首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shrivastava  Pankaj K.  Jaiswal  K.L. 《Solar physics》2003,214(1):195-200
High-speed plasma streams identified in the solar wind measurements can be separated into two categories: coronal-hole-associated streams and flare-generated streams. Effects of these plasma streams on cosmic-ray intensity are studied for the period of 1991–1996. It is investigated that both of these high-speed solar wind plasma streams (CS and FGS) are found equally effective in producing the cosmic-ray intensity decrease on short-term basis.  相似文献   

2.
High-speed solar wind streams (HSWS) were identified for solar cycles 22 and 23 (up to 2004). Preliminarily, HSWS were classified in three groups according to their continuous period of occurrence. In the declining phase of solar cycle 23, 2003 is found to be anomalous, showing a very large number of HSWS events of long duration (> ten days). We have studied the effect of HSWS on the cosmic-ray intensity as well as their relationship with geomagnetic disturbance index Ap on yearly, daily, and hourly bases. The yearly average of solar-wind speed was also found to be maximum in 2003. Being within the declining phase of solar activity, the occurrence of solar flares in 2003 is quite low. In particular during HSWS, no solar flares have been observed. Associations with cosmic-ray changes do not support the notion that the HSWS are usually effective in producing significant cosmic-ray decreases. Out of 12 HSWS events observed during the period 2002 (December) to 2003, four events of significant cosmic-ray decreases at all the stations have been selected for further analysis. The cosmic-ray intensity has been found to decrease during the first phase of the event (first five days of HSWS) at all three neutron-monitor stations situated at different latitudes with different cutoff rigidities. The rigidity spectra of observed decreases in cosmic-ray intensity for these four cases have been found to be significantly different than that of Fds (Forbush decrease). In two cases the spectra are softer, whereas in the other two they are harder than that of Fds. However, if the average of all four events is considered together then the spectra of the decrease in cosmic rays during HSWS exactly match that of Fds. Such a result implies that initially individual events should be considered, instead of combining them together, as was done earlier. The Ap index is also found to generally increase in the first phase of the event. However, the four events selected on the basis of cosmic-ray decrease are not always associated with enhanced values of the Ap index. As such, the significance of our study is that further detailed investigations for much longer periods and on an event-by-event basis is required to understand the effect of coronal-hole-associated HSWS.  相似文献   

3.
O. P. M. Aslam  Badruddin 《Solar physics》2014,289(6):2247-2268
We study the solar-activity and solar-polarity dependence of galactic cosmic-ray intensity (CRI) on the solar and heliospheric parameters playing a significant role in solar modulation. We utilize the data for cosmic-ray intensity as measured by neutron monitors, solar activity as measured by sunspot number (SSN), interplanetary plasma/field parameters, solar-wind velocity [V] and magnetic field [B], as well as the tilt of the heliospheric current sheet [Λ], and we analyze these data for Solar Cycles 20?–?24 (1965?–?2011). We divide individual solar cycles into four phases, i.e. low, high, increasing, and decreasing solar activity. We perform regression analysis to calculate and compare the CRI-response to changes in different solar/interplanetary parameters during
  1. different phases of solar activity and
  2. similar activity phases but different polarity states.
We find that the CRI-response is different during negative (A<0) as compared to positive (A>0) polarity states not only with SSN and Λ but also with B and V. The relative CRI-response to changes in various parameters, in negative (A<0) as compared to positive (A>0) state, is solar-activity dependent; it is ≈?2 to 3 times higher in low solar activity, ≈?1.5 to 2 times higher in moderate (increasing/decreasing) activity, and it is nearly equal in high solar-activity conditions. Although our results can be ascribed to the preferential entry of charged particles via the equatorial/polar regions of the heliosphere as predicted by drift models, these results also suggest that we should look for any polarity-dependent response of solar-wind and transport parameters in modulating CRI in the heliosphere.  相似文献   

