首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As described by [Csanady, G.T., Hamilton, P., 1988. Circulation of slope water. Continental Shelf Research 8, 565–624], the flow regime over the slope of the southern Middle Atlantic Bight (MAB) includes a current reversal in which southwestward flow over the upper and middle slope becomes entrained in the northeastward current adjacent to the Gulf Stream. In this paper we use satellite-derived data to quantify how lateral motions of the Gulf Stream impact this current system. In our analysis, the Gulf Stream’s thermal front is delineated using a two-year time series of sea surface temperature derived from NOAA/AVHRR satellite data. Lateral motions of the Gulf Stream are represented in terms of temporal variations of the area, east of 73°W, between the Gulf Stream thermal front and the shelf edge. Variations of slope water flow within this area are represented by anomalies of geostrophic velocity as derived from the time series of the sea level anomaly determined from TOPEX/POSEIDON satellite altimeter data. A strong statistical relationship is found between Gulf Stream displacements and parabathic flow over the continental slope. It is such that the southwestward flow over the slope is accelerated when the Gulf Stream is relatively far from the shelf edge, and is decelerated (and perhaps even reversed) when the Gulf Stream is close to the shelf edge. This relationship between Gulf Stream displacements and parabathic flow is also observed in numerical simulations produced by the Miami Isopycnic Coordinate Model. In qualitative terms, it is consistent with the notion that when the Gulf Stream is closer to the 200-m isobath, it is capable of entraining a larger fraction of shelf water masses. Alternatively, when the Gulf Stream is far from the shelf-break, more water is advected into the MAB slope region from the northeast. Analysis of the diabathic flow indicates that much of the cross-slope transport by which the southwestward flow entering the study region is transferred to the northeastward flow exiting the region occurs in a narrow band roughly centered at 36.75°N, order 150 km north of Cape Hatteras. This transport, and thus the cyclonic circulation of the southern MAB, strengthens when the Gulf Stream is relatively close to the shelf edge, and weakens when the Gulf Stream is far from the shelf edge.  相似文献   

2.
Circulation     
Low-frequency current and temperature variability on the southeast US continental shelf during summer conditions of weak wind forcing and vertical stratification was found to be similar in many aspects to previous findings for winter, when stronger wind forcing and vertical homogeneity prevails. Subtidal variability in the outer shelf is dominated by the weekly occurrence of Gulf Stream frontal eddies and meanders. These baroclinic events strongly affect the balance of momentum in the outer shelf, but not at mid-shelf. A negative alongshore sea level slope of order −10−7 is required to balance mean along-shelf momentum at the shelf edge, similar to oceanic estimates, and can contribute to the observed northward mean flow over the shelf.Low-frequency flow at mid-shelf and coastal sea level fluctuations appear to occur as a forced wave response to local alongshore wind stress events that are coherent over the shelf domain. Momentum balances indicate a trapped wave response similar to the arrested topographic wave found in the mid-Atlantic Bight (CSANADY, 1978). Density driven currents from river discharge do not appear to be significant at mid-shelf. Cold, subsurface intrusions of deeper, nutrient rich Gulf Stream waters can occasionally penetrate to mid- and inner-shelf regions north of Cape Canaveral, causing strong phytoplankton and zooplankton responses. These events were observed following the simultaneous occurrence of upwellings from northward winds and Gulf Stream frontal eddies at the shelf break during periods when the Stream was in an onshore position. Subsurface Gulf Stream intrusions to mid-shelf occur only during the summer, when the shelf is vertically stratified and cross-shelf density gradients do not present a barrier as in winter.  相似文献   

3.
Summer upwelling on the continental shelf north of Cape Canaveral, Florida, has been previously observed to result from wind forcing. A two-layer, finite element model reproduces reasonably well the characteristics of the wind-driven upwelling in respect to location and magnitude. Model investigation also shows that upwelling results from offshore current forcing which is imposed through an along-shelf sea level slope. This sea level slope, which has been found to be of the order of −10−7, represents a mean Gulf Stream effect. The results suggest that the strongest upwelling events near Cape Canaveral occur when the wind and Gulf Stream forcings act together.  相似文献   

