首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Norumbega fault system in the Northern Appalachians in eastern Maine experienced complex post-Acadian ductile and brittle deformation from middle through late Paleozoic times. Well-preserved epizonal ductile shear zones in Fredericton belt metasedimentary rocks and granitic batholiths that intrude them provide valuable information on the nature, geometry, and evolution of orogen-parallel strike-slip Norumbega faulting. Metasedimentary rocks were ductilely sheared into phyllonite schistose mylonite, whereas granite into mylonite within the ductile shear zones. Ductile shearing took place at conditions of the lower greenschist facies with peak temperatures on the order of 300–350° based on comparison of plastic quartz and brittle feldspar microstructures, confirming a shallow crustal environment during faulting.Ductile shear strain was partitioned into two major shear zones in easternmost Maine—the Waite and Kellyland zones—but these zones converge toward the southwest. Megascopic, mesoscopic, and microscopic kinematic indicators confirm that fault motion in both zones was dominantly dextral strike-slip. Detailed mapping, especially in the plutonic rocks, reveals a complex ductile deformation history in the area where the Waite and Kellyland zones converge. Shear strain is broadly distributed in the rocks between Kellyland and Waite zones, and increases toward their junction. Multiple dextral high-strain zones oblique to both zones resemble megascopic synthetic c′ shear bands. Together with the Kellyland and Waite master shear zones, these define a megascopic S–C′ structure system produced in a regional-scale dextral strike-slip shear duplex that developed in the transition zone between the deeper (south-central Maine) and shallower (eastern Maine) segments of the Norumbega fault system.Granite plutons caught within the strike-slip shear duplex were intensely sheared and progressively smeared into long and narrow slivers identified by this study. The western lobe of the Deblois pluton and the Lucerne pluton have been recognized as the sources, respectively of the Third Lake Ridge and Morrison Ridge granite slivers. Restoration of both granite slivers to their presumed original positions yields approximately 25 km of dextral strike-slip displacement along only the Kellyland and synthetic ductile shear zones.  相似文献   

2.
The Navalpino Anticline is a major Variscan structure in the Central Iberian Zone of Spain. Three lithological groups are defined in the pre-Ordovician rocks of this anticline. The Rifean or Lower Vendian Extremeño Dome Group is unconformably overlain by the Upper Vendian Ibor-Navalpino Group. This latter group presents two different facies separated by a NW-SE trending synsedimentary fault. The Lower Cambrian Valdelacasa Group unconformably overlies both the Extremeno Dome and the Ibor-Navalpino Groups.Three pre-Variscan episodes of deformation have been defined in the area of the Navalpino Anticline. A major asymmetrical fold with a subvertical east-west-striking limb is the result of the first deformation event of pre-Late Vendian age. The second deformation event is of Cadomian (Late Precambrian) age and is composed of two stages; (i) an early extensional stage including NW - SE trending extensional fault and basin development in the north-eastern block; and (ii) a second compressive stage giving rise to north-south trending upright folds. This second compressive stage possibly inverted the basin. A final pre-Variscan deformation event took place between the Early Cambrian and the Early Ordovician resulting in a 5–10° tilting to the north-east.There are two main phases of Variscan deformation in the area. The first deformation event (Dv1) gave rise to a upright WNW - ESE trending folds on all scales, whereas the second (Dv2) gave rise to a brittle—ductile sinistral strike-slip shear zone tending subparallel to the axial trace of the Dv1 folds.  相似文献   

