首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Variations in the abundance and distribution of pelagic tuna populations have been associated with large-scale climate indices such as the Southern Oscillation Index in the Pacific Ocean and the North Atlantic Oscillation in the Atlantic Ocean. Similarly to the Pacific and Atlantic, variability in the distribution and catch rates of tuna species have also been observed in association with the Indian Ocean Dipole (IOD), a basin-scale pattern of sea surface and subsurface temperatures that affect climate in the Indian Ocean. The environmental processes associated with the IOD that drive variability in tuna populations, however, are largely unexplored. To better understand these processes, we investigated longline catch rates of yellowfin tuna and their distributions in the western Indian Ocean in relation to IOD events, sea surface water temperatures (SST) and estimates of net primary productivity (NPP). Catch per unit effort (CPUE) was observed to be negatively correlated to the IOD with a periodicity centred around 4 years. During positive IOD events, SSTs were relatively higher, NPP was lower, CPUE decreased and catch distributions were restricted to the northern and western margins of the western Indian Ocean. During negative IOD events, lower SSTs and higher NPP were associated with increasing CPUE, particularly in the Arabian Sea and seas surrounding Madagascar, and catches expanded into central regions of the western Indian Ocean. These findings provide preliminary insights into some of the key environmental features driving the distribution of yellowfin tuna in the western Indian Ocean and associated variability in fisheries catches.  相似文献   

2.
Observations show that the summer precipitation over East China often goes through decadal variations of opposite sign over North China and the Yangtze River valley (YRV), such as the “southern flood and northern drought” pattern that occurred during the late 1970s–1990s. In this study it is shown that a modulation of the Pacific Decadal Oscillation (PDO) on the summer precipitation pattern over East China during the last century is partly responsible for this characteristic precipitation pattern. During positive PDO phases, the warm winter sea surface temperatures (SSTs) in the eastern subtropical Pacific along the western coast of North American propagate to the tropics in the following summer due to weakened oceanic meridional circulation and the existence of a coupled wind–evaporation–SST feedback mechanism, resulting in a warming in the eastern tropical Pacific Ocean (5°N–20°N, 160°W–120°W) in summer. This in turn causes a zonal anomalous circulation over the subtropical–tropical Pacific Ocean that induces a strengthened western Pacific subtropical high (WPSH) and thus more moisture over the YRV region. The end result of these events is that the summer precipitation is increased over the YRV region while it is decreased over North China. The suggested mechanism is found both in the observations and in a 600-years fully coupled pre-industrial multi-century control simulations with Bergen Climate Model. The intensification of the WPSH due to the warming in the eastern tropical Pacific Ocean was also examined in idealized SSTA-forced AGCM experiments.  相似文献   

3.
We present the first tree-ring based reconstruction of rainfall for the Lake Tay region of southern Western Australia. We examined the response of Callitris columellaris to rainfall, the southern oscillation index (SOI), the southern annular mode (SAM) and surface sea temperature (SST) anomalies in the southern Indian Ocean. The 350-year chronology was most strongly correlated with rainfall averaged over the autumn-winter period (March–September; r = ?0.70, < 0.05) and SOI values averaged over June–August (r = 0.25, < 0.05). The chronology was not correlated with SAM or SSTs. We reconstructed autumn-winter rainfall back to 1655, where current and previous year tree-ring indices explained 54% of variation in rainfall over the 1902–2005 calibration period. Some variability in rainfall was lost during the reconstruction: variability of actual rainfall (expressed as normalized values) over the calibration period was 0.78, while variability of the normalized reconstructed values over the same period was 0.44. Nevertheless, the reconstruction, combined with spectral analysis, revealed that rainfall naturally varies from relatively dry periods lasting to 20–30 years to 15-year long periods of above average rainfall. This variability in rainfall may reflect low-frequency variation in the El Niño-Southern Oscillation rather than the effect of SAM or SSTs.  相似文献   

