首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The collisional pumping of H216O and H218O masers in hot dense gas-dust clouds has been simulated numerically. New data on the rate coefficients for collisional transitions from Faure et al. (2007) were used in the calculations. The possibility of detecting H218O emission in 22.2-GHz H216O maser sources is investigated. The medium is shown to become optically thick in the H218O lines for which an inverted level population is observed at H2O column densities of ∼1019–1020 cm−2. A simultaneous observation of H218O emission and H216O maser emission in the same source will allow the physical conditions in the gas-dust cloud to be refined.  相似文献   

2.
The pumping of 22.2-GHz H2O masers in the circumstellar envelopes of asymptotic giant branch stars has been simulated numerically. The physical parameters adopted in the calculations correspond to those of the circumstellar envelope around IK Tau. The one-dimensional plane-parallel structure of the gas-dust cloud is considered. The statistical equilibrium equations for the H2O level populations and the thermal balance equations for the gas-dust cloud are solved self-consistently. The calculations take into account 410 rotational levels belonging to the five lowest vibrational levels of H2O. The stellar radiation field is shown to play an important role in the thermal balance of the gas-dust cloud due to the absorption of emission in rotational-vibrational H2O lines. The dependence of the gain in the 22.2-GHz maser line on the gas density and H2O number density in the gas-dust cloud is investigated. Gas densities close to the mean density of the stellar wind, 107?108 cm?3, and a high relative H2O abundance, more than 10?4, have been found to be the most likely physical conditions in maser sources.  相似文献   

3.
We have theoretically studied the influence of a far-infrared radiation (FIR) field from Hπ region on the cooling by C and O atoms, C+ ion and CO molecule in a photodissociation region, and a molecular cloud associated with Hπ region (hereinafter referred as HI region) at low temperatures (T k≤200 K). Comparisons have been made for cooling with and without FIR for two extreme abundances (10−4 and 10−7) of the mentioned species for temperatures ranging between 10 and 200K and an hydrogen particle density range 10 cm−3n o≤ 107 cm3. The cooling by the species with low line-splitting (CI, Cπ and CO) is significantly influenced by the radiation field for temperaturesT k < 100 K while the effect of radiation field on cooling by OI is significant even at higher temperatures (T k > 100 K). The effect of FIR field on the cooling of CO from low rotational transitions is negligibly small, whereas it is considerable for higher transitions. In general, the cooling terms related to the short-wavelength transitions are more affected by FIR than those related to longer wavelengths. It is also demonstrated here that in the determination of thermal structure of an HI region the dust grains play an important role in the heating of gas only through photoelectron emission following irradiation by far-ultraviolet (FUV) radiation, as the infrared radiation from the dust is too small to have substantial effect on the cooling. It is found that in the Hπ /HI interface the FIR field from grains in the Hπ region is not capable of modifying the temperature of the warmest regions but does so in the inner part where the temperature is low enough.  相似文献   

4.
Observations of the circumstellar maser emission from the long-period variable star Y Cas in the 1.35-cm water-vapor line are presented. The observations were performed with the RT-22 radio telescope at the Pushchino Radio Astronomy Observatory (Astrospace Center, Lebedev Physical Institute, Russian Academy of Sciences) in the period 1982–2005. The variations in the integrated flux Fint in the H2O line correlate with the visual light curve of the star. The phase delay Δ? between the Fint variations and the light curve is 0.2–0.4P (P is the period of the star). The H2O maser Y Cas belongs to transient sources: peaks of high maser activity alternate with intervals of a low emission level when the H2O-line flux does not exceed (0.1–0.5) × 10?20 W m?2. A “superperiod” of ~5.7 yr was found in the occurrence of activity peaks. A particularly strong maximum of maser radio emission took place at the end of 1997, when the flux Fint reached 15.6 × 10?20 W m?2. A model for the H2O maser variability in Y Cas is discussed. The variability is caused by a periodic action of shock waves driven by stellar pulsations. The H2O maser flares may be associated with short-lived episodes of enhanced mass loss by the star or with the propagation of a particularly strong shock wave when a planet orbiting the star passes through its periastron.  相似文献   