3.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

4.
The NW–SE Irtysh Shear Zone is a major tectonic boundary in the Central Asian Orogenic Belt (CAOB), which supposedly records the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan/south Mongolia orogenic system. However, the tectonic evolution of the Irtysh Shear Zone is not fully understood. Here we present new structural and geochronological data, which together with other constraints on the timing of deformation suggests that the Irtysh Shear Zone was subjected to three phases of deformation in the late Paleozoic. D1 is locally recognized as folded foliations in low strain areas and as an internal fabric within garnet porphyroblasts. D2 is represented by a shallowly dipping fabric and related ∼ NW–SE stretching lineations oriented sub-parallel to the strike of the orogen. D2 foliations are folded by ∼ NW–SE folds (F3) that are bounded by a series of mylonite zones with evidence for sinistral/reverse kinematics. These fold and shear structures are kinematically compatible, and thus interpreted to result from a transpressional deformation phase (D3). Two samples of mica schists yielded youngest detrital zircon peaks at ∼322 Ma, placing a maximum constraint on the timing of D1–D3 deformation. A ∼ NE–SW granitic dyke swarm (∼252 Ma) crosscuts D3 fold structures and mylonitic fabrics in the central part of the shear zone, but is displaced by a mylonite zone that represents the southern boundary of the Irtysh Shear Zone. This observation indicates that the major phase of D3 transpressional deformation took place prior to ∼252 Ma, although later phases of reactivation in the Mesozoic and Cenozoic are likely. The late Paleozoic deformation (D1–D3 at ∼322–252 Ma) overlaps in time with the collision between the Chinese Altai and the intra-oceanic arc system of the East Junggar. We therefore interpret that three episodes of late Paleozoic deformation represent orogenic thickening (D1), collapse (D2), and transpressional deformation (D3) during the convergence between the Chinese Altai and the East Junggar. On a larger scale, late Paleozoic sinistral shearing (D3), together with dextral shearing farther south, accommodated the eastward migration of internal segments of the western CAOB, possibly associated with the amalgamation of multiple arc systems and continental blocks during the late Paleozoic.  相似文献   

5.
In this study, we address the late Miocene to Recent tectonic evolution of the North Caribbean (Oriente) Transform Wrench Corridor in the southern Sierra Maestra mountain range, SE Cuba. The region has been affected by historical earthquakes and shows many features of brittle deformation in late Miocene to Pleistocene reef and other shallow water deposits as well as in pre-Neogene, late Cretaceous to Eocene basement rocks. These late Miocene to Quaternary rocks are faulted, fractured, and contain calcite- and karst-filled extension gashes. Type and orientation of the principal normal palaeostress vary along strike in accordance with observations of large-scale submarine structures at the south-eastern Cuban margin. Initial N–S extension is correlated with a transtensional regime associated with the fault, later reactivated by sinistral and/or dextral shear, mainly along E–W-oriented strike-slip faults. Sinistral shear predominated and recorded similar kinematics as historical earthquakes in the Santiago region. We correlate palaeostress changes with the kinematic evolution along the boundary between the North American and Caribbean plates. Three different tectonic regimes were distinguished for the Oriente transform wrench corridor (OTWC): compression from late Eocene–Oligocene, transtension from late Oligocene to Miocene (?) (D1), and transpression from Pliocene to Present (D2–D4), when this fault became a transform system. Furthermore, present-day structures vary along strike of the Oriente transform wrench corridor (OTWC) on the south-eastern Cuban coast, with dominantly transpressional/compressional and strike-slip structures in the east and transtension in the west. The focal mechanisms of historical earthquakes are in agreement with the dominant ENE–WSW transpressional structures found on land.  相似文献   

6.
The crystalline rocks of the MCT Zone of Garhwal Higher Himalaya exhibit well-preserved mesoscopic shear zones. Majority of these shear zones are of ductile and brittle ductile type with both sinistral and dextral sense of movement. Detailed analysis of mesoscopic shear zones reveals that sinistral shear zones exhibit a strike variation from NNE to ENE and dextral shear zones exhibit variation from NNW to WNW directions thus forming a conjugate pair. The bisectors of statistically preferred orientations of the two sets of the shears indicate that they generated due to NNE–SSW horizontal compression. These dextral and sinistral shear zones exhibit strike–slip geometry developed during progressive ductile shearing.  相似文献   

7.
The polyphase evolution of the Seridó Belt (NE-Brazil) includes D1 crust formation at 2.3–2.1 Ga, D2 thrust tectonics at 1.9 Ga and crustal reworking by D3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D2 and D3 events were used to constrain the tectono-thermal evolution of the belt. D2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600–650 °C) through grain boundary migration, subgrain rotation and operation of quartz c-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from c-prism to positive and negative a-rhombs. During D3, enhancement of ductility by dissipation of heat that came from syn-D3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from a-prism to a-basal slip indicates a thermal path from 600 to 350 °C. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Seridó Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths.  相似文献   