4.
The time series of the daily sums of global and direct irradiance recorded at Tartu-Tõravere Meteorological Station site (58°16′N, 26°28′E, 70 m a.s.l.) in 1955–2006 have been analyzed in seasonal timescales. The average daily ratio G/G clear of available global irradiance to its local climatic clear-sky value in the summer half-year corresponds to 65.5%, while that of the direct irradiance on the horizontal surface I′/I′ clear was 41% of the climatic clear-sky value. In the case of dry Rayleigh atmosphere as a reference, these ratios are 53.5% and 28%, respectively. The time series of the summer season totals reveal a longer interval of reduced values in 1976–1993 as well as two periods of frequent sunny summers in 1967–1975 and since 1994. The probability density distribution of the summer season totals during the observed period is strongly asymmetric; in spring, however, it is close to the normal distribution. In winter, there is a moderate negative correlation between the G/G clear and the North Atlantic Oscillation as well as the Arctic Oscillation indices.  相似文献   

5.
Long-term variability of sea surface temperature (SST) in the Taiwan Strait was studied from the U.K. Met Office Hadley Centre climatological data set HadISST1. In 1957–2011, three epochs were identified. The first epoch of cooling SST lasted through 1976. The regime shift of 1976–1977 led to an extremely rapid warming of 2.1 °C in 22 years. Another regime shift occurred in 1998–1999, resulting in a 1.0 °C cooling by 2011. The cross-frontal gradient between the China Coastal Current and offshore Taiwan Strait waters has abruptly decreased in 1992 and remained low through 2011. The long-term warming of SST increased towards the East China Sea, where the SST warming in 1957–2011 was about three times that in the South China Sea. The long-term warming was strongly enhanced in winter, with the maximum warming of 3.8 °C in February. The wintertime amplification of long-term warming has resulted in a decrease of the north–south SST range from 5 to 4 °C and a decrease in the amplitude of seasonal cycle of SST from 11 to 8 °C.  相似文献   

6.
This paper highlights the relationship between precipitation variability at the sub-regional level in the Southwest United States and the SOI and PDO climate teleconnection indices during the period 1950–2000. Statistical correlations at α = 0.05 and 0.01 levels are calculated for fall, winter, and spring precipitation in the Southwest, and contemporaneous and antecedent seasonal SOI and PDO index values. A strong SOI-winter precipitation signal is seen to progress across Arizona and New Mexico from southwest to northeast over a three-season lagged period. The PDO also exhibits a strong relationship with winter and spring precipitation in New Mexico; however, the PDO is not well correlated with precipitation in Arizona. The results underscore the non-uniform spatio-temporal relationships of the SOI and PDO indices as they relate to the precipitation regime of the Southwest, and provide a framework for future diagnostic analyses of these relationships.  相似文献   

7.
Climate change has been receiving wide attention in the last few decades. In order to quantify the climate variability of extreme weather events and their possible impacts on weather parameters and air quality, cold surge events in the past 45 years and the difference in characteristics of air pollutants before and after frontal passage has been examined after December 1993 in Taiwan. The potential impact of climate change on air pollutant concentration and its health implication were presented and discussed. In the past 45 years, the cold surge days (about 18.7 days, or 0.42 day/year) decreased significantly and the average lowest daily temperature for winter in northern Taiwan increased nearly 3°C (0.067°C/year). Based on the definition of cold surge in Taiwan and excluding the stagnation frontal passage, 21 cold surge frontal passage (CSFP) cases and 89 common frontal passage (CFP) events in winter (December–February) were identified in the past 12 years (1993–2005). We take the frontal passage day as the baseline and the differences in air pollutant concentrations and weather-related parameters between the two days before and after the frontal passage days were examined for each case. The averages of the above-mentioned differences during CSFP were compared to the corresponding differences during CFP. During CSFP, the air temperatures after the frontal passage were nearly 4–6°C lower than before the passage at both the background windward stations and urban stations. The average wind speed was about 4–5 m/s higher at the windward stations and less than 2 m/s higher in the major urban areas in Taiwan. During CFP, there was a 2°C increase in temperature but 1 m/s decrease in wind speeds on the day after frontal passage. Because of these meteorological differences, the concentration change of air pollutants during CSFP is significantly greater than that during CFP, especially for PM10 concentration. The difference of PM10 concentration during CSFP can be as large as 20–40 μg/m3 while that during CFP is only about 10 μg/m3. The differences in the other air pollutants such as CO, SO2, and O3 during CSFP are greater than those during CFP, but the difference is insignificant. Under the warming trend, less frequent CSFP’s are expected; the impacts on deterioration of air quality and human health are noteworthy.  相似文献   