5.
Leech  K.  Crovisier  J.  Bockelée-Morvan  D.  Brooke  T. Y.  Hanner  M. S.  Altieri  B.  Keller  H. U.  Lellouch  E.  Lim  T. 《Earth, Moon, and Planets》1997,78(1-3):81-83
Spectra of comet C/1995 O1 (Hale-Bopp) were obtained with the Infrared Space Observatory (ISO) at medium resolution with the grating spectrometer in the photometer (PHT-S) and/or at high resolution with the short wavelength spectrometer (SWS) and long wavelength spectrometer (LWS) in April 1996 (Crovisier et al., 1996), September–October 1996 (Crovisier et al., 1997a, b) and December 1997, at distances from the Sun of 4.6, 2.9 and 3.9 AU, respectively. For the first time, high-resolution spectra of a comet covering the entire 2.4 to 200 μm spectral range were obtained. The vibrational bands of H2O, CO2 and CO are detected in emission with PHT-S. Relative production rates of 100:22:70 are derived for H2O:CO2:CO at 3 AU pre-perihelion. H2O is observed at high spectral resolution in the ν3 group of bands around 2.7 μm and the ν2 group around 6 μm with SWS, and in several rotational lines in the 100–180 μm region with LWS. The high signal-to-noise ratio of the ν3 band observed on September–October 1996 allows accurate determinations of the water rotational temperature (28 K) and of its ortho-to-para ratio(2.45 ± 0.10, which significantly differs from the high temperature limit and corresponds to a spin temperature of 25 K). Longward of 6 μm the spectrum is dominated by dust thermal continuum emission, upon which broad emission features are superimposed. The wavelengths of the emission peaks correspond to those of Mg-rich crystalline olivine (forsterite). In the September–October 1996 spectra, emission features at 45 and 65 μm and possible absorption at 2.9–3.2 μm suggest that grains of water ice were present at 3 AU from the Sun. The observations made post-perihelion in late December 1997 led to the detections of H2O, CO2 and CO at 3.9 AU from the Sun (Figures 1 and 2). The production rates were ≈3.0 × 1028,3.5 × 1028 and ≈1.5 × 1029 s-1, respectively. This corresponds to H2O:CO2:CO = 100:110:500 and confirms that at such distances from the Sun, cometary activity is dominated by sublimation of CO and CO2 rather than by H2O. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Maser emission from the circumstellar envelopes of four late-type red supergiants has been mapped with milli-arcsecond resolution using MERLIN1. The wind is driven by radiation pressure on dust and the structure and kinematics of the masing regions reflect the dust properties. The unbeamed radius of water maser blobs, ∼ 1012 m, has been measured for the first time. The velocity gradient is used to derive the dust absorption coefficient which increases with radius from ≤ 0.1 to ≤ 1.0 m2 kg−1. Comparison with laboratory studies suggests that small crystalline grains are formed near the star and are annealed into astronomical silicates at larger distances. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

7.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

8.
We present the results of our infrared observations of WR 140 (=V1687 Cyg) in 2001–2010. Analysis of the observations has shown that the J brightness at maximum increased near the periastron by about 0 m .3; the M brightness increased by ∼2 m in less than 50 days. The minimum J brightness and the minimum L and M brightnesses were observed 550–600 and 1300–1400 days after the maximum, respectively. The JHKLM brightness minimum was observed in the range of orbital phases 0.7–0.9. The parameters of the primary O5 component of the binary have been estimated to be the following: R(O5) ≈ 24.7R , L(O5) ≈ 8 × 105 L , and M bol(O5) ≈ −10 m . At the infrared brightness minimum, T g ∼ 820–880 K, R g ≈ 2.6 × 105 R , the optical depth of the shell at 3.5 μm is ∼5.3 × 10−6, and its mass is ≈1.4 × 10−8 M . At the maximum, the corresponding parameters are ∼1300 K, 8.6 × 104 R , ∼2 × 10−4, and ∼6 × 10−8 M ; the mean rate of dust inflow (condensation) into the dust structure is ∼3.3 × 10−8 M yr−1. The mean escape velocity of the shell from the heating source is ∼103 km s−1 and the mean dispersal rate of the shell is ∼1.1 × 10−8 M yr−1.  相似文献   