8.
Fabrics in the mid-crustal Bronson Hill zone of the southern New England Appalachian orogen record a range of apparent finite strains and conflicting kinematics, but structural relationships indicate coeval development. At the smallest scale of this study, shortening was accommodated in granitic orthogneiss, while transcurrent deformation was partitioned into relatively thin zones of metastratified rocks along the margins. The Monson orthogneiss can be broadly characterized by subvertical to steeply dipping S > L tectonites, subvertical to subhorizontal stretching lineations, closed to isoclinal folds, and dextral/reverse kinematics. The east-bounding Conant Brook shear zone and Greenwich syncline are characterized by steeply dipping mylonitic foliations, a range of lineations, and dextral/reverse kinematic indicators. The west-bounding Mt. Dumplin high strain zone is comprised of steeply dipping mylonites, subhorizontal lineations, and sinistral/normal kinematics. These structures reflect coeval partitioned dextral transpression, vertical extrusion, and north-directed lateral escape of the orthogneiss that was facilitated by bounding conjugate shear zones. Comparison of structural subdomains with transpressional modeling indicates vertical pseudo-monoclinic to inclined triclinic coaxial to simple shear influenced transpression. Compatibility between laterally adjacent subdomains was maintained by meso-/microscale partitioning. Absolute and relative timing constraints show that transpression was sustained from 330 Ma to 300 Ma.  相似文献   

9.
秦岭商丹构造带内发育的晚三叠世沙沟街韧性剪切带蕴含大量地质信息,很好地记录了秦岭印支期碰撞造山过程。为了探究该剪切带的运动学特征及其动力学背景,在野外观测、显微构造分析的基础上,对其中发育的糜棱岩进行了磁组构和运动学涡度研究。岩石磁学和磁组构分析结果显示:样品的平均磁化率Km值总体较高,载磁矿物主要为磁铁矿等铁磁性矿物;磁化率各向异性度PJ值较大,表明构造变形较为强烈;形态参数T值多大于0,反映磁化率椭球体以扁球体为主;磁线、面理优势产状与野外观测到的矿物线、面理较为一致。结合磁组构、边界断层以及C面理产状,认为沙沟街韧性剪切带具有左行走滑挤压的运动学特征。运动学涡度Wk值及其分布特征表明,沙沟街剪切带中纯剪切作用所占的比重总体大于简单剪切作用,并且剪切带的核部应位于北界断层附近。综合分析认为,沙沟街韧性剪切带的运动学特征反映了总体斜向汇聚背景下的局部走滑挤压,与商丹带西段发育的同期韧性剪切带具有完全反向的运动学指向,这可能与碰撞导致的侧向挤出构造有关  相似文献   

10.
The geologic framework of the Phanerozoic Qinling–Dabie orogen was built up through two major suturing events of three blocks. From north to south these include the North China craton (including the north Qinling block), the Qinling–Dabie microblock, and the South China craton (including the Bikou block), separated by the Shangdan and Mianlue sutures. The Mianlue suture zone contains evidence for Mesozoic extrusion tectonics in the form of major strike–slip border faults surrounding basement blocks, a Late Paleozoic ophiolite and a ca. 240–200 Ma thrust belt that reformed by 200–150 Ma thrusts during A-type (intracontinental) subduction. The regional map pattern shows that the blocks are surrounded by complexly deformed Devonian to Early Triassic metasandstones and metapelites, forming a regional-scale block-in-matrix mélange fabric. Five distinct tectonic units have been recognized in the belt: (1) basement blocks including two types of Precambrian basement, crystalline and transitional; (2) continental margin slices including Early Paleozoic strata, and Late Paleozoic fluviodeltaic sedimentary rocks, proximal and distal fan clastics, reflecting the development of a north-facing rift margin on the edge of the South China plate; (3) out of sequence oceanic crustal slices including strongly deformed postrift, deep-water sedimentary rocks, sheeted dikes, basalts, and mafic–ultramafic cumulates of a Late Paleozoic ophiolite suite, developing independent of the rift margin in a separate basin; (4) out-of-sequence island-arc slices; (5) accretionary wedge slices. All the tectonic units were deformed during three geometrically distinct deformation episodes (D1, D2 and D3 during 240–200 Ma). Units 2–4 involved southward thrusting and vertical then southward extrusion of about 20 km of horizontal displacement above the autochthonous basement during the D1 episode. Thrust slices 20 km south of the Mianlue suture are related to this vertical extrusion due to the same rock assemblages, ages and kinematics. The D2 and D3 episodes folded all the units in a thick-skinned style about east–west (D2) and west–northwest (D3) axes in the Mianlue suture zone. An early foreland propagating sequence of accretion of Late Paleozoic rocks deposited above the Yangtze craton is not involved in D1 deformation but is temporally equivalent to the D2 and D3 deformation in the Mianlue suture. Two stages of strike–slip faulting mainly occurred at the end of D2 and D3, respectively. During D2 deformation, the Bikou block was obliquely indented to the ESE into the Mianlue suture, rather than being thrust over the Mianlue suture from the north as a part of the Qinling–Dabie microblock. During D3 deformation, however, the Bikou block was bounded by the south boundary fault of the Mianlue suture, and the Yangpingguan fault on the south. These faults are coeval strike–slip faults, but of opposite senses, and accommodated minor southwestward extrusion of the Bikou block into Songpan–Ganze orogen. The other basement blocks north of the Mianlue suture were extruded eastward by about 20 km of lateral displacement, based on the offset of the Wudang dome, during the D3 episode due to the northeastward indentation of the Hannan complex of the South China craton. Post-D3 emplacement of granite, cutting across the strike–slip faults such as the Mianlue suture, provides a minimum age of 200 Ma for D3 deformation. Therefore, based on insights from the evolution of the Mianlue suture, the D2 and D3 episodes in the Mianlue suture and its neighbors are not responsible for and associated with the two-stage extrusion of the Dabie UHP-HP terranes from the Foping dome to the present erosional surface (more than 350 km).  相似文献   