8.
Some drought years over sub-Saharan west Africa (1972, 1977, 1984) have been previously related to a cross-equatorial Atlantic gradient pattern with anomalously warm sea surface temperatures (SSTs) south of 10°N and anomalously cold SSTs north of 10°N. This SST dipole-like pattern was not characteristic of 1983, the third driest summer of the twentieth century in the Sahel. This study presents evidence that the dry conditions that persisted over the west Sahel in 1983 were mainly forced by high Indian Ocean SSTs that were probably remanent from the strong 1982/1983 El Ni?o event. The synchronous Pacific impact of the 1982/1983 El Ni?o event on west African rainfall was however, quite weak. Prior studies have mainly suggested that the Indian Ocean SSTs impact the decadal-scale rainfall variability over the west Sahel. This study demonstrates that the Indian Ocean also significantly affects inter-annual rainfall variability over the west Sahel and that it was the main forcing for the drought over the west Sahel in 1983.  相似文献   

9.
The surface air temperature increase in the southwestern United States was much larger during the last few decades than the increase in the global mean. While the global temperature increased by about 0.5 °C from 1975 to 2000, the southwestern US temperature increased by about 2 °C. If such an enhanced warming persisted for the next few decades, the southwestern US would suffer devastating consequences. To identify major drivers of southwestern climate change we perform a multiple-linear regression of the past 100 years of the southwestern US temperature and precipitation. We find that in the early twentieth century the warming was dominated by a positive phase of the Atlantic multi-decadal oscillation (AMO) with minor contributions from increasing solar irradiance and concentration of greenhouse gases. The late twentieth century warming was about equally influenced by increasing concentration of atmospheric greenhouse gases (GHGs) and a positive phase of the AMO. The current southwestern US drought is associated with a near maximum AMO index occurring nearly simultaneously with a minimum in the Pacific decadal oscillation (PDO) index. A similar situation occurred in mid-1950s when precipitation reached its minimum within the instrumental records. If future atmospheric concentrations of GHGs increase according to the IPCC scenarios (Solomon et al. in Climate change 2007: working group I. The Physical Science Basis, Cambridge, 996 pp, 2007), climate models project a fast rate of southwestern warming accompanied by devastating droughts (Seager et al. in Science 316:1181–1184, 2007; Williams et al. in Nat Clim Chang, 2012). However, the current climate models have not been able to predict the behavior of the AMO and PDO indices. The regression model does support the climate models (CMIP3 and CMIP5 AOGCMs) projections of a much warmer and drier southwestern US only if the AMO changes its 1,000 years cyclic behavior and instead continues to rise close to its 1975–2000 rate. If the AMO continues its quasi-cyclic behavior the US SW temperature should remain stable and the precipitation should significantly increase during the next few decades.  相似文献   

10.
A reliable data set of Arctic sea ice concentration based on satellite observations exists since 1972. Over this time period of 36 years western arctic temperatures have increased; the temperature rise varies significantly from one season to another and over multi-year time scales. In contrast to most of Alaska, however, on the North Slope the warming continued after 1976, when a circulation change occurred, as expressed in the PDO index. The mean temperature increase for Barrow over the 36-year period was 2.9°C, a very substantial change. Wind speeds increased by 18% over this time period, however, the increase were non-linear and showed a peak in the early 1990s. The sea ice extent of the Arctic Ocean has decreased strongly in recent years, and in September 2007 a new record in the amount of open water was recorded in the Western Arctic. We observed for the Southern Beaufort Sea a fairly steady increase in the mean annual amount of open water from 14% in 1972 to 39% in 2007, as deduced from the best linear fit. In late summer the decrease is much larger, and September has, on average, the least ice concentration (22%), followed by August (35%) and October (54%). The correlation coefficient between mean annual values of temperature and sea ice concentration was 0.84. On a monthly basis, the best correlation coefficient was found in October with 0.88. However, the relationship between winter temperatures and the sea ice break-up in summer was weak. While the temperature correlated well with the CO2 concentration (r?=?0.86), the correlation coefficient between CO2 and sea ice was lower (r?=??0.68). After comparing the ice concentration with 17 circulation indices, the best relation was found with the Pacific Circulation Index (r?=??0.59).  相似文献   