9.
The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z>6 only stars of relatively high mass (>3 M) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3–40 M using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (>3 M) asymptotic giant branch stars can only be dominant dust producers if SNe generate ≲3×10−3 M of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.  相似文献   

10.
Summary. Red giants are sometimes surrounded by envelopes, the result of the ejection of stellar matter at a large rate (/yr) and at a low velocity (10 km/s). In this review the envelopes are discussed and the relation between stars and envelope: what stars combine with what envelopes? The envelope emits radiation by various processes and has been detected at all wavelengths between the visual and the microwave range. I review the observations of continuum radiation emitted by dust particles and of rotational transitions of molecules, where these molecules have been excited by thermal or by non–thermal (“maser”) processes. I discuss mainly the oxygen–rich stars, those of spectral type M, and only briefly the closely related carbon–rich stars. By and large the density in the envelope is well described by spherically symmetric outflow at a constant velocity; on the time scale needed to flow from stellar surface to the outermost layers, i.e. yr, the loss of mass is sometimes interrupted suddenly after which the envelope becomes “detached” from the star. The temperature decreases when moving outward; heat input is by friction between dust particles and gas and cooling occurs by line radiation by various molecules, especially by HO. The molecular composition is determined by formation in an equilibrium process deep in the atmosphere and by destruction in the outer parts of the outflow by interstellar UV radiation (H, CO, HO) or by depletion due to condensation on dust grains (SiO); dust particles of silicate material solidify where the radiation temperature is decreased to about 1000 K, and this is at a few stellar radii. The various continuum spectra produced by the dust particles in different stars are well modelled by a simple model of the density and dust temperature distribution plus the assumption that the particles consist of “dirty silicate”, i.e. silicate with Fe and Al ions added. A large range of optical depths, , is observed: from 0.01 to 10. In envelopes with large optical depth the star itself can no longer be detected directly. Model calculations also show that the momentum in the outflow, i.e. is provided by radiation pressure on the dust particles followed by the complete transfer of this momentum to the gas. The mass–loss rate itself, , is not determined by radiation pressure but by dynamic processes in the region below the dust condensation layer. When is sufficiently large its measurement, that of the stellar luminosity, and that of the outflow velocity, , permit the determination of , i.e. the total outflow rate, without making assumptions about the abundance of the dust particles or of the molecular gases. Detached envelopes have been seen in a few cases. Thermal molecular radiation is faint compared to the maser emission but has been measured in distant stars, e.g. in stars near the galactic center. Different molecules outline different “spheres” around the star. The largest sphere (a radius of 0.1 pc) is outlined by an emission line belonging to the CO() transition. Higher rotational transitions of CO give smaller diameters. A comparison of CO () and () fluxes in stars with very thick envelopes leads to the conclusion that an abrupt decrease in the mass–loss rate occurred some ten thousand years ago. Three molecules produce each several maser lines: SiO, HO and OH. Several new HO lines have recently been discovered; their exploration has hardly been started. The high intensity of the maser lines makes interferometry possible and hence detailed mapping. The SiO lines are formed deep in the envelope, below the dust condensation layer. OH maser lines are produced farthest out, HO lines in between. The excitation mechanisms for most maser lines is understood globally, but detailed models are lacking, largely because the problem is non–linear and the solution of the radiative transfer equation requires a highly anisotropic geometry. The geometrical and kinematical properties of the 1612 MHz OH maser, which in many objects is very strong, are explained by a thin shell of OH; because the angular diameter of the shell can be measured directly and the linear diameter can be determined from the difference in the time of maximum flux of blue and red maser peaks, the distance of the shell and of the star can be measured. The presence or absence of individual maser lines appears to depend on the value of and is well described by a sequence called “Lewis' chronology”. The central star is a long–period variable with a period of 300 days or longer and with a large luminosity amplitude (). Evidence is given that each star has the maximum luminosity it will reach during its evolution and that it is a thermally–pulsing Asymptotic–Giant–Branch star (TP–AGB) with a main–sequence mass between 1 and 6 . Stars of the same main–sequence mass, , have different mass–loss rates, in some cases by a factor of 10. The mass–loss rate probably increases with time, and the highest mass–loss rates are reached toward the end of the evolution. Stars with higher ultimately reach higher mass–loss rates. The calibration of the main–sequence mass is reviewed. Most Mira variables with mass loss have a mass between 1.0 and 1.2 . OH/IR stars with periods over 1000 days have no counterparts among the carbon stars and thus have . Stars as discussed in this review have been found only in the thin galactic disk and in the bulge. Finally I review several recently proposed scenarios for TP–AGB evolution in which mass loss is taken into account. These scenarios represent the observations quite well; their major short–coming is the lack of an explanation why the central stars are always large–amplitude, long–period variables and why such stars are the ones with high mass–loss rates. Received: 10 January 1996  相似文献   