11.
The island of Sark (Channel Islands, UK) exposes syntectonic plutons and country rock gneisses within a Precambrian (Cadomian) continental arc. This Sark arc complex records sequential pulses of magmatism over a period of 7 Ma (ca. 616–609 Ma). The earliest intrusion (ca. 616 Ma) was a composite sill that shows an ultramafic base overlain by a magma-mingled net vein complex subsequently deformed at near-solidus temperatures into the amphibolitic and tonalitic Tintageu banded gneisses. The deformation was synchronous with D2 deformation of the paragneissic envelope, with both intrusion and country rock showing flat, top-to-the-south LS fabrics. Later plutonism injected three homogeneous quartz diorite–granodiorite sheets: the Creux–Moulin pluton (150–250 m; ca. 614 Ma), the Little Sark pluton (>700 m; 611 Ma), and the Northern pluton (>500 m; 609 Ma). Similar but thinner sheets in the south (Derrible–Hogsback–Dixcart) and west (Port es Saies–Brecqhou) are interpreted as offshoots from the Creux–Moulin pluton and Little Sark pluton, respectively. All these plutons show the same LS fabric seen in the older gneisses, with rare magmatic fabrics and common solid state fabrics recording syntectonic crystallisation and cooling. The cooling rate increased rapidly with decreasing crystallisation age: >9 Ma for the oldest intrusion to cool to lower amphibolite conditions, 7–8 Ma for the Creux Moulin pluton, 5–6 Ma for the Little Sark pluton, and <3 Ma for the Northern pluton. This cooling pattern is interpreted as recording extensional exhumation during D2. The initiation of the D2 event is suggested to have been a response to the intrusion of the Tintageu magma which promoted a rapid increase in strain rate (>10−14 s−1) that focussed extensional deformation into the Sark area. The increased rates of extension allowed ingress of the subsequent quartz diorite–granodiorite sheets, although strain rate slowly declined as the whole complex cooled during exhumation. The regional architecture of syntectonic Cadomian arc complexes includes flat-lying “Sark-type” and steep “Guernsey-type” domains produced synchronously in shear zone networks induced by oblique subduction: a pattern seen in other continental arcs such as that running from Alaska to California.  相似文献   

