首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
针对北斗三号卫星导航系统(BDS-3)五频点观测数据和非差非组合精密定轨理论,介绍了非差非组合观测模型和参数估计方法,提出了利用K均值聚类算法(K-means)进行测站选取的策略,分析并讨论了非差非组合方法的优势.通过K-means和人工经验选取两种测站选取方案,分别使用BDS-3五频,B1C+B2a、B1I+B3I三种频率选择方式,利用30个观测站,对BDS-3中轨道地球卫星(MEO)和倾斜地球同步轨道卫星(IGSO)进行精密定轨处理.结果表明:当接收B1C+B2a频点观测数据测站不足时,非差非组合方法可以通过利用五频观测数据增加观测数据数量、优化测站布局,提高定轨精度,与B1C+B2a频率组合相比,五频定轨结果切向(A)、法向(C)、径向(R)和三维(3D)方向均方根(RMS)月均值分别提升0.003 m、0.004 m、0.003 m和0.007m;K-means算法选取的测站与人工经验选取相比,分布更加合理,定轨精度更高,三种频率选择方案MEO卫星3D RMS月均值精度分别提升0.009 m、0.017 m和0.009 m.  相似文献   

2.
提出了一种基于卫星穿刺点位置的区域电离层增强方法,采用非差非组合精密单点定位模型提取得到测站上空各个卫星斜向的电离层延迟值,结合IGS发布的DCB文件,考虑电离层延迟薄层假设理论,利用穿刺点空间三维坐标进行区域内插。试验结果表明,本方法能利用较为稀疏的参考站点进行区域建模,能为流动站提供与实际值偏差0.1 m以内的电离层延迟先验值;同时,流动站利用电离层增强信息,在保证定位结果精度的同时,相较于非差非组合模型,N、E、U 3个方向收敛到10 cm以内的时间均在30 min内,提升50%以上。  相似文献   

3.
在测站较多的卫星定位大网解算时,一般采用非差单点定位的数据处理模式,利用测站单点定位结果得到基线,其网解的精度取决于单点定位的精度。为了快速、准确地得到高精度的网解定位结果,提出了一种卫星定位单点定位数据处理中测站间基线的解算方法。首先,形成测站非差定位的法方程,对选定基线的各非差法方程进行变换。然后,再将各基线对应测站的法方程进行组合,得到站间坐标差和模糊度的法方程。利用分步搜索的最小二乘降相关分解法进行整周模糊度固定,进而解算测站间的基线。通过实验数据验证,该方法可在非差单点定位数据处理中进行测站间基线的快速准确解算。  相似文献   

4.
针对多系统组合精密单点定位性能,基于MEGX跟踪站实测数据,分析了单系统、双系统以及三系统组合下的动态、静态精密单点定位性能.经研究发现,相较于单双系统,三系统组合能有效增加卫星可见数,改善卫星空间分布结构,提高精密单点定位精度.三系统组合静态精密单点定位E、N、U方向的RMS值和收敛时间分别为0.68 cm、1.11 cm、1.55 cm和12 min、11 min、15 min;动态精密单点定位E、N、U方向的RMS值和收敛时间分别为0.91 cm、1.14 cm、3.79 cm和13 min、10 min、16 min.  相似文献   

5.
BDS不同轨道卫星精密单点定位性能分析   总被引:1,自引:0,他引:1  
为了分析北斗不同轨道卫星对定位结果的影响,从而更好地利用我国自主研发的北斗卫星导航系统。该文采用亚太地区7个MGEX测站12d观测数据,进行静态、后处理动态和模拟实时动态3种模式的精密单点定位实验。实验结果表明,在北斗3类轨道卫星等权的情况下,倾斜地球同步轨道(IGSO)卫星对定位结果贡献最大;北斗两类轨道卫星组合中,IGSO+MEO组合定位精度最高,其静态精密单点定位(PPP)在E、N、U方向的RMS分别为0.62、0.39、3.71cm,后处理动态和模拟实时动态PPP的RMS为分米级;北斗各类轨道卫星与GPS组合定位中,GPS+IGSO+MEO组合定位结果收敛速度最快,收敛时间为26.30min。  相似文献   