11.
In this study the results of the regional climate model COSMO-CLM (CCLM) covering the Greater Alpine Region (GAR, 4°–19°W and 43°–49°N) were evaluated against observational data. The simulation was carried out as a hindcast run driven by ERA-40 reanalysis data for the period 1961–2000. The spatial resolution of the model data presented is approx. 10 km per grid point. For the evaluation purposes a variety of observational datasets were used: CRU TS 2.1, E-OBS, GPCC4 and HISTALP. Simple statistics such as mean biases, correlations, trends and annual cycles of temperature and precipitation for different sub-regions were applied to verify the model performance. Furthermore, the altitude dependence of these statistical measures has been taken into account. Compared to the CRU and E-OBS datasets CCLM shows an annual mean cold bias of ?0.6 and ?0.7 °C, respectively. Seasonal precipitation sums are generally overestimated by +8 to +23 % depending on the observational dataset with large variations in space and season. Bias and correlation show a dependency on altitude especially in the winter and summer seasons. Temperature trends in CCLM contradict the signals from observations, showing negative trends in summer and autumn which are in contrast to CRU and E-OBS.  相似文献   

12.
The East Australian Current (EAC) is the western boundary current of the south Pacific gyre transporting warm tropical waters to higher southern latitudes. Recent modelling shows that the partial separation of the EAC (~32°S) and the coupled formation of the Tasman Front (~34°S) are caused by a steep gradient in the zonally integrated wind stress curl. Analysis of oxygen isotope ratios (δ18O) in the planktonic foraminifer, Globigerinoides ruber, from sediment cores from the Coral Sea and Tasman Sea indicates that the EAC separation shifted northward to between 23 and 26°S during the last glacial. We suggest these results indicate a significant change in the Pacific wind stress curl during the glacial. Given recent evidence for El Niño-like conditions in the Pacific during the last glacial, with a reduction in the east–west sea surface temperature (SST) gradient, we suggest that weaker trade winds combined with more northerly, stronger westerlies were associated with a change to the wind stress curl, which repositioned the EAC separation and Tasman Front. In contrast, by ~11 ka BP, the EAC separation was forced south of 26°S. This southward shift was synchronous with a rapid warming of tropical SSTs, and the onset of a La Niña-like SST configuration across the tropical Pacific. It appears that the south Pacific trade winds strengthened accordingly, causing the EAC to readjust its flow. This readjustment of the EAC marks the onset of modern surface-ocean circulation in the southwest Pacific, but the present EAC transport was only achieved in the late Holocene, after 5 ka BP.  相似文献   

13.
Spatial and temporal characteristics of temperature extremes have been investigated in Huang-Huai-Hai (HHH) region based on the daily series of temperature observations from 162 meteorological stations. A total of 11 indices were used to assess the changes of temperature pattern. Linear trend analyses revealed that the daily maximum temperature (TXx) increased at α = 0.05 level with a magnitude of 0.15 °C per decade on the regional scale during the period of 1961–2014. More pronounced warming trend of the daily minimum temperature (TNn) was detected at a rate of 0.49 °C per decade (α = 0.01 level). Consequently, a decreasing trend of the temperature range of TXx and TNn (extreme temperature range) was observed. The frequency of hot days (TXf90) and annual average of warm events (warm spell duration indicator, WSDI) showed significant increasing trends, while that of cold nights (TNf10) and cold events (cold spell duration indicator, CSDI) showed opposite behaviors. Both warm winter (W-W) and hot summer (H-S) series displayed significant increasing trends at α = 0.01 confidence level. The cold winter (C-W) series showed a decreasing trend at α = 0.01 confidence level, while the cool summer (C-S) series showed a nonsignificant decreasing trend that is not passing the 90% confidence level (α = 0.1). Abrupt increments of warm­related extremes (TXx, TXf90, WSDI) have been detected since 1990s, and a steadily decreasing trend of cold related extremes (TNf10, CSDI) was found since 1970s. Ten hot summers out of 11 and nine warm winters out of 10 occurred after 1990s. Altitude has a large impact on spatial pattern of extreme temperature indices, and the urban heat island effect also has an impact on amplitude of variation in extreme temperature. Trend magnitudes are significantly larger at sites with high altitudes for warm­related indices (TXx, TXf90, WSDI), while those involving cold-related indices (TNn, TNf10) are remarkably larger for stations with low altitudes.  相似文献   