12.
The orogenic banded iron formation (BIF)-hosted Au mineralization at São Bento is a structurally-controlled, hydrothermal deposit hosted by Archean rocks of the Rio das Velhas greenstone belt, Quadrilátero Ferrífero region, Brazil. The deposit has reserves of 14.3 t Au and historical (underground) production of 44.6 t Au between 1987 and 2001. The oxide-facies São Bento BIF is mineralized at its lower portion, where in contact with carbonaceous, pelitic schists, particularly in the proximity of sulfide-bearing quartz veins. Shear-related Au deposition is associated with the pervasive, hydrothermal sulfidation (mainly arsenopyrite) of the Fe-rich bands of the São Bento BIF. Auriferous, sulfide- and quartz-rich zones represent proximal alteration zones. They are enveloped by ankerite-dominated haloes, which reflect progressive substitution of siderite and magnetite within the BIF by ankerite and pyrrhotite, respectively. The São Bento BIF was intensely and extensively deformed, first into open, upright folds that evolved into tight, asymmetric, isoclinal folds. The inverse limb of these folds attenuated and gave way to sheath folds and the establishment of ductile thrusts. Mineralized horizons at São Bento result from early structural modifications imposed by major transcurrent and thrusts faults, comprising the Conceição, Barão de Cocais and São Bento shear zones. Dextral movement on the SW–NE-directed Conceição shear zone may have generated splays at a compressional side-stepping zone, such as the São Bento shear zone, which is the structural locus for the São Bento gold mineralization. Relaxation of the Conceição shear zone under more brittle conditions resulted in the development of dilatational zones where gold–sulfide–quartz veins formed. These structures are considered to have been generated in the Archean. Geochronological data are scarce, with Pb–Pb analyses of refractory arsenopyrite and pyrite from bedded and remobilized ore plotting on a single-stage growth curve at 2.65 Ga. A later compressional, ductile deformation of unknown age overprinted, rotated and flattened the original, N60E-directed structure of the whole rock succession, with development of planar and linear fabrics that appear similar to Proterozoic-aged structures. Fluid inclusion studies indicate low salinity, aqueous fluids, with or without CO2 and/or CH4, with extremely variable CO2/CH4 ratios, of probable metamorphic origin. Fluid evolution shows a paragenetic decrease in the carbonic phase from 10–15% to 5%, and increase in the H2O/(CO2 + CH4) and CO2/CH4 ratios, suggesting important interaction with carbonaceous sediment. Trapping conditions indicate a temperature of 300 °C at 3.2 kbar.  相似文献   

13.
The gold mineralization of the Hutti Mine is hosted by nine parallel, N–S trending, steeply dipping, 2–10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D2 shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle–ductile D3 shearing and intense quartz veining. The development of a S2–S3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D2 shearing is associated with a pervasively developed distal chlorite–sericite alteration assemblage in the outer parts of the shear zones and the proximal biotite–plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S3. The average size of the laminated vein systems is 30–50 m along strike as well as down-dip and 2–6 m in width.Mass balance calculations suggest strong metasomatic changes for the proximal biotite–plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite–sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in δ18O values of the whole rock from around 7.5‰ for the host rocks to 6–7‰ for the distal chlorite–sericite and the proximal biotite–plagioclase alteration and around 5‰ for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow.The ductile D2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold–sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of pre-existing anisotropies for fault-valve action and economic gold mineralization.  相似文献   

14.
The Changle–Nanao ductile shear zone was developed from a suture zone. The evidence from the ductile fabrics and mylonitic microstructures indicates that the strike-slip was sinistral during pre-collision. It became dominantly dextral in the syn-collision stage in late Early Cretaceous. The dextral strike-slip movement continued in the post-collision stage with extension as the dominant process. The strike-slip movement of the zone was strictly controlled by dynamics of collision between the Fujian (Min)–Taiwan (Tai) microcontinent and the Fujian (Min)–Zhejiang (Zhe) Mesozoic volcanic arc during the time interval of 100–120 Ma. The Min–Tai microcontinent in which the ductile shear zone developed might have been located originally to the south of its present position. The northward migration of the microcontinent had contributed to a few hundred kilometers of drift rather than a shear displacement. The real shear displacement is small due to the change of strike-slip direction from sinistral to dextral.  相似文献   

15.
The Espinho Branco anatexite, located within a transcurrent, high-temperature shear zone in NE Brazil, was the subject of a comprehensive petrostructural study (Anisotropy of Magnetic Susceptibility – AMS, Anisotropy of Anhysteretic Remanence – AAR, Electron Backscatter Diffraction – EBSD) to evaluate the compatibility of different fabrics with the kinematics of melt deformation. Magnetite dominates susceptibilities larger than 1 mSI and biotite displays [001] lattice directions consistent with AMS k3 axes. In contrast, migmatites with a susceptibility lower than 0.5 mSI and no visible mesoscopic foliation provide crystallographic fabrics distinct from AMS and AAR. However, AAR remains consistent with the regional strain field. These results suggest that the correlation of field, AMS and crystallographic fabrics is not always straightforward despite the relatively simple organisation of the magnetic fabric in the anatexite. We conclude that AMS recorded the final stages of the strain field in the migmatite irrespective of its complex mesoscale structures and contrasting crystallographic fabrics.  相似文献   