6.
探讨了精密单点定位的基本原理、处理方法、所涉及的误差改正及数据处理中的一些关键技术;采用直接内插IGS卫星精密星历的方法代替利用IGS跟踪站进行轨道精化方法计算卫星轨道参数,对现有精密单点定位计算方法进行了简化,使之更具有实用性。最后利用自主研发的精密非差单点定位软件计算和分析了实测数据。计算结果表明,经过大约15 min的初始化后,非差相位单历元的定位结果精确度在X,Y,Z方向上均优于20 cm。  相似文献   

7.
GPS非差相位精密单点定位技术探讨   总被引:77,自引:12,他引:77  
探讨了精密单点定位的基本原理,处理方法,所涉及的误差改正及数据处理中的一些关键技术;采用直接内插IGS卫星精密星历的方法代替利用IGS跟踪站进行轨道精化方法计算卫星轨道参数,对现有精密单点定位计算方法进行了简化,使之更具有实用性。最后利用自主研发的精密非差单点定位软件计算和分析了实测数据。计算结果表明,经过大约15min的初始化后,非差相位单历元的定位结果精确度在X,Y,Z方向上均优于20cm。  相似文献   

8.
非差模糊度固定能够有效提高精密单点定位(PPP)的定位精度和收敛速度,是国内外卫星导航定位领域的研究热点。基于整数钟实现了PPP非差模糊度固定,在非差模糊度逐级固定中分别估计接收机宽巷偏差和窄巷偏差;对宽巷和窄巷模糊度进行改正,从而消除了接收机硬件延迟对模糊度的影响;同时采用取整成功率检验和ratio值检验,保证模糊度固定的可靠性。将以上方法应用到动态精密单点定位中,实验结果表明:仿动态条件下,模糊度正确固定后,东、北向定位精度达到mm级、天向定位精度优于5 cm;动态解算条件下,采用1 s采样间隔数据16 min左右即可实现模糊度的首次固定。PPP固定解在东、北、天3个方向的定位精度分别为1.5、2.7和1.3 cm,相比于浮点解分别提升了61%、40%和38%。  相似文献   

9.
分析了PANDA软件精密单点定位的数据处理策略,并采用SDCORS网 81个测站2012年第一周的GPS观测数据进行静态精密单点定位处理,通过得到的各测站年积日001~007的单天解进行统计分析,验证了该软件在山东区域进行精密单点定位的精度及可靠性。通过对比分析,研究了不同卫星截止高度角、不同对流层映射函数、不同星历钟差产品以及不同观测数据时长对其精密单点定位精度的影响。结果显示,当卫星截止高度角设置为10°、采用GMF对流层映射函数、利用精密星历和钟差、观测数据时长超过18 h时,PANDA软件静态精密单点定位的精度能够达到2 cm.   相似文献   

10.
多系统融合单频精密单点定位   总被引:1,自引:0,他引:1  
针对导航定位技术的不断发展及多导航系统的出现,多系统组合定位成为导航定位发展的重要方向。该文采用多模GNSS实验跟踪网多个测站的观测数据,对多系统融合单频精密单点定位的精度进行了分析。结果表明四系统融合单频精密单点定位N方向和E方向偏差的RMS值可达厘米级,均值为7~8cm,要高于单系统和双系统融合定位的精度。在高度角较大时,四系统融合定位仍然可以保持较高精度的连续定位,单GPS系统在高度截止角30°时已无法实现连续定位。另外,多系统动态单频精密单点定位精度受硬件延迟的影响更小。  相似文献   

