mineral occurrences of the Urals is insignificant.  相似文献   

18.
Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C ? 3.5 to ? 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C ?5.2 to ?6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.  相似文献   

19.
Jarosite is an important mineral on Earth, and possibly on Mars, where it controls the mobility of iron, sulfate and potentially toxic metals. Atomistic simulations have been used to study the incorporation of Al3+, and the M2+ impurities Cd, Cu and Zn, in the (0 1 2) and (0 0 1) surfaces of jarosite. The calculations show that the incorporation of Al on an Fe site is favorable on all surfaces in which terminal Fe ions are exposed, and especially on the (0 0 1) [Fe3(OH)3]6+ surface. Incorporation of Cd, Cu or Zn on a K site balanced by a K vacancy is predicted to stabilize the surfaces, but calculated endothermic solution energies and the high degree of distortion of the surfaces following incorporation suggest that these substitutions will be limited. The calculations also suggest that incorporation of Cd, Cu and Zn on an Fe site balanced by an OH vacancy, or by coupled substitution on both K and Fe sites, is unfavorable, although this might be compensated for by growth of a new layer of jarosite or goethite, as predicted for bulk jarosite. The results of the simulations show that surface structure will exert an influence on uptake of impurities in the order Cu > Cd > Zn, with the most favorable surfaces for incorporation being (0 1 2) [KFe(OH)4]0 and (0 0 1) [Fe3(OH)3]6+.  相似文献   

20.
The crystal structure of fornacite Pb2(Cu,Fe)[CrO4(As,P)O4OH] from the Berezovskii deposit (Central Urals, Russia) was refined by X-ray powder diffraction data using the Rietveld method. Fornacite is monoclinic, space group P21/c, the unit cell dimensions are a = 8.09015(12), b = 5.90913(9), c = 17.4839(2) Å, β = 109.99(2), V = 785.5(3) Å3, and Z = 4. The structure was refined in the isotropic approximation of the atomic displacement parameters up to R p = 0.0516, R wp = 0.0692, R B = 0.0229, and R F = 0.0200. The fornacite structure is similar to that of minerals of the brackebuschite-group and consists of heteropolyhedral chains, built by the columns of edge-sharing Cu2+O6 octahedra connected with isolated Cr6+O4 and As5+O4 tetrahedra. The chains are linked by ninefold Pb2+ polyhedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号