首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Large yardang formations, found on Earth and Mars, have not been detected in Venera 15/16 imagery of Venus.  相似文献   

2.
Magellan imagery of Venus reveals a variety of geological features (e.g., coronae and impact craters) which may have been present on the early Earth and preceded the formation of Archean greenstone belts.  相似文献   

3.
Enhanced Mariner 9 imagery of Mars, which has been used in short term phenomenon study with Viking imagery, does not have a resolution useful for analysis of short term geological phenomenon such as slump formation.  相似文献   

4.
Christian Klimczak 《Icarus》2010,209(1):262-270
The origin of Pantheon Fossae, a complex structure consisting of radial graben in the center of the Caloris basin, Mercury, has been debated since the structure was first imaged by the MESSENGER spacecraft. Three different formation hypotheses have been suggested, i.e. an origin associated with the Apollodorus impact into a previously domed Caloris basin floor, graben formation as surface expressions of dike intrusions and basin-interior uplift alone. In order to test the scenarios, detailed observations from the currently available imagery were compared to the proposed formation mechanisms. We evaluate these origin hypotheses by means of detailed interpretations of the graben characteristics and patterns, by comparing to radial structures from Earth and Venus, and by mechanical analyses for each formation hypothesis. Results indicate that the formation of Pantheon Fossae as the result of doming in the central part of the Caloris basin is more likely than it having formed in association with a radially symmetric stress field centered at or near the Apollodorus crater, that would have been created by a magma chamber or been superimposed on a pre-existing dome due to impact mechanics.  相似文献   

5.
Lava tubes and basaltic caves are common features in volcanic terrains on Earth. Lava tubes and cave-like features have also been identified on Mars based on orbital imagery and remote-sensing data. Caves are unique environments where both secondary mineral precipitation and microbial growth are enhanced by stable physico-chemical conditions. Thus, they represent excellent locations where traces of microbial life, or biosignatures, are formed and preserved in minerals. By analogy with terrestrial caves, caves on Mars may contain a record of secondary mineralization that would inform us on past aqueous activity. They may also represent the best locations to search for biosignatures. The study of caves on Earth can be used to test hypotheses and better understand biogeochemical processes, and the signatures that these processes leave in mineral deposits. Caves may also serve as test beds for the development of exploration strategies and novel technologies for future missions to Mars. Here we review recent evidence for the presence of caves or lava tubes on Mars, as well as the geomicrobiology of lava tubes and basaltic caves on Earth. We also propose future lines of investigation, including exploration strategies and relevant technologies.  相似文献   

6.
Several Snowball Earth periods, in which the Earth has been (almost) totally glaciated, are known from Earth history. Neither the trigger for the initiation, nor the reason for the ending of such phases, are well understood. Here we discuss some mechanical effects of the impact of asteroids 5–10 km in diameter on the Snowball Earth environment. An impact of this scale is the largest impact that is statistically predictable for 10–60 Myr time periods. The impact cratering itself (shock waves, impact crater formation) is not powerful enough to change the natural climate evolution path on Earth. However, the products of impact (mainly—water vapor) can be quickly distributed over a substantial part of the globe, influencing the global circulation (e.g., facilitating cloud formation). It is a question for future studies to confirm if such an event (which is possible statistically during this interval) may or may not have influenced the global climate of the Snowball Earth, and/or contributed to deglaciation.  相似文献   

7.
The view of the Earth’s polar motion as a completely deterministic process has been called into question in the past decades, because no long-term prediction can be made. At the same time, no fundamental restrictions currently exist in the problem of a long-term prediction of the Earth’s rotation. Determining the boundaries of predictability is related to identifying the regime of the Earth’s polar motion. IERS data for the period 1962–2007 have been used to study the regime of the Earth’s polar motion. Analysis of the plots of polhodes reveals peculiarities in the variations of the pole’s coordinates X and Y in certain intervals along the time axis. The data in the interval from 2003 to 2006 have been analyzed in greatest detail: a model for the Chandler and annual oscillations has been constructed and relations between the parameters of these oscillations have been determined; the shift of the instantaneous pole on the phase plane and the Poincare plane has been investigated. As a result, we have found features inherent in chaotic motion (intermittency) and calculated the period (32 years) of the possible repetitions of such anomalies, as confirmed by our analysis of the plots of polhodes. The intervals where the peculiarities in the motion of the Earth’s instantaneous pole manifest themselves are compared with the intervals of the inflections on the plots of variations in the length of the day (LOD).  相似文献   