4.
Based on the monthly sunspot numbers (SSNs), the solar-flare index (SFI), grouped solar flares (GSFs), the tilt angle of heliospheric current sheet (HCS), and cosmic-ray intensity (CRI) for Solar Cycles 21?–?24, a detailed correlation study has been performed using the cycle-wise average correlation (with and without time lag) method as well as by the “running cross-correlation” method. It is found that the slope of regression lines between SSN and SFI, as well as between SSN and GSF, is continuously decreasing from Solar Cycle 21 to 24. The length of regression lines has significantly decreased during Cycles 23 and 24 in comparison to Cycles 21 and 22. The cross-correlation coefficient (without time lag) between SSN–CRI, SFI–CRI, and GSF–CRI has been found to be almost the same during Cycles 21 and 22, while during Cycles 23 and 24 it is significantly higher between SSN–CRI and HCS–CRI than for SFI–CRI and GSF–CRI. Considering time lags of 1 to 20 months, the maximum correlation coefficient (negative) amongst all of the sets of solar parameters is observed with almost the same time lags during Cycles 21?–?23, whereas exceptional behaviour of the time lag has been observed during Cycle 24, as the correlation coefficient attains its maximum value with two time lags (four and ten months) in the case of the SSN–CRI relationship. A remarkably large time lag (22 months) between HCS and CRI has been observed during the odd-numbered Cycle 21, whereas during another odd cycle, Cycle 23, the lag is small (nine months) in comparison to that for other solar/flare parameters (13?–?15 months). On the other hand, the time lag between SSN–CRI and HCS–CRI has been found to be almost the same during even-numbered Solar Cycles 22 and 24. A similar analysis has been performed between SFI and CRI, and it is found that the correlation coefficient is maximum at zero time lag during the present solar cycle. The GSFs have shown better maximum correlation with CRI as compared to SFI during Cycles 21 to 23, indicating that GSF could also be used as a significant solar parameter to study the cosmic-ray modulation. Furthermore, the running cross-correlation coefficient between SSN–CRI and HCS–CRI, as well as between solar-flare activity parameters (SFI and GSF) and CRI is observed to be strong during the ascending and descending phases of solar cycles. The level of cosmic-ray modulation during the period of investigation shows the appropriateness of different parameters in different cycles, and even during the different phases of a particular solar cycle. We have also studied the galactic cosmic-ray modulation in relation to combined solar and heliospheric parameters using the empirical model suggested by Paouris et al. (Solar Phys.280, 255, 2012). The proposed model for the calculation of the modulated cosmic-ray intensity obtained from the combination of solar and heliospheric parameter gives a very satisfactory value of standard deviation as well as \(R^{2}\) (the coefficient of determination) for Solar Cycles 21?–?24.  相似文献   

5.
We compare the cosmic-ray response to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) during their passage in near-Earth space. We study the relative importance of various structures/features identified during the passage of the ICMEs and CIRs observed during Cycle 23 (1995?–?2009). The identified ICME structures are the shock front, the sheath, and the CME ejecta. We isolate the shock arrival time, the passage of the sheath region, the arrival of ejecta, and the end time of their passage. Similarly, we isolate the CIR arrival, the associated forward shock, the stream interface, and the reverse shock during the passage of a CIR. For the cosmic-ray intensity, we utilize the data from high counting rate neutron monitors. In addition to neutron monitor data, we utilize near-simultaneous and same time-resolution data of interplanetary plasma and field, namely the solar-wind velocity, the interplanetary magnetic field (IMF) vector, and its variance. Further, we also utilize some derived interplanetary parameters. We apply the method of the superposed-epoch analysis. As the plasma and field properties are different during the passage of different structures, both in ICMEs and CIRs, we systematically vary the epoch time in our superposed-epoch analysis one by one. In this way, we study the role and effects of each of the identified individual structures/features during the passage of the ICMEs and CIRs. Relating the properties of various structures and the corresponding variations in plasma and field parameters with changes of the cosmic-ray intensity, we identify the relative importance of the plasma/field parameters in influencing the amplitude and time profiles of the cosmic-ray intensity variations during the passage of the ICMEs and CIRs.  相似文献   