14.
J. H. van Hateren 《Climate Dynamics》2013,40(11-12):2651-2670
A climate response function is introduced that consists of six exponential (low-pass) filters with weights depending as a power law on their e-folding times. The response of this two-parameter function to the combined forcings of solar irradiance, greenhouse gases, and SO2-related aerosols is fitted simultaneously to reconstructed temperatures of the past millennium, the response to solar cycles, the response to the 1991 Pinatubo volcanic eruption, and the modern 1850–2010 temperature trend. Assuming strong long-term modulation of solar irradiance, the quite adequate fit produces a climate response function with a millennium-scale response to doubled CO2 concentration of 2.0 ± 0.3 °C (mean ± standard error), of which about 50 % is realized with e-folding times of 0.5 and 2 years, about 30 % with e-folding times of 8 and 32 years, and about 20 % with e-folding times of 128 and 512 years. The transient climate response (response after 70 years of 1 % yearly rise of CO2 concentration) is 1.5 ± 0.2 °C. The temperature rise from 1820 to 1950 can be attributed for about 70 % to increased solar irradiance, while the temperature changes after 1950 are almost completely produced by the interplay of anthropogenic greenhouse gases and aerosols. The SO2-related forcing produces a small temperature drop in the years 1950–1970 and an inflection of the temperature curve around the year 2000. Fitting with a tenfold smaller modulation of solar irradiance produces a less adequate fit with millennium-scale and transient climate responses of 2.5 ± 0.4 and 1.9 ± 0.3 °C, respectively.  相似文献   

15.
Brown planthopper (BPH), Nilaparvata lugens (Stal.) development studied at six constant temperatures, 19, 22, 25, 28, 31 and 33 ±1 °C on rice plants revealed that developmental period from egg hatching to adult longevity decreased from 46.8 to 18.4 days as temperature increased from 19 to 31 °C. Through regression of development rate on temperature, thermal constant of small nymph (1st-2nd instar), large nymph (3rd–5th instar) and adult were determined to be 126.6, 140.8 and 161.3 degree days (DD), respectively with corresponding development threshold being 8.8, 9.5 and 9.6 °C. A thermal constant-based mechanistic-hemimetabolous-population model was adapted for BPH and linked with InfoCrop, a crop simulation model to simulate climate change impact on both the pest population and crop-pest interactions. The model was validated with field data at New Delhi and Aduthurai (Tamil Nadu, India), (R 2?=?0.96, RMSE?=?1.87 %). Climate-change-impact assessment through coupled BPH-InfoCrop model, in the light of the projected climate-change scenario for Indian subcontinent, showed a decline of 3.5 and 9.3–14 % in the BPH population by 2020 and 2050, respectively, during the rainy season at New Delhi, while the pest population exhibited only a small decline of 2.1–3.5 % during the winter at Aduthurai by 2050. BPH population decline is attributed to reduction in fecundity and survival by simulation model, which otherwise was not possible to account for with an empirical model. Concomitant to its population decline, BPH-induced yield loss also indicated a declining trend with temperature rise. However, the study considered the effect of only CO2 and temperature rise on the BPH population and crop yield, and not that of probable changes in feeding rate and adaptive capacity of the pest.  相似文献   