4.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

5.
The sensitivity of the North Atlantic gyre circulation to high latitude buoyancy forcing is explored in a global, non-eddy resolving ocean general circulation model. Increased buoyancy forcing strengthens the deep western boundary current, the northern recirculation gyre, and the North Atlantic Current, which leads to a more realistic Gulf Stream path. High latitude density fluxes and surface water mass transformation are strongly dependent on the choice of sea ice and salinity restoring boundary conditions. Coupling the ocean model to a prognostic sea ice model results in much greater buoyancy loss in the Labrador Sea compared to simulations in which the ocean is forced by prescribed sea ice boundary conditions. A comparison of bulk flux forced hindcast simulations which differ only in their sea ice and salinity restoring forcings reveals the effects of a mixed thermohaline boundary condition transport feedback whereby small, positive temperature and salinity anomalies in subpolar regions are amplified when the gyre spins up as a result of increased buoyancy loss and convection. The primary buoyancy flux effects of the sea ice which cause the simulations to diverge are ice melt, which is less physical in the diagnostic sea ice model, and insulation of the ocean, which is less physical with the prognostic sea ice model. Increased salinity restoring ensures a more realistic net winter buoyancy loss in the Labrador Sea, but it is found that improvements in the Gulf Stream simulation can only be achieved with the excessive buoyancy loss associated with weak salinity restoring.  相似文献   

6.
We consider the interannual variability of the intensity of the Gulf Stream and interannual fluctuations of seawater parameters in the Gulf Stream and in the Labrador Current during intense climate warming. We show that this intensity has increased during this period. The scales of fluctuations and their contribution to variance in the initial time series was determined from wavelet analysis of the Gulf Stream north wall. We noted a considerable decrease in water density of the main branch of the Gulf Stream, caused by the increase in temperature due to global climate warming, and an absence of trends in water density of the main branch of the Labrador Current.  相似文献   

7.
We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >106ml−1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.  相似文献   

8.
A nested-grid ocean circulation modelling system is used to assess the upper ocean response of the Scotian Shelf and adjacent slope to Hurricane Juan in September 2003. The nested-grid system consists of a fine-grid inner model covering the Scotian Shelf/slope and a coarse-grid outer model covering the northwest Atlantic Ocean. The model-calculated upper ocean response to Hurricane Juan is characterized by large divergent surface currents forced by the local wind forcing under the storm, and intense near-inertial currents in the wake of the storm. The sea surface temperature (SST) cooling produced by the model is biased to the right of the storm track and agrees well with a satellite-derived analysis. Over the deep water, off the Scotian Shelf, some of the near-inertial energy input by the storm is advected eastward by the Gulf Stream away from the storm track. The hurricane also generates shelf waves that propagate equatorward with the coastline on their right. In comparison with the outer model results, the inner model captures more meso-scale structures, greater SST cooling and stronger near-inertial currents in the study region.  相似文献   

9.
The principal meeting point of the subtropical and subpolar gyres of the North Atlantic is at the Tail of the Grand Banks where the two western boundary currents, the Gulf Stream and Labrador Current, join forces as the North Atlantic Current, which flows northeast almost 10° in latitude before turning east as the Subpolar Front, ultimately feeding the Labrador and Nordic Seas and the thermohaline overturning. After the Gulf Stream turns into the North Atlantic Current at the Grand Banks, its role shifts from a wind-driven current to a link in the large-scale thermohaline circulation. The processes governing this transition, in particular the continued transport north of mass and heat, are questions of considerable climatic importance. The North Atlantic Current is a very unusual western boundary current in that its mass transport decreases in the downstream direction.The mean path and annual shifting of the eastward flowing Gulf Stream is conjectured to result from a time-varying shelf-Slope Water overflow of waters from the Labrador shelf. As the volume transport increases in fall and deepens the Slope Water pycnocline, it forces the Gulf Stream south and deepens the Sargasso Sea thermocline as well. The timing of these steps governs the June maximum in baroclinic transport. There is some evidence that this ‘back-door’ gyre interaction may operate on interannual time scales as well. The question then arises whether the shelf-to-Slope Water Sea transport also plays a role in governing the separation of the Gulf Stream.The widely observed robustness of the width of the Gulf Stream appears to result from a tight balance between the release of available potential energy and the kinetic energy of the current. A broader current would release more energy than can be ‘disposed of’, while a narrower current requires more kinetic energy than is available to sustain it. It is shown that for plausible dissipation rates in the recirculation gyres, the amount of energy that needs to be expelled from the Gulf Stream is such a small fraction of that advected through as to be vitually undetectable, hence the stiffness of the current.  相似文献   