8.
The rapid recovery of meteorites mitigates the exposure of astromaterials to the terrestrial environment and subsequent contamination. Modern fireball observatories have enabled the more accurate triangulation of fireball trajectories, which has aided in the location of strewn fields, in the case of meteorite-producing events. Despite this advancement, most meteorite searches still use manual searching to locate any meteorite falls, which is often labor-intensive and has a slow coverage rate (km2 day−1). Recent work has begun exploring the application of drone technology to the recovery of meteorites; however, most of this work has focused on falls in arid environments. Our study examines the utilization of drones with thermal imaging technology to aid in the recovery of meteorites that have fallen on a snow-covered field. We created a simulated strewn field that included meteorite specimens as well as Earth rocks with similar properties (“meteowrongs”). Thermal imagery was utilized to determine whether the thermal contrast between meteorites and snow could aid in the identification of meteorites. We found that the thermal contrast was significant enough that meteorites were readily identifiable within thermal images; however, it was not significant enough to distinguish between the meteorites and the meteowrongs. The utilization of thermal imagery in conjunction with visible imagery has the potential to aid in the rapid recovery of meteorites in snow-covered landscapes.  相似文献   

9.
Abstract— The COMET program is a program for the collection of micron to submicron interplanetary dust particles in low Earth orbits. Since collection takes place as the Earth crosses a given meteor stream, the particles are mainly of cometary origin. The grain remnants, located at their impact positions on high purity metallic collectors, are analysed in the laboratory for chemical and isotopical identification. The COMET-1 experiment took place in 1985 October, during encounter with the Draconid meteor stream, related to the Giacobini-Zinner comet. The fluence of extraterrestrial grains that had impacted our detectors was ~10x higher than the value of the mean meteroid fluence at ~1AU, which suggests that most of the grains originated from the Giacobini-Zinner comet. One of the most important results of their chemical analysis was that ~90% of them are enriched in low Z elements (C and O have undoubedly been identified). They could contain a CHON phase similar to that observed in the close environment of Halley's nucleus. The first imagery of the grain remnants by field emission scanning electron microscopy suggests that they are very low density aggregates still present at the impacting positions which, in most cases, are very different from the impact craters observed for the same mean relative velocity for full grains of the same size. These results show that the COMET program has constituted an important step towards the analysis of cometary material and the understanding of the evolution of the early Solar System.  相似文献   

10.
Recently,Near Earth Objects(NEOs) have been attracting great attention,and thousands of NEOs have been found to date.This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun-Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits.It is possible for such an NEO to be temporarily captured by Earth;its orbit would thereby be changed and it would become an Earth-orbiting object after a small increase in its velocity.From the point of view of the Sun-Earth-NEO restricted three-body system,it is possible for an NEO whose Jacobian constant is slightly lower than C1 but higher than C3 to be temporarily captured by Earth.When such an NEO approaches Earth,it is possible to change its orbital energy to nearly the zero velocity surface of the three-body system at point L1 and make the NEO become a small satellite of the Earth.Some such NEOs were found;the best example only required a 410 m s-1 increase in velocity.  相似文献   

11.
Recendy,Near Earth Objects (NEOs) have been attracting great attention,and thousands of NEOs have been found to date.This paper examines the NEOs'orbital dynamics using the framework of an accurate solar system model and a SunEarth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits.It is possible for such an NEO to be temporarily captured by Earth; its orbit would thereby be changed and it would become an Earth-orbiting object after a small increase in its velocity.From the point of view of the Sun-Earth-NEO restricted three-body system,it is possible for an NEO whose Jacobian constant is slightly lower than C1 but higher than C3 to be temporarily captured by Earth.When such an NEO approaches Earth,it is possible to change its orbital energy to nearly the zero velocity surface of the three-body system at point L1 and make the NEO become a small satellite of the Earth.Some such NEOs were found; the best example only required a 410 m s-1 increase in velocity.  相似文献   