16.
The structure of the Jiuling Massif has been investigated in order to delineate the polyorogenic deformation and discuss its geodynamic evolution and orogenic mechanisms. Detailed structural analysis indicates that the D1 event is characterized by top-to-the NNW ductile shearing with pervasive foliation, and mineral and stretching lineation developed in the entire region. Compared with the D1 deformation, D2 structures are localized in ductile shear zones with subvertical foliation and subhorizontal E–W trending lineation, indicating a dextral ductile shearing. The D3 event, marked by folds and thrusts mainly in a brittle domain, modified the D1 structures by asymmetrical folds. The dominant D4 structures are gravitational folds and normal faults, corresponding to a later extension. Our new geochronological data suggest that the D1 event occurred between 465 and 380 Ma with D2 dextral shearing at the end of this Early Paleozoic orogen, and the D3 event has been constrained at 245–215 Ma. The final uplift of the Jiuling Massif by the D4 event can be correlated with the Late Mesozoic extension across the eastern South China block. Along with previous studies in the South China block, the structural pattern of the Jiuling Massif elucidates the influence of the Early Paleozoic and Early Mesozoic intracontinental belts triggered by repeated reactivation of the Jiangshan–Shaoxing Fault. Combined with deformation to the south, the Early Paleozoic belt shows a positive flower pattern, with opposing kinematics, rooted in the Jiangshan–Shaoxing Fault. During the Early Mesozoic, a general intracontinental belt was developed with uniform kinematics in both the Jiuling Massif and the Xuefengshan Belt, possibly resulted from the far-field effect of the Triassic NW-directed Paleo-Pacific subduction.  相似文献   

17.
The Palaeoproterozoic Usagaran Orogen of Tanzania contains the Earth's oldest reported examples of subduction-related eclogite facies rocks. Detailed field mapping of gneisses exposed in the high-grade, eclogite-bearing part of the orogen (the Isimani Suite) indicates a complex deformation and thermal history. Deformation in the Isimani Suite can be broadly subdivided into five events. The first of these (D1), associated with formation of eclogite facies metamorphism, is strongly overprinted by a pervasive deformation (D2) at amphibolite facies conditions, which resulted in the accumulation of high strains throughout all of the exposed Isimani rocks. The geometry of foliations and lineations developed during D2 deformation are variable and have different shear directions that enable five D2 domains to be identified. Analysis of these domains indicates a geometrical and kinematic pattern that is interpreted to have formed by strain and kinematic partitioning during sinistral transpression. U–Pb SHRIMP zircon ages from a post-D2 granite and previously published geochronological data from the Usagaran eclogites indicate this deformation took place between 2000 ± 1 Ma and 1877 ± 7 Ma (at 1σ error). Subsequent greenschist facies deformation, localised as shear zones on boundaries separating D2 domains, have both contractional and extensional geometries that indicate post-1877 Ma reactivation of the Isimani Suite. This reactivation may have taken place during Palaeoproterozoic exhumation of the Usagaran Orogen or may be the result of deformation associated with the Neoproterozoic East African Orogen.U–Th–Pb SHRIMP zircon ages from an Isimani gneiss sample and xenocrysts in a “post-tectonic” granite yield 2.7 Ga ages and are similar to published Nd model ages from both the Tanzanian Craton and gneiss exposed east of the Usagaran belt in the East African Orogen. These age data indicate that the Isimani Suite of the Usagaran Orogen reflects reworking of Archaean continental crust. The extensive distribution of 2.7 Ga crust in both the footwall and hangingwall of the Usagaran Orogen can only be explained by the collision of two continents if the continents fortuitously had the same protolith ages. We propose that a more likely scenario is that the protoliths of the mafic eclogites were erupted in a marginal basin setting as either oceanic crust, or as limited extrusions along the rifted margin of the Tanzanian Craton. The Usagaran Orogen may therefore reflect the mid-Palaeoproterozoic reassembly of a continental ribbon partially or completely rifted off the craton and separated from it by a marginal basin.  相似文献   