10.
The Gulf Stream system has been numerically simulated with relatively high resolution and realistic forcing. The surface fluxes of the simulation were obtained from archives of calculations from the Eta-29 km model which is an National Center for Environment Prediction (NCEP) operational atmospheric prediction model; synoptic fields are available every 3 hour. A comparison between experiments with and without surface fluxes shows that the effect of the surface wind stress and heat fluxes on the Gulf Stream path and separation is closely related to the intensification of deep circulations in the northern region. Additionally, the separation of the Gulf Stream and the downslope movement of the Deep Western Boundary Current (DWBC) are reproduced in the model results. The model DWBC crosses under the Gulf Stream southeast of Cape Hatteras and then feeds the deep cyclonic recirculation east of the Bahamas. The model successfully reproduces the cross-sectional vertical structures of the Gulf Stream, such as the asymmetry of the velocity profile, and this structure is sustained along the downstream axis. The distribution of Root Mean Square (RMS) elevation anomaly of the model shows that the eddy activity of the Gulf Stream is realistically reproduced by the model physics. The entrainment of the upper layer slope current into the Gulf Stream occurs near cross-over; the converging cross-stream flow is nearly barotropic. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
稳态海面地形(MDT)是大地测量学家和海洋学家共同关心的一个重要物理量。该文基于WHU2009全球平均海面高模型和GO_CONS_GCF_2_TIM_R3纯GOCE重力场模型,采用几何法经高斯滤波处理后确定了全球稳态海面地形,与CLS09及DTU10M DTs相比,其差值均方根RMS均小于8 cm,表明该文结果具有较高的精度;根据地转流方程计算了相应的表层地转流,与GRACE重力场模型GGM03S结果相比,GOCE重力场模型所确定的表层地转流在墨西哥湾流、黑潮及厄加勒斯海流等海域均体现了更强的流速和更多的细部特征,验证了GOCE在洋流探测中的优势。  相似文献   

12.
Upper ocean (above 750 m) temperature structure of the northwestern subtropical Atlantic, including the Gulf Stream and a recirculation gyre south of the Stream, is characterized using primarily bathythermograph (BT) data collected between 1950 and 2003. Geostrophic calculations, using mean temperature-salinity relationships to compute dynamic height, are used to estimate velocities and transports. The mean annual Gulf Stream transport at 72° W relative to 750 m, 36.1 Sv, is approximately equal to the sum of the transport of the Florida Current, 32.0 Sv, and a shallow recirculation gyre described by Wang and Koblinsky [Journal of Physical Oceanography 26 (1996) 2462-2479], 5.5 Sv. The annual cycle of geostrophic transport relative to 750 m at 72° W is in phase with both an earlier published annual cycle of transport relative to 2000 m derived from hydrographic observations and the annual cycle of Florida Current transport measured indirectly by a submarine cable (i.e., maximum transports are observed in the summer and minimum in the fall, early winter). However, simple Sverdrup dynamics are inadequate to explain these cycles as maximum Sverdrup transports extend from winter to summer, while observed transports are minimum (maximum) in fall/winter (summer). The annual cycles derived from the BT data of the size of the shallow southern recirculation gyre, Gulf Stream position and upper layer transport (relative to 300 m) are in phase (maximum size, northern position and transport in fall) and consistent with the WK results derived from altimetry. However, the shallower annual cycles are out of phase with the deeper signals (i.e., maximum for the former (latter) are observed in fall (summer)). Decadal signals after 1965 in Gulf Stream position, geostrophic transport relative to 450 m, and the size of a recirculation gyre south of the Stream are approximately in phase as observed for the annual signal. This gyre and the shallow WK gyre exhibit the same horizontal structure, however, the decadal signal propagates deeper into the water column (at least to 700 m). The eastern expansion and contraction of the gyre on decadal time-scales is correlated with propagating SST signals. The sampling implications of these findings are addressed.  相似文献   