16.
The contemporary climatic habitat of the taiga tick, the dangerous carrier of tick-borne encephalitis and Lyme disease, is computed using the model. The expected climate changes will cause the reduction of the climatic habitat of Ixodes persulcatus in its western part and the expansion in the northern and eastern directions. By the late 21st century, this species can inhabit almost the whole north of the European part of Russia and the most part of Siberia up to 70° N. At the same time, I. persulcatus will disappear from Baltic countries, Belarus, the northern part of Ukraine, and the western areas of Russia. The RCP4.5 and RCP8.5 scenarios till 2040 suggest climate changes that will affect the location of climatic habitat approximately at the same scale. The differences will start being manifested in 2041–2060 and will become the most pronounced in the last 20 years of the 21st century. Expected climate changes will favor the significant expansion of the climatic habitat of the taiga tick in the 21st century and the potential formation of the zones of tick-borne encephalitis and Lyme disease in the regions, where these diseases are not currently observed.  相似文献   

17.
The 1907–2001 summer-to-summer surface air temperature variability in the eastern part of southern South America (SSA, partly including Patagonia) is analysed. Based on records from instruments located next to the Atlantic Ocean (36°S–55°S), we define indices for the interannual and interdecadal timescales. The main interdecadal mode reflects the late-1970s cold-to-warm climate shift in the region and a warm-to-cold transition during early 1930s. Although it has been in phase with the Pacific Decadal Oscillation (PDO) index since the 1960s, they diverged in the preceding decades. The main interannual variability index exhibits high spectral power at ~3.4 years and is representative of temperature variability in a broad area in the southern half of the continent. Eleven-years running correlation coefficients between this index and December-to-February (DJF) Niño3.4 show significant decadal fluctuations, out-of-phase with the running correlation with a DJF index of the Southern Annular Mode. The main interannual variability index is associated with a barotropic wavetrain-like pattern extending over the South Pacific from Oceania to SSA. During warm (cold) summers in SSA, significant anticyclonic (cyclonic) anomalies tend to predominate over eastern Australia, to the north of the Ross Sea, and to the east of SSA, whereas anomalous cyclonic (anticyclonic) circulation is observed over New Zealand and west of SSA. This teleconnection links warm (cold) SSA anomalies with dry (wet) summers in eastern Australia. The covariability seems to be influenced by the characteristics of tropical forcing; indeed, a disruption has been observed since late 1970s, presumably due to the PDO warm phase.  相似文献   

18.
《大气与海洋》2013,51(3):277-296
Abstract

Sea level responses to climatic variability (CV) and change (CC) signals at multiple temporal scales (interdecadal to monthly) are statistically examined using long‐term water level records from Prince Rupert (PR) on the north coast of British Columbia. Analysis of observed sea level data from PR, the longest available record in the region, indicates an annual average mean sea level (MSL) trend of +1.4±0.6 mm yr?1 for the period (1939–2003), as opposed to the longer term trend of 1±0.4 mm yr?1 (1909–2003). This suggests a possible acceleration in MSL trends during the latter half of the twentieth century. According to the results of this study, the causes behind this acceleration can be attributed not only to the effects of global warming but also to cyclic climate variability patterns such as the strong positive Pacific Decadal Oscillation (PDO) phase that has been present since the mid‐1970s. The linear regression model based on highest sea levels (MAXSL) of each calendar year showed a trend exceeding twice that (3.4 mm yr?1) of MSL. Previous work shows that the influence of vertical crustal motions on relative sea level are negligible at PR.