18.
Analyses of deflected river channels, offset of basement rocks, and fault rock structures reveal that slip sense inversion occurred on major active strike-slip faults in southwest Japan such as the Yamasaki and Mitoke fault zones and the Median Tectonic Line (MTL). Along the Yamasaki and Mitoke fault zones, small-size rivers cutting shallowly mountain slopes and Quaternary terraces have been deflected sinistrally, whereas large-size rivers which deeply incised into the Mio-Pliocene elevated peneplains show no systematically sinistral offset or complicated hairpin-shaped deflection. When the sinistral offsets accumulated on the small-size rivers are restored, the large-size rivers show residual dextral deflections. This dextral offset sense is consistent with that recorded in the pre-Cenozoic basement rocks. S–C fabrics of fault gouge and breccia zone developed in the active fault zones show sinistral shear sense compatible with earthquake focal mechanisms, whereas those of the foliated cataclasite indicate a dextral shear sense. These observations show that the sinistral strike-slip shear fabrics were overprinted on dextral ones which formed during a previous deformation phase. Similar topographic and geologic features are observed along the MTL in the central-eastern part of the Kii Peninsula. Based on these geomorphological and geological data, we infer that the slip sense inversion occurred in the period between the late Tertiary and mid-Quaternary period. This strike-slip inversion might result from the plate rearrangement consequent to the mid-Miocene Japan Sea opening event. This multidisciplinary study gives insight into how active strike-slip fault might evolves with time.  相似文献   

19.
The Achankovil Shear Zone (AKSZ) in the Southern Granulite Terrain separates the Trivandrum block from the Madurai block. Various geomorphic indices and longitudinal profiles of the river systems in the AKSZ, viz., Achankovil river basin (ARB) and Kallada river basin (KRB), were derived from SRTM DEM to decipher the influence of shearing and deformation on the regional drainage evolution. Although hypsometric analysis of the basins implies old stage of geomorphic evolution, horizontal shifts in the channel plan form are restricted (except in the Tertiary sediments), suggesting the structural controls over the drainage organization, which are also supported by the high topographic sinuosity. The transverse topographic symmetry (T) vectors indicate a southwesterly migration for the upstream channel segments of both ARB and KRB, while the northwesterly migration of the downstream courses can be correlated with the dextral shearing of the AKSZ. Even though the shear zone is considered to be the block boundary between the charnockite of Madurai and khondalite of Trivandrum blocks, the moderate to low profile concavity (θ) values are probably the result of suppressing the effect of the block–boundary interactions by shearing and denudation. The study proposes a model for evolution of drainage network in the AKSZ, where the mainstream of the basins was initially developed along NE–SW direction, and later the upstream and midstream segments were reoriented to the NW–SE trend as a result of intense shearing. Overall, the present study emphasizes the significance of geomorphic indices and longitudinal profile analysis to understand the role of shearing and deformation on drainage evolution in transcrustal shear zones.  相似文献   

20.
Establishing relative and absolute time frameworks for the sedimentary, magmatic, tectonic and gold mineralisation events in the Norseman-Wiluna Belt of the Archean Yilgarn Craton of Western Australia, has long been the main aim of research efforts. Recently published constraints on the timing of sedimentation and absolute granite ages have emphasized the shortcomings of the established rationale used for interpreting the timing of deformation events. In this paper the assumptions underlying this rationale are scrutinized, and it is shown that they are the source of significant misinterpretations. A revised time chart for the deformation events of the belt is established. The first shortening phase to affect the belt, D1, was preceded by an extensional event D1e and accompanied by a change from volcanic-dominated to plutonic-dominated magmatism at approximately 2685–2675 Ma. Later extension (D2e) controlled deposition of the ca 2655 Ma Kurrawang Sequence and was followed by D2, a major shortening event, which folded this sequence. D2 must therefore have started after 2655 Ma—at least 20 Ma later than previously thought and after the voluminous 2670–2655 Ma high-Ca granite intrusion. Younger transcurrent deformation, D3–D4, waned at around 2630 Ma, suggesting that the crustal shortening deformation cycle D2–D4 lasted approximately 20–30 Ma, contemporaneous with low-volume 2650–2630 Ma low-Ca granites and alkaline intrusions. Time constraints on gold deposits suggest a late mineralisation event between 2640–2630 Ma. Thus, D2–D4 deformation cycle and late felsic magmatism define a 20–30 Ma long tectonothermal event, which culminated with gold mineralisation. The finding that D2 folding took place after voluminous high-Ca granite intrusion led to research into the role of competent bodies during folding by means of numerical models. Results suggest that buoyancy-driven doming of pre-tectonic competent bodies trigger growth of antiforms, whereas non-buoyant, competent granite bodies trigger growth of synforms. The conspicuous presence of pre-folding granites in the cores of anticlines may be a result from active buoyancy doming during folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号