11.
Lisse  C. M.  Fernández  Y. R.  A'hearn  M. F.  Kostiuk  T.  Livengood  T. A.  Käufl  H. U.  Hoffmann  W. F.  Dayal  A.  Ressler  M. E.  Hanner  M. S.  Fazio  G. G.  Hora  J. L.  Peschke  S. B.  Grün  E.  Deutsch  L. K. 《Earth, Moon, and Planets》1997,78(1-3):251-257
We present infrared imaging and photometry of the bright, giant comet C/1995 O1 (Hale-Bopp). The comet was observed in an extended infrared and optical observing campaign in 1996–1997. The infrared morphology of the comet was observed to change from the 6 to 8 jet “porcupine” structure in 1996 to the “pinwheel” structure seen in 1997; this has implications for the position of the rotational angular momentum vector. Long term light curves taken at 11.3 μm indicate a dust production rate that varies with heliocentric distance as ∶ r−1.4. Short term light curves taken at perihelion indicate a rotational periodicity of 11.3 hours and a projected dust outflow speed of ∶ 0.4 km s−1. The spectral energy distribution of the dust on October 31, 1996 is well modeled by a mixture of 70% silicaceous and 30% carbonaceous non-porous grains, with a small particle dominated size distribution like that seen for comet P/Halley (McDonnell et al., 1991), an overall dust production rate of 2 × 105 kg s−1, a dust-to-gas ratio of ∶5, and an albedo of 39%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We present new observations of the molecular gas distribution in the merging system Arp 299. The first observation set was obtained with the Canada–France–Hawaii Telescope near-IR camera Redeye and the second set comes from the IRAM Plateau de Bure interferometer (combined with short spacings observed at the IRAM 30 m Telescope). In the near IR, H2 ν=1→0 S(1) and Brγ line maps are globally identical: there is bright emission not only at the two galaxy nuclei but also in numerous extranuclear star forming regions. Moreover, there is weaker emission localized in filaments between and around the two nuclei. These filaments correspond to a dust lane observed in optical images from HST. 12CO(1→0), 13CO(1→0) and HCN(1→0) maps are also presented. The structure of the12CO(1→0) map is very close to the NIR observations: the same bright galaxy nuclei and star-forming regions, the same filaments, but half of the total flux is found in weak extended emission. Strong HCN emission is observed in the nucleus A indicating the presence of a large amount of dense gas. Nucleus B1 is weak in 12CO(1→0) emission while nucleus A and star-forming regions C-C′ show more normal 13CO/12CO ratios. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Owens  Alan  Oosterbroek  T.  Orr  A.  Parmar  A. N.  Schulz  R.  Tozzi  G.P. 《Earth, Moon, and Planets》1997,77(3):293-298