11.
随着欧盟伽利略(Galileo)卫星系统的全面完成组网建设,其在中国区域定位性能需进一步进行评估。本文利用中国及周边区域的6个多全球导航卫星系统(GNSS)实验系统(MEGX)测站分别从卫星可视数、定位位置精度因子(PDOP)值和静态精密单点定位技术(PPP)方面对单Galileo卫星系统在中国区域内的定位性能进行了研究。结果表明:当卫星高度角设置为7°时,24 h内各测站可接收到的平均卫星数约为7.3颗,定位PODP约为2.2,能较好地满足中国区域全天候单点定位;对于单天静态解和4 h静态解,无论是非差非组合还是无电离层组合,均可实现在水平方向小于2.3 cm,高程方向小于4.5 cm的定位精度,且6个测站的平均收敛时间约为36.4 min;根据卫星可视数和PDOP值分布可知,中国的东部、中部和南部卫星可视数和PDOP值最好,Galileo定位服务性能在该区域相对更优。  相似文献   

12.
GPS静态精密单点定位算法精度分析   总被引:1,自引:0,他引:1  
采用精密轨道和钟差,利用Bernese软件解算得到亚洲地区13个IGS跟踪站的站坐标、对流层ZTD和接收机钟差,将解算的结果与CODE发布的结果对比发现:静态PPP算法解算的N方向收敛精度明显优于E方向和U方向,4~6 h后,坐标偏差在1 cm左右;NEU RMS均值分别为0.45、0.29、0.69 cm,ZTD RMS均值为0.85 cm,接收机钟差RMS均值为0.14 ns。试验表明:精密单点定位算法具有较高的精度和可靠性,可为实际工程测量及相关地球物理信号研究提供理论依据。  相似文献   

13.
基于GPS非差观测值进行精密单点定位研究   总被引:26,自引:6,他引:26  
介绍了精密单点定位所用的数学模型及解算方案,着重分析了基于GPS非差双频观测值进行精密单点定位的误差模型、数据质量控制方法、卫星钟差的估算和内插、数据和解的一致性及精密单点定位能达到的精度等问题,并和双差结果作了比较。结果表明,利用精密星历及卫星钟改正参数的精密单点定位可达到cm级精度。  相似文献   

14.
在Trip软件的基础上实现了北斗三频无电离层两两组合、三频消电离层组合和三频非组合精密单点定位(precise point positioning,PPP)算法。利用12个陆态网观测站的北斗三频观测数据对3种三频PPP定位模型及传统的双频无电离层组合PPP模型的定位性能进行分析。试验结果表明,对大多数测站,3种三频PPP模型静态定位精度水平方向优于1 cm,高程方向优于2 cm,动态定位精度水平方向优于4 cm,高程方向优于6 cm;3种三频PPP模型静态收敛时间约为120 min,动态收敛时间约180 min;相比于传统的双频PPP模型,三频PPP模型的定位精度有所提高,其中,三频非组合模型静态单天解RMS在水平方向和高程方向分别提高36.1%和6.3%,动态单天解RMS在水平方向和高程方向分别提高9.1%和6.3%。  相似文献   

15.
吕伟才  高井祥  刘天骏 《测绘科学》2019,44(11):195-204
针对提高多频模糊度固定解的GNSS精密单点定位的可靠性与稳定性的问题,该文基于实时非组合相位偏差产品,对三频非差非组合GPS/Galileo PPP的浮点解、固定解模型进行深入研究,并设计了3种定位策略,选取了17个MGEX跟踪站7d的实测数据,分析了三频非差模糊度固定解对静态、仿动态PPP定位精度与滤波收敛时间的影响。结果表明,滤波收敛后,与浮点解策略相比较,固定三频模糊度对高程、水平方向定位精度均有提高,在静态定位模式中提升幅度分别约为20.45%和37.50%,在仿动态定位模式中提升幅度分别约为22.41%和33.33%。在滤波收敛时间方面,相较于浮点解策略的收敛时间,静态与仿动态定位中模糊度固定策略的收敛时间分别提升了约12.57%和6.41%。  相似文献   