12.
Analyzing the tectonics of planets and their satellites we use all the information available from the studies of the Earth and other celestial bodies such as the Moon, Mars and Mercury. An important condition in such analysis is naturally the scale of the phenomena compared. Most surface structures of Venus are known to have no direct analogues on the surface of the present Earth, with its global systems of mid-oceanic ridges, deep trenches and vast lithospheric plates. This might be due to the sharp differences in the present thermal regimes of the Earth and Venus. It has already been suggested in numerous papers that the key to the genesis of the Cytherean surficial structures must be looked for in the geodynamics of the Early Precambrian Earth.Such an approach appears very logical indeed since the rheology of the present Cytherean crust must be closer to that of the Precambrian rigid lithosphere of the Earth which is as if floating in the low-viscous asthenosphere. An attempt has therefore been made to evaluate certain elements in the tectonics of Venus through the theological properties of its crust comparing structural formation in the low-viscous layers of the Earth crust in the Early Precambrian with data on the morphology of structures on the surface of Venus.  相似文献   

13.
From modeling the evolution of disks of planetesimals under the influence of planets, it has been shown that the mass of water delivered to the Earth from beyond Jupiter’s orbit could be comparable to the mass of terrestrial oceans. A considerable portion of the water could have been delivered to the Earth’s embryo, when its mass was smaller than the current mass of the Earth. While the Earth’s embryo mass was growing to half the current mass of the Earth, the mass of water delivered to the embryo could be near 30% of the total amount of water delivered to the Earth from the feeding zone of Jupiter and Saturn. Water of the terrestrial oceans could be a result of mixing the water from several sources with higher and lower D/H ratios. The mass of water delivered to Venus from beyond Jupiter’s orbit was almost the same as that for the Earth, if normalized to unit mass of the planet. The analogous per-unit mass of water delivered to Mars was two?three times as much as that for the Earth. The mass of water delivered to the Moon from beyond Jupiter’s orbit could be less than that for the Earth by a factor not more than 20.  相似文献   

14.
On Earth, the Archaean aeon lasted from 4.0 to 2.5 Ga; it corresponds to a relatively stable period. Compared with today, internal Earth heat production was several times greater resulting in high geothermal flux that induced the genesis of rocks such as komatiites and TTG suites, which are no more generated on Earth since 2.5 Ga. Similarly, the details of plate tectonic modalities (plate size, plate motion rate, plate thickness, tectonic style, irregular crustal growth, etc...) were different of modern plate tectonics. Both atmosphere and ocean compositions have been progressively modified and the greater heat production favoured the development of hydrothermalism and therefore created niches potentially favourable for the development of some forms of life. Catastrophic events such as giant meteorite falls or world-sized glaciations drastically and suddenly changed the environment of Earth surface, thus being able to strongly affect development of life. Even if specialists still debate about the age of the oldest indubitable fossil trace of life, Archaean can be considered as having been extremely favourable for life development and diversification.  相似文献   

15.
In the context of dust samples collections in space, the COMET experiment (Collecte en Orbite de Matière ExtraTerrestre) was proposed for the first time in 1982. The idea of such an experiment was to collect grains with identified cometary parent body, instead of mixing all extraterrestrial contributions present in low Earth orbit. It was thus proposed to install collectors inside hermetic boxes, to have these boxes mounted outside a space station, orbiting the Earth and to have the capability of choosing the time and duration of the collection. Since 1985, the COMET experiment has been exposed three times to space (COMET-1, in October 1985 during the encounter of the Earth with the Draconid meteor stream; the EUROMIR-95 instrument, exposing collectors, during the crossing by the Earth of the Orionid meteor stream associated to comet P/Halley and, in November 1998, during the crossing by the Earth of the Leonid meteor stream associated to comet Temple-Tuttle, COMET-99). Specific collection techniques, and corresponding analytical procedures have been developed. The collected particles are the only ones accessible in the laboratory with a known cometary origin, before the return to Earth (2006) of the Stardust mission, which will collect cometary grains in the tails of comet Wild 2. Such a challenge justifies the tremendous efforts brought into play, and that are summarized here.  相似文献   