13.
The distributions of iodide, iodate and total iodine were determined along a transect from the Sargasso Sea and across the Gulf Stream to the continental shelf of the South Atlantic Bight during November 1990. The western boundary of the Gulf Stream at the outer shelf-upper slope was characterized by steeply sloping isotherms and isopleths of iodide and iodate, resulting from a dome of cold water that was rich in iodate and nearly devoid of iodide at the slope. Both the mid and the inner shelf were relatively well mixed vertically. The concentration of iodate in the surface waters decreased shoreward from >0.3 μM in the Sargasso Sea/Gulf Stream/outer shelf, to 0.29 μM in the midshelf, 0.19 μM in the outer-inner shelf and 0.11 /IM in the inner-inner shelf. Concomitantly, the concentration of iodide increased from <161 nM to 175 nM, 257 nM and 300 nM. The concentration changes were more abrupt in the inner-inner shelf within about 30 km from the shore. There was no evidence of significant concentrations of organic iodine. These distributions of iodide and iodate suggest that the South Atlantic Bight may act as a geochemical processor of dissolved iodine. Iodate is added to the shelf during topographically induced upwelling and frontal exchange with the Gulf Stream. In the shelf waters, iodate is reduced to iodide in situ. Iodide is exported from the shelf to the Gulf Stream which may eventually further transport it to the ocean interior. A ☐ model calculation suggests that 28% and 43% of the iodate added to the Bight and the inner shelf, respectively, are converted to another form in these waters, almost all of which is iodide. About a third of the reduction of iodate to iodide in the Bight occurs in the inner shelf. Thus, the inner shelf may be the most geochemically active zone within the Bight. The residence times of iodide relative to its production and that of iodate relative to its removal are 3.1 and 3.6 months in the Bight and 0.9 and 1.8 months in the inner shelf.  相似文献   

14.
Recruitment of the short-finned squid Illex illecebrosus to adult feeding grounds on the shelf off eastern Canada constitutes an important transition from warm food-limited Gulf Stream waters to cold and productive slope and coastal waters. The impact of such gradients was addressed by analysing the gladius growth of 1585 juvenile squid collected across the Gulf Stream and shelf/slope fronts during research cruises conducted between 1979 and 1989. Temperature- and size-specific growth potential, as estimated by a bioenergetics model, were compared to measured gladius growth rates and revealed that young Illex were energetically expensive and food-limited in Gulf Stream waters (their hatching environment). Growth condition improved inshore, where metabolic costs decreased and more food became available. Similar patterns were observed when size-specific growth rates of squid caught across the temperature and food gradients were directly compared. In addition, transport processes in the Gulf Stream and slope water played an important role in providing access and retention in favourable areas. Juvenile onshore migration seems to be driven by elevated food requirements and involves physiological adaptations to compensate for decreasing temperatures. The individual "success" in terms of growth and survival may depend, however, on access to concentrated patches of food which, in turn, will be determined by timing and the transport dynamics of the main water masses.  相似文献   

15.
The stream-coordinates mean structure of the Gulf Stream at 68°W is derived using new methods for both defining stream coordinates and interpreting bottom pressure and inverted echo sounder travel times collected during the extensive Synoptic Ocean Prediction experiment. These new analyses provide pictures of the vertical structure of Gulf Stream flows that are demonstrably dynamically consistent with the density field at all depths, in contrast to previous work that relies on simple vertical interpolations to fill gaps between sparse current meter measurements. This new view of the Gulf Stream suggests a slightly higher total mean transport, with the increases coming from both baroclinic and barotropic components, and slightly stronger recirculation cells, particularly on the southern side. The recirculation of the Gulf Stream appears to have a weak baroclinic component, perhaps 10% of the total. A significant advantage of the methodology is the ability to obtain sensible vertical and horizontal gradients of currents and density so that the vertical and cross-stream structures of the components of the mean potential vorticity can be clearly imaged. One new feature from this calculation is that the along-stream gradient of the cross-stream velocity, a term that is often ignored in potential vorticity analyses, is non-negligible (though small) and is asymmetric about the current axis. Both the derived structure and implied dynamics of the circulation can be significantly altered by small changes to the method of calculating daily stream coordinates, e.g., by carefully filtering out observations in rings or not. Arrays of pressure-equipped inverted echo sounders provide the opportunity (at reasonable cost) for properly defining the stream coordinates of energetic jets such as the Gulf Stream.  相似文献   