16.
高精度电离层修正是非差非组合精密单点定位(precise point positioning, PPP)加速收敛的重要前提。首先基于参考站网台站观测数据,以非差非组合精密单点定位提取的电离层延迟作为建模数据源,提出一种基于多项式模型的估计天顶电离层延迟参数以及卫星硬件延迟的单差电离层模型。然后开发了服务端和用户端相应软件系统,服务端提取电离层延迟和进行单差建模,并将模型参数播发给用户端作为电离层约束进行非差非组合精密单点定位。最后在欧洲地区通过PPP提取电离层进行拟合实验,结果表明,广域地区GPS和俄罗斯GLONASS(global navigation satellite system)单系统电离层模型内外符合精度分别为1 TECu(total electron content unit)和3 TECu。采用电离层约束的非差非组合动态精密单点定位,统计136个1 h时段的定位结果,发现在附加电离层约束PPP实验中,78个时段(57.35%)收敛时间在5 min内,97个时段(71.32%)在10 min内,122个时段(89.7%)在15 min内,132个时段(97.06%)在25 min内;在无约束PPP实验中,上述收敛时间内结果分别为15个(11.03%)、64个(47.06%)、91个(66.91%)、110个(80.88%)。  相似文献   

17.
针对常规模式下。单系统实时精密单点定位精度受接收机环境和可视卫星数量影响严重等问题,研究了GPS/BDS双系统实时精密单点定位,采用非差无电离层组合载波和伪距观测值,详细推论了Kalman滤波参数估计方法的基本原理,并利用其进行参数估计,最后通过IGS站和实测数据进行了实时PPP实验,实验表明:GPS/BDS双系统定位模式较GPS单系统有明显改善,在E、N、U方向收敛后RMS值分别达到0.125 m、0.117 m、0.289 m,较单系统在各方向分别改善了11.9%、18.1%、22.5%。证明了GPS/BDS实时PPP能够达到分米级到厘米级定位精度。  相似文献   

18.
本文分析了全球23个MGEX测站在不同时期接收到的BDS-3的卫星数量变化情况,对不同时期的MGEX测站BDS-3数据进行精密单点定位解算,对比分析了BDS-3卫星数目变化对精密单点定位精度与收敛时间的影响。结果表明:(1)相较于2021年DOY 1,2022年DOY 1全球23个MGEX测站接收到的BDS-3卫星平均数由6.2颗增加到11.1颗。(2)地面测站接收到更多的BDS-3卫星后,静态PPP精度提高了11.4%,收敛时间缩短了18%;模拟动态PPP的精度提高了28.0%,收敛时间缩短了31.9%。  相似文献   

19.
不同参考基准精密星历对单点定位的影响   总被引:1,自引:1,他引:0  
精密单点定位的实质就是利用精密星历和精密卫星钟改正来实现定位。但是IGS不同分析中心提供的精密星历和卫星钟改正数的基准不一致,如果使用不同分析中心提供的精密星历和卫星钟差就会对定位精度产生影响。本文采用IGS精密星历和JPL精密星历,使用相同的IGS精密卫星钟差,分别计算对测站坐标精度的影响。  相似文献   

20.
针对北斗卫星导航系统的卫星姿态模型、天线相位中心改正及卫星定轨数据处理策略未统一的现状,该文对比分析了武汉大学和德国地学研究中心提供的北斗事后精密轨道和钟差产品的差异及精度,结合实测数据,通过分析精密单点定位的定位精度来比较两中心精密轨道和钟差的差异。实验结果表明:北斗卫星的精密轨道精度与轨道类型有关,地球静止轨道(GEO)卫星的轨道精度为米级,倾斜地球同步轨道(IGSO)卫星的轨道精度为分米级,中地球轨道(MEO)卫星切向、法向和径向的精度分别为10.81、5.41和3.37cm;GEO卫星钟差精度优于0.38ns,IGSO卫星钟差优于0.25ns,MEO卫星钟差优于0.15ns;两家分析中心产品的北斗静态精密单点定位的平面精度相当;北斗静态精密单点定位的RMS统计值平面精度优于3cm,三维精度优于7cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号