Relations between sea levels and known CV indices (e.g., the Multivariate ENSO Index (MEI), PDO, Northern Oscillation Index (NOI), and Aleutian Low Pressure Index (ALPI)) are explored to identify potential controls of CV phenomena (e.g., the El Niño Southern Oscillation (ENSO), PDO) on regional MSL and MAXSL. Linear and non‐linear statistical methods including correlation analyses, multiple regression, Cumulative Sum (CumSum) analysis, and Superposed Epoch Analysis (SEA) are used. Results suggest that ENSO forcing (as shown by the MEI and NOI indices) exerts significant influence on winter sea level fluctuations, while the PDO dominates summer sea level variability. The observational evidence at PR also shows that, during the period 1939–2003, these cyclic shorter temporal scale sea level fluctuations in response to CV were significantly greater than the longer term sea‐level rise trend by as much as an order of magnitude and with trends over twice that of MSL. Such extreme sea level fluctuations related to CV events should be the immediate priority for the development of coastal adaptation strategies, as they are superimposed on long‐term MSL trends, resulting in greater hazard than longer term MSL rise trends alone.  相似文献   

19.
The study examines results of dynamic downscaling of two global analyses: the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis II and the Global Forecast System final analysis (FNL). Downscaling to a 0.5° grid over West Africa and the adjacent Atlantic Ocean is accomplished by each of two regional models, the Regional Model, version 3 (RM3) of the Center for Climate Systems Research and the Weather, Research and Forecasting model (WRF). Simulations are for September 2006, the African Monsoon Multidisciplinary Analysis (AMMA) Special Observing Period #3 (SOP-3). The aim of this study is to exploit the increased spatial detail in the simulations and representations of climate fields by the regional models to analyze meteorological systems within the SOP-3 area of interest and time frame. In particular, the paper focuses on the regional models’ representations of the structure and movement of a prominent easterly wave during September 10–13th, the precursor of Tropical Storm/Hurricane Helene. It describes the RM3 simulated structure of the developing storm in terms of circulation, precipitation, vertical motion, cumulus heating rates, and cross-sections of wind and geopotential height anomalies. Simulated cumulus heating rates within the wave’s main precipitation area imply a lowering of the bases of active cumulus in the transition from the African continent to the Atlantic, indicating that the ocean environment promotes greater upward latent heat flux that in turn intensifies overlying storms. RM3 circulation, precipitation patterns, and storm trajectory are reasonably consistent with observational evidence. Experiments show that precipitation rates near 6°N over the eastern North Atlantic are sensitive to vertical thermal stability, such that they are enhanced by warmer in situ sea-surface temperatures (SSTs) and diminished by colder SSTs. However, prescribing colder SST causes increases in precipitation north of 9°N within areas of large scale upward vertical motion where rainfall rates are less sensitive to in situ SSTs. The evaluation of WRF indicates that its storm propagation is too fast over West Africa, where associated WRF precipitation rates are exaggerated, but its performance is improved over the Atlantic.  相似文献   

20.
The Pacific decadal oscillation (PDO) is defined as the first empirical orthogonal function (EOF) mode of the North Pacific sea surface temperature anomalies. In this study, we reconstructed the PDO using the first-order autoregressive model from various climate indices representing the El Niño-Southern oscillation (ENSO), Aleutian Low (AL), sea surface height (SSH), and thermocline depth over the Kuroshio–Oyashio extension (KOE) region. The climate indices were obtained from observation and twentieth-century simulations of the eight coupled general circulation models (CGCMs) participating in the Climate Model Intercomparison Project Phase III (CMIP3). In this manner, we quantitatively assessed the major climate components generating the PDO using observation and models. Based on observations, the PDO pattern in the central to eastern North Pacific was accurately reconstructed by the AL and ENSO indices, and that in the western North Pacific was best reconstructed by the SSH and thermocline indices. In the CMIP3 CGCMs, the relative contribution of each component to the generation of the PDO varied greatly from model to model, and observations, although the PDO patterns from most of the models were similar to the pattern observed. In the models, the PDO pattern in the eastern and western North Pacific were well reconstructed using the AL and SSH indices, respectively. However, the PDO pattern reconstructed by the ENSO index was quite different from the observed pattern, which was possibly due to the model's common deficiency in simulating the amplitude and location of the ENSO. Furthermore, the differences in the contribution of the KOE thermocline index between the observed pattern and most of the models indicated that the PDO pattern associated with ocean wave dynamics is not properly simulated by most models. Therefore, the virtually well simulated PDO pattern by models is a result of physically inconsistent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号