6.
Recent work on the gravitational focusing of meteoroid streams and their threat to satellites and astronauts in the near-Earth environment has concentrated on Earth acting as the gravitational attractor, totally ignoring the Moon. Though the Moon is twelve-thousandths the mass of the Earth, it too can focus meteors, albeit at a much greater distance downstream from its orbital position in space. At the Earth–Moon distance during particular phases of the Moon, slower speed meteoroid streams with very compact radiant diameters can show meteoroid flux enhancements in Earth’s immediate neighborhood. When the right geometric alignment occurs, this arises as a narrowed beam of particles of approximately 1,000 km width. For a narrow radiant of one-tenth degree diameter there is a 10-fold increase in the level of flux passing through the near-Earth environment. Meteoroid streams with more typical radiant sizes of 1° show at most two times enhancement. For sporadic sources, the enhancement is found to be insignificant due to the wide angular spread of the diffuse radiant and thus may be considered of little importance.  相似文献   

7.
The large-scale stream structure of the solar wind flow is studied in the main acceleration zone from 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomical observations of radio wave scattering using the large radio telescopes of the Lebedev Physical Institute; dual-frequency Doppler solar wind speed measurements from the Ulysses Solar Corona Experiment during the spacecraft's two solar conjunctions in summer 1991 and winter 1995; solar magnetic field strength and configuration computed from Wilcox Solar Observatory data. Both the experimental data on the position of the transonic region of the solar wind flow and the solar wind speed estimates were used as parameters reflecting the intensity of the solar wind acceleration process. Correlation studies of these data with the magnetic field strength in the solar corona revealed several types of solar wind flow differing in their velocities and the location of their primary acceleration region.  相似文献   

8.
Obridko  V. N.  Shelting  B. D. 《Solar physics》2011,270(1):297-310
The comparison of the brightness and area of coronal holes (CH) to the solar wind speed, which was started by Obridko et al. (Solar Phys. 260, 191, 2009a) has been continued. While the previous work was dealing with a relatively short time interval 2000 – 2006, here we have analyzed the data on coronal holes observed in the Sun throughout activity Cycle 23. A catalog of equatorial coronal holes has been compiled, and their brightness and area variations during the cycle have been analyzed. It is shown that CH is not merely an undisturbed zone between the active regions. The corona heating mechanism in CH seems to be essentially the same as in the regions of higher activity. The reduced brightness is the result of a specific structure with the magnetic field being quasi-radial at as low an altitude as 1.1R or a bit higher. The plasma outflow decreases the measure of emission from CH. With an adequate choice of the photometric boundaries, the CH area and brightness indices display a fairly high correlation (0.6 – 0.8) with the solar wind velocity throughout the cycle, except for two years, which deviate dramatically – 2001 and 2007, i.e., the maximum and the minimum of the cycle. The mean brightness of the darkest part of CH, where the field lines are nearly radial at low altitudes, is of the order of 18 – 20% of the solar brightness, while the brightness of the other parts of the CH is 30 – 40%. The solar wind streams originate at the base of the coronal hole, which acts as an ejecting nozzle. The solar wind parameters in CH are determined at the level where the field lines are radial.  相似文献   

9.
Mechanism of flux modulations of energetic protons and electrons, associated with the long-period geomagnetic pulsations in the outer magnetosphere, is examined theoretically. In the first part, a linear perturbation theory of the guiding centre distribution function averaged over the bounce phase of an interacting particle is developed for the case of the three-dimensional magnetic oscillations with a sufficiently long period compared with the bounce time of the particle. Secondly we extend the formulation to include some effects of the perturbed drift orbit on the particle distribution such as the particle trapping in the wave field and the phase bunching process. The latter is important for the interaction with the coupling Alfvén mode of magnetic oscillations. Applying these results together with the basic characteristics of the coupling hydromagnetic oscillations in a non-uniform plasma, we discuss the possibilities for the observed particle flux modulations in two different cases, separately, i.e. flux oscillations due to the compressional magnetic perturbation and those from the nearly transverse magnetic variations.  相似文献   

10.
Inverarity  G.W.  Priest  E.R. 《Solar physics》1999,186(1-2):99-121

How common are magnetic null points in the highly complex magnetic field of the solar atmosphere? In this work we seek to model the magnetic structure of quiet regions by placing magnetic sources and sinks on a hexagonal network of supergranule cells to represent the intense magnetic fields that occur at the boundaries of these cells. The resulting potential coronal magnetic field is then computed analytically and searched numerically for magnetic null points, which are classified according to their types and spine directions. Two relations from the theory of vector fields relate the numbers of null points to the numbers of sources and sinks and these are used to check the numerical results. Previous results relating these quantities for monopolar and dipolar magnetic fields are described and a new one for a particular class of quadrupolar fields arising in this study is derived. We model a three-cell configuration and study the effects of increasing the strength of a central sink and of moving the central sink. A twelve-cell configuration is studied in lesser detail.