We report the detection of soft X-rays from comet C/1995 O1 (Hale-Bopp) by the Low Energy Concentrator Spectrometer (LECS) on-board the X-ray satellite, BeppoSAX. The observations took place on 1996 September 10–11 approximately 1 day after a large dust outburst (Schulz et al., 1997–1999). After correcting for the comets motion, a 7σ enhancement was found centered (2.1 ± 1.3) x 105 km from the position of the nucleus, in the general solar direction. The total X-ray luminosity in the 0.1–2.0 keV energy band is 5 x 1016 erg s−1 which is at least a factor of ∼ 3 greater than measured by the Extreme Ultraviolet Explorer (EUVE)4 days later and suggests that the bulk of the emission measured by the LECS is related to the dust outburst. The extracted LECS spectrum is well fit by a thermal bremsstrahlung-like distribution of temperature of 0.29 ± 0.06 keV - consistent with that observed in other comets. We find no evidence for fluorescent carbon or oxygen emission and place 95% confidence limits of 1.0 x 1015 and 7.8 x 1015 erg s−1 to narrow line emission at 0.28 and 0.53 keV, respectively. We calculate that if such lines are present, they constitute at most 18% of the 0.1–2.0 keV continuum luminosity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The ionization and dissociation of molecular hydrogen by the ultraviolet (UV) radiation of the parent star lead to the formation of hydrogen atoms with an excess of kinetic energy and, thus, are an important source of suprathermal hydrogen atoms in the upper atmosphere of exoplanet HD 209458b. Contemporary aeronomical models did not investigate these processes because they assumed the fast local thermalization of the hot atoms of hydrogen by elastic collisions. However, the kinetics and transfer of these atoms were not calculated in detail, because they require the solving of the Boltzmann equation for a nonthermal atom population. This work estimates the effect of the UV radiation of the parent star and the accompanying photocleacton flux on the production of the suprathermal fraction of atomic hydrogen in the H2 → H transition region. We also consider the formation of the escaping flux of Hatoms created by this effect in the upper atmosphere of HD 209458b. We calculate the production rate and energy spectrum of the hydrogen atoms with excess kinetic energy during the dissociation of H2. Using the numerical stochastic model created by Shematovich (2004) for a hot planetary corona, we investigate the molecular-scale kinetics and transfer of suprathermal hydrogen atoms in the upper atmosphere and the emergent flux of atoms evaporating from the atmosphere. The latter is estimated as 3.4 × 1012 cm−2 s−1 for a moderate stellar activity level of UV radiation, which leads to a planetary atmosphere evaporation rate of 3.4 × 109 g s−1 due to the process of the dissociation of H2. This estimate is close to the observational value of ∼1010 g s−1 for the rate of atmospheric loss of HD 209458b.  相似文献   