16.
袁卓建 《海洋科学》1988,12(1):55-57
在南美洲海岸以外有一股寒流,叫做秘鲁寒流,从南往北流动,到赤道附近又向西流去,成为南赤道海流。但是,每年的圣诞节前后,却常常有一股暖流从北往南进入该地区,使海水温度升高。人们称此现象为厄尔尼诺现象。  相似文献   

17.
Time variation of the cold water mass of the Kuroshio south of Japan, which was formed in August 1975 and disappeared in August 1980, is studied. Its lifecycle includes several repetitions of spin-down and spin-up processes. The spin-down (or the spin-up) process is accompanied by warming (cooling) of the cold water mass and descending (ascending) motion of the inner water. Expansion of the cold water area is also associated with the spin-up period while shrinking occurs in the spin-down period. The rate of spin-down of the cold water mass is approximately equal to that of the Gulf Stream rings. The spin-up process is not observed in the Gulf Stream rings and the longer lifetime of the cold water mass off Japan, in comparison with the Gulf Stream rings, is due to the existence of the spin-up periods. The spin-up process tends to occur in late spring to summer, and it seems to be related to the seasonal variation in intensity of the Kuroshio.  相似文献   

18.
Analyses of two years (1992 and 1993) of high-resolution sea surface temperature satellite images of the southern Mid Atlantic Bight (MAB), showed that unusually extensive overhang of shelf water occurs episodically, and coherently over along shelf distances of several 100 km. These episodes are dubbed overrunning of the Slope Sea by shelf water. The overrunning volume has a “face” and a “back” (southern and northern limit). It transports substantial quantities of shelf water southward, and does not retreat onto the shelf, but eventually joins the western edge of the Gulf Stream in the vicinity of Chesapeake Bay. The combined analyses of satellite imagery and various in situ data further demonstrated that the shelf waters overrunning the Slope Sea were not mere surface features but reached depths between 40 and 60 m. Results confirm previous concepts on shelf circulation, shelf–slope exchange and fate of shelf water. They also shed new light on shelf water budget: overrunning of the Slope Sea and southwest transport by upper slope current constitutes an important conduit for shelf water transport. Winter storms move the shelf–slope front, and with it shelf water, offshore to distances 10–40 km. The offshore displacement of shelf water can be related to the onshore veering of the Gulf Stream near Cape Hatteras, producing a blocking effect on the shelf circulation. Such a blocking effect of the southwestward flow of shelf water in the MAB appeared to be the reason for the overrunning of shelf water off New Jersey. In addition, the excess fresh water discharge from the St. Lawerence was also observed to be related to the overflow of shelf water off New Jersey.  相似文献   

19.
The structure of the current and temperature fields along 30°N over the mid-shelf and western Blake Plateau in the South Atlantic Bight has been investigated by combining two moored instrument experiments in the summer of 1981. The shelf moorings were part of the second Georgia Bight Experiment (GABEX-II) and the Gulf Stream mooring data on the Blake Plateau have been described by LEE and WADDELL (1983). Empirical Orthogonal Functions (EOF) in the frequency domain are used to extract shelf and Gulf Stream coherent current and temperature fluctuations in the two- to 14-day period band. Three modes are found, of which the first two are interpreted as Gulf Stream meander and frontal eddy circulations. The difference between them is chiefly in the shelf motions; the first mode is primarily restricted to the shelf edge, whereas the second mode penetrates to the 40m isobath. The third mode dominates at mid-shelf and is the only mode that shows strong coherence with the windstress and local sea-level fluctuations. The relationship of the modes to the occurrence of mid- and inner-shelf cold sub-surface intrusions, generated by shelf-edge Gulf Stream frontal eddies, is examined. All three modes are found to play a role in the initiation, growth and decay of these structures.  相似文献   

20.
The eddy formation determined as an anticyclonic spin-off eddy of the Gulf Stream is analysed from the CTD data of surveys made in the Gulf Stream region. The differences in its structure and conditions of formation from cyclonic eddies of this type observed previously are examined. Barotropic instability of the Gulf Stream's main jet is considered as a possible reason for such unstable disturbances existing at the south boundary of the Gulf Stream.Translated by M. M. Trufanov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号