  相似文献   

11.
Torsti  J.  Valtonen  E.  Anttila  A.  Vainio  R.  Mäkelä  P.  Riihonen  E.  Teittinen  M. 《Solar physics》1997,170(1):193-204
The energy spectra of the anomalous components of helium, nitrogen and oxygen have been measured by the ERNE experiment on board the SOHO spacecraft. During February 28–April 30, 1996, the maximum intensity of anomalous helium was found to be 3.8 × 10-5 cm-2 sr-1 s-1 (MeV nucl-1)-1 in the energy range 10–15 MeV nucl-1. During the period January 26–April 30, 1996, the maximum oxygen intensity was 1.2 × 10-5 cm-2 sr-1 s-1 (MeV nucl-1)-1 at 4–7 MeV nucl-1, and the maximum nitrogen intensity 1.7 × 10-6 cm-2 sr-1 s-1 (MeV nucl-1)-1 at 4–9 MeV nucl-1. These peak intensities are at the same level as two solar cycles ago in 1977, but significantly higher than in 1986. This gives observational evidence for a 22-year solar modulation cycle. A noteworthy point is that the spectra of anomalous nitrogen and oxygen appear to be somewhat broader than in 1977.  相似文献   

12.
A set of geocentric variables suitable for the identification of meteoroid streams has been recently proposed and successfully applied to photographic meteor orbits. We describe these variables and the secular invariance of some of them, and discuss their use to improve the search for meteoroid stream parents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Makarov  V.I.  Tlatov  A.G.  Sivaraman  K.R. 《Solar physics》2003,214(1):41-54
We have defined the duration of polar magnetic activity as the time interval between two successive polar reversals. The epochs of the polarity reversals of the magnetic field at the poles of the Sun have been determined (1) by the time of the final disappearance of the polar crown filaments and (2) by the time between the two neighbouring reversals of the magnetic dipole configuration (l=1) from the H synoptic charts covering the period 1870–2001. It is shown that the reversals for the magnetic dipole configuration (l=1) occur on an average 3.3±0.5 years after the sunspot minimum according to the H synoptic charts (Table I) and the Stanford magnetograms (Table III). If we set the time of the final disappearance of the polar crown filaments (determined from the latitude migration of filaments) as the criterion for deciding the epoch of the polarity reversal of the polar fields, then the reversal occurs on an average 5.8±0.6 years from sunspot minimum (last column of Table I). We consider this as the most reliable diagnostic for fixing the epoch of reversals, as the final disappearance of the polar crown filaments can be observed without ambiguity. We show that shorter the duration of the polar activity cycle (i.e., the shorter the duration between two neighbouring reversals), the more intense is the next sunspot cycle. We also notice that the duration of polar activity is always more in even solar cycles than in odd cycles whereas the maximum Wolf numbers W \max is always higher for odd solar cycles than for even cycles. Furthermore, we assume there is a secular change in the duration of the polar cycle. It has decreased by 1.2 times during the last 120 years.  相似文献   

14.
Perturbations in the position of a satellite due to the Earth's gravitational effects are presented. The perturbations are given in the radial, transverse (or alongtrack) and normal (or cross-track) components. The solution is obtained by projecting the Kepler element perturbations obtained by Kaula [Kaula, 1966] into each of the three components. The resulting perturbations are presented in a form analogous to the form of Kaula's solution which facilitates implementation and interpretation.  相似文献   

15.
This article reports the observations of microwave emission from Jupiter during the impact of K, N, P2 and S fragments of the comet Shoemaker-Levy 9. The comparison of microwave bursts intensities produced by these impacts with the impact class and the size of the impactors reveals no correlation. This is in conformity with other observations at microwave frequencies and indicates that the process of burst emission is very complex. The impacts K and N produced three microwave bursts which could possibly be due to further fragmentation of these fragments. The results are discussed in the perspective of synchrotron emission from Jupiter and possible enhancements due to an increase in the radial diffusion coefficient. However, this model does not fully explain the observations.  相似文献   