15.
A. H. Sadoyan 《Astrophysics》2006,49(2):211-217
This article discusses the gravitational radiation of rotating and oscillating stellar configurations with an incompressible fluid equation of state. The method used here makes it possible to determine the frequencies and amplitudes of the gravitational waves for arbitrary values of the central densities. At the densities corresponding to neutron stars, the major parameters of the gravitational radiation are consistent with previous results from more realistic models. Depending on the central density, stellar configurations with an incompressible fluid can emit gravitational waves over a wide range of frequencies, from 10−2 to 104 Hz. __________ Translated from Astrofizika, Vol. 49, No. 2, pp. 243–250 (May 2006).  相似文献   

16.
Using the Submillimeter Array (SMA), we have obtained high angular-resolution (∼1″) interferometric maps of the submillimeter (0.88 mm) continuum and CO J=3–2 line from IRAS 22036+5306 (I 22036), a bipolar pre-planetary nebula (PPN) with knotty jets discovered in our HST SNAPshot survey of young PPNe. In addition, we have obtained supporting lower-resolution (∼10″) 2.6 mm continuum and CO, 13CO J=1–0 observations with the Owens Valley Radio Observatory (OVRO) interferometer. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I 22036, implying a very substantial mass (0.02–0.04M ) of large (i.e., radius ≳1 mm), cold (≲50 K) dust grains associated with I 22036’s toroidal waist. The CO J=3–2 observations show the presence of a very fast (∼220 km s−1), highly collimated, massive (0.03M ) bipolar outflow with a very large scalar momentum (about 1039 g cm s−1), and the characteristic spatio-kinematic structure of bow-shocks at the tips of this outflow. The fast outflow in I 22036, as in most PPNe, cannot be driven by radiation pressure. The large mass of the torus suggests that it has most likely resulted from common-envelope evolution in a binary, however it remains to be seen whether or not the time-scales required for the growth of grains to millimeter sizes in the torus are commensurate with such a formation scenario. The presence of the torus should facilitate the formation of the accretion disk needed to launch the jet. We also find that the 13C/12C ratio in I 22036 is very high (0.16), close to the maximum value achieved in equilibrium CNO-nucleosynthesis (0.33). The combination of the high circumstellar mass (i.e., in the torus and an extended dust shell inferred from ISO far-infrared spectra) and the high 13C/12C ratio in I 22036 provides strong support for this object having evolved from a massive (≳4M ) progenitor in which hot-bottom-burning has occurred.  相似文献   

17.
The new black hole candidate XTE J1817-330, discovered on 26 January 2006 with RXTE, was observed with XMM-Newton and INTEGRAL in February and March 2006, respectively. The X-ray spectrum is dominated by the thermal emission of the accretion disk in the soft band, with a low absorption column density (N H=1.77(±0.01)×1021 cm−2) and a maximum disk temperature kT max=0.68(±0.01) keV, plus a power law component, with the photon index decreasing from 2.66±0.02 to 1.98±0.07 between the two observations. Several interstellar absorption lines are detected in the X-ray spectrum, corresponding to O I, O II, O III, O VII and Fe XXIV. We constrain the distance to the system to be in the range 1–5 kpc.   相似文献   

18.
The infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with the SEST (Cerro La Silla, Chile) telescope on the 2.6-mm 12CO spectral line and with SIMBA on the 1.2-mm continuum are given. The 12CO observations revealed the existence of several molecular clouds, two of which (clouds 1 and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω = 4.6 · 10−14 s−1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has also been found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colors typical for a non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shows the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that the possibility that this extension might also be rotating like cloud 2 is not excluded. In the vicinity of these extensions there are condensations resembling HH objects. Published in Astrofizika, Vol. 51, No. 1, pp. 29–40 (February 2008).  相似文献   

19.
We searched for the CSJ = 2 – 1 emission towards 29 southern H2O and H2O/OH masers and 1 OH maser with the SEST radio telescope. We detected and mapped 24 CS emitting regions probably associated with 27 H2O masers. The C34SJ = 2 – 1 and COJ = 1 – 0 lines were also observed at the grid positions closest to the CS peaks. Four cores were mapped in the CSJ = 5 – 4 and C34SJ = 2 – 1 lines.  相似文献   

20.
We examine the possible emission of gravitational waves from white dwarfs undergoing self-similar oscillations driven by the energy released during relaxation of their differential rotation. Two distributions of the initial angular momentum are considered. It is assumed that 1% of the energy dissipated by a rotating white dwarf is converted into the energy of self-similar oscillations and, therefore, into gravitational radiation. The relative amplitude of the gravitational radiation from an isolated white dwarf at a distance of 50 pc is found to be less than 10−27. The emission from the galactic population of white dwarfs may create a background which overlaps the random cosmological background of gravitational radiation for the improved decihertz detectors currently being proposed. __________ Translated from Astrofizika, Vol. 49, No. 2, pp. 231–242 (May 2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号