16.
Meteors are streaks of light seen in the upper atmosphere when particles from the inter-planetary dust complex collide with the Earth. Meteor showers originate from the impact of a coherent stream of such dust particles, generally assumed to have been recently ejected from a parent comet. The parent comets of these dust particles, or meteoroids, fortunately, for us tend not to collide with the Earth. Hence there has been orbital changes from one to the other so as to cause a relative movement of the nodes of the meteor orbits and that of the comet, implying changes in the energy and/or angular momentum. In this review, we will discuss these changes and their causes and through this place limits on the ejection process. Other forces also come into play in the longer term, for example perturbations from the planets, and the effects of radiation pressure and Poynting–Robertson drag. The effect of these will also be discussed with a view to understanding both the observed evolution in some meteor streams. Finally we will consider the final fate of meteor streams as contributors to the interplanetary dust complex.  相似文献   

17.
A planet the size of the Earth or the Moon is much like a blast furnace; it produces slag-like rock floating on a mass of liquid metal. In the Earth, the mantle and crust are the slag, and the core is the liquid iron.In the Moon, there is clear chemical evidence that liquid iron was separated from the mass, but the Moon has no detectable iron core. This points to some kind of joint origin, which put the metallic iron in the Earth's core. For instance, the Moon might have been a detached part of the rocky matter of the Earth, as suggested by G. H. Darwin in the 1880's. But is is also clear, as Ringwood has pointed out, the there has been an enormous loss of volatiles from both Earth and Moon, but especially from the Moon. It may be that the Moon formed from a sediment-ring of small bodies detached somehow from the outer parts of the Earth, as Öpik has suggested.If tektites come from the Moon, then Darwin's suggestion is probably right; if they come from the Earth, then the Öpik-Ringwood sediment ring may be the origin.Paper presented at the AAAS Symposium on the Early History of the Earth and Moon in Philadelphia on 28 December 1971.  相似文献   

18.
The possibility of investigating the sky region near the Galactic center with instruments of the INTEGRAL orbital astrophysical gamma-ray observatory by the method of its occultation by the Earth and the Moon is considered. Existing engineering constraints on the observing conditions, such as the admissible orientation of the INTEGRAL satellite relative to the direction to the Sun and the performance of measurements only outside the Earth??s radiation belts, are taken into account. Long time intervals during which the lunar occultation center passes at angular distances of less than 2° from the Galactic center have been found. Such events occur under the adopted constraints two or three times per year without any correction of the INTEGRAL satellite orbit. The orbit can be corrected to reduce the angular distance between the Moon and the Galactic center in occultation events. The required velocity impulses do not exceed several meters per second. The possibility of the Galactic center being occulted by the Earth has been analyzed. In this case, to perform measurements, the admissible (in radiation exposure) height of the working segment of the orbit should be reduced to 25 000 km, which can be problematic. At the same time, part of the Galaxy??s equatorial region is shadowed by the Earth for a time long enough to carry out the corresponding experiments.  相似文献   

19.
It is generally accepted that the Earth-Moon separation is at present increasing due to tidal dissipation. Values for the corresponding lunar deceleration and the related slowing of the Earth's rotation are obtained from astronomical observations and by studies of ancient eclipses. Extrapolation of these values leads to a close approach of the Earth and Moon 1–3 b.y. BP. However, justification for such an extrapolation is required. It has been hypothesized that periodicities in the Precambrian stromatolites can be used to determine the number of solar days in a lunar month prior to 500 m.y. BP. These data combined with dynamic constraints on the number of solar days in a lunar month indicate a close approach of the Earth and Moon at 2.85 ± 0.25 b.y. BP. It is suggested that the mare volcanism on the Moon and high-temperature Archean volcanism on the Earth prior to this date were caused by tidal heating. It is also suggested that the strong tidal heating during a close approach could have contributed to the formation of the first living organisms.  相似文献   

20.
In this paper we present a new symbolic processor specially suited for the Earth rotation theory. This processor works with a more general kind of Poisson series called Kinoshita series, which has resulted to be very useful in the Earth rotation theory. Its structure is adapted for dealing with the more general analytical expressions that appear in the Earth rotation theory. This new algebraic processor has been successfully used for computing different contributions to the nutation series of the rigid Earth.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号