16.
The theory of plasma emission is developed under the assumption that the Langmuir waves are generated by an isotropic distribution of fast electrons. Emission from inverse power-law distributions tend to favor emission at the second harmonic with brightness temperatures up to about 108 K at 100 MHz. The concept of a gap (in velocity space) distribution is developed. Very bright plasma emission can result from a gap distribution. For brightness temperatures between 109 K and 1011 K for the second harmonic the fundamental has a brightness temperature between 108 K and 109 K. For higher brightness temperatures the fundamental is amplified and can be very much brighter than the second harmonic. The maximum brightness temperatures for the fundamental and second harmonic at 100 MHz are about 1016 K and 1013 K respectively. Mechanisms by which a gap distribution might be formed are discussed and two effective mechanisms are identified. The theory is applied to the interpretation of radio bursts of types I, II, stationary IV and V. In each case the suggested mechanism appears to be favorable.  相似文献   

17.

We study the predictive capabilities of magnetic-feature properties (MF) generated by the Solar Monitor Active Region Tracker (SMART: Higgins et al. in Adv. Space Res. 47, 2105, 2011) for solar-flare forecasting from two datasets: the full dataset of SMART detections from 1996 to 2010 which has been previously studied by Ahmed et al. (Solar Phys. 283, 157, 2013) and a subset of that dataset that only includes detections that are NOAA active regions (ARs). The main contributions of this work are: we use marginal relevance as a filter feature selection method to identify the most useful SMART MF properties for separating flaring from non-flaring detections and logistic regression to derive classification rules to predict future observations. For comparison, we employ a Random Forest, Support Vector Machine, and a set of Deep Neural Network models, as well as lasso for feature selection. Using the linear model with three features we obtain significantly better results (True Skill Score: TSS = 0.84) than those reported by Ahmed et al. (Solar Phys. 283, 157, 2013) for the full dataset of SMART detections. The same model produced competitive results (TSS = 0.67) for the dataset of SMART detections that are NOAA ARs, which can be compared to a broader section of flare-forecasting literature. We show that more complex models are not required for this data.

  相似文献   

18.
Geophysical data have led to the interpretation that Beta Regio, a 2000×25000 km wide topographic rise with associated rifting and volcanism, formed due to the rise of a hot mantle diapir interpreted to be caused by a mantle plume. We have tested this hypothesis through detailed geologic mapping of the V-17 quadrangle, which includes a significant part of the Beta Regio rise, and reconnaissance mapping of the remaining parts of this region. Our analysis documents signatures of an early stage of uplift in the formation of the Agrona Linea fracture belts before the emplacement of regional plains and their deformation by wrinkle ridging. We see evidence that the Theia rift-associated volcanism occurred during the first part of post-regional-plains time and cannot exclude that it continued into later time. We also see evidence that Devana Chasma rifting was active during the first and the second parts of post-regional-plains time. These data are consistent with uplift, rifting and volcanism associated with a mantle diapir. Geophysical modeling shows that diapiric upwelling may continue at the present time. Together these data suggest that the duration of mantle diapir activity was as long as several hundred million years. The regional plains north of Beta rise and the area east and west of it were little affected by the Beta-forming plume, but the broader area (at least 4000 km across), whose center-northern part includes Beta Regio, could have experienced earlier uplift as morphologically recorded in formation of tessera transitional terrain.  相似文献   

19.
This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976?–?2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions (i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry (i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.  相似文献   

20.
数字调频和数字伺服在被动型氢原子钟上的应用   总被引:1,自引:1,他引:0  
简单介绍了被动型氢原子钟的组成及原理,阐述了基于数字调频和数字伺服的电子电路在被动型氢原子钟上的应用(目的是改善钟性能),并给出了设计的最终测试结果及其分析,数据表明该系统的稳定度比原有系统有很大提高。为了进一步改善钟性能,又对伺服系统提出了以数字信号处理器(DSP)和现场可编程门阵列(FPGA)为主体的新的方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号