首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
In spite of the uncertainties of potential climate change, a scientific consensus is emerging that increasing concentrations of atmospheric CO2 could alter global temperatures and precipitation patterns. Changes in global climate as predicted by General Circulation Models (GCM) could therefore, have profound implications for global agriculture. The objective of this study was to assess the impacts of potential climate change on livestock and grassland production in the major producing regions of the United States. Simulation sites were selected for the study on the basis of the region's economic dependence on rangeland livestock production. Five thirty-year simulations were conducted on each site using the Simulation of Production and Utilization of Rangelands model and Colorado Beef Cattle Production Model. Climate change files were obtained by combining historic weather data from each site with predicted output from three GCM's. Results from nominal runs were compared with the three climate change scenarios and a doubled CO2 run. The magnitude and direction of ecosystem response to climate change varied among the GCM's and by geographic region. Simulations demonstrated that changes in temperature and precipitation patterns caused an increase in above-ground net primary production for most sites. Increased decomposition rates were recorded for northern regions. Similarly, animal production in northern regions increased, implying an increase in economic survivability. However, because decreases in animal production indicators were recorded for the southern regions, economic survivability in southern regions is less certain.  相似文献   

2.
3.
Nordhaus (1991), Cline (1992), Fankhauser (1992), and Titus (1992) have published comprehensive estimates of annual climate change damages to the United States in about 2060 that vary from $55 billion to $111 billion ($1990). The estimates are comprehensive because they address market and nonmarket impacts. They based their estimates on different assumptions about the rates of climate change and sea level rise, rates of return on investment, and changes in population and income. In addition, many of the damage estimates, although reported for a 2.5–3.0 °C warming, were based on studies that assumed higher rates of warming. Thus, these studies may have overestimated damages associated with a 2.5–3.0 °C warming. In this paper, the results of these studies were standardized for a 2.5 °C warming, a 50-cm sea level rise, 1990 income and population, and a 4% real rate of return on investments. After standardization, the total damage estimates range from $42.3 billion to $52.8 billion, slightly less than 1% of United States GNP in 1990. Yet, within individual sectors, such as agriculture and electricity, standardized damages differ by more than an order of magnitude. In addition, a significant amount of speculation underlies the damage estimates. Thus, the small range of total standardized damages and apparent agreement about the magnitude of such damages should be interpreted with caution.  相似文献   

4.
The average annual cost of floods in the United States has been estimated at about $2 billion (current US dollars). The federal government, through the creation of the National Flood Insurance Program (NFIP), has assumed responsibility for mitigating the societal and economic impacts of flooding by establishing a national policy that provides subsidized flood insurance. Increased flood costs during the past two decades have made the NFIP operate at a deficit. This paper argues that our current understanding of climate change and of the sensitivity of the urban environment to floods call for changes to the flood policy scheme. Conclusions are drawn on specific examples from cities along the heavily urbanized corridor of northeastern United States. Mesoscale and global models along with urbanization and economic growth statistics are used to provide insights and recommendations for future flood costs under different emissions scenarios. Mesoscale modeling and future projections from global models suggest, for example, that under a high emissions scenario, New York City could experience almost twice as many days of extreme precipitation that cause flood damage and are disruptive to business as today. The results of the paper suggest that annual flood costs in the United States will increase sharply by the end of the 21st Century, ranging from about $7 to $19 billion current US dollars, depending on the economic growth rate and the emissions scenarios. Hydrologic, hydraulic and other related uncertainties are addressed and a revised version of the NFIP is suggested.  相似文献   

5.
Previous research on the impacts of maple syrup production in the Northeastern United States has been based on correlative relationships between syrup production and average temperature. Here a simple biologically and physically-based model of sapflow potential is used to assess observed changes in sapflow across the Northeastern US from 1980 to 2006; document the correspondence between these observations and independent downscaled atmosphere ocean general circulation model (AOGCM) simulations of conditions during this period; and quantify changes in sapflow potential through 2100. The sapflow model is able to capture the spatial and temporal (in terms of the start date of sapflow) variations of sapflow that are observed across the Northeast. Likewise the AOGCM simulations reflect the mean number of sapflow days and the timing of sapflow during the 1980–2006 overlap period. Through the twenty-first century, warming winter temperatures will result in a decline in the number of sapflow days if traditional sap collection schedules are maintained. Under the A1fi emissions scenario the number of sapflow days decreases by up to 14 days. However, the changes in climate also translate the optimal timing of sap collection to earlier in the year. Across the region, the time period that maximizes the number of sapflows days becomes as much as 30 days earlier by 2100 under the A1fi emissions scenario. Provided this change is accounted for by modifying the start of the traditional sap collection schedule, there is essentially no net loss of sapflow days across the majority of the region, with a net increase of sapflow days indicated in the extreme north.  相似文献   

6.
7.
There is an increasing need to understand what makes vegetation at some locations more sensitive to climate change than others. For savanna rangelands, this requires building knowledge of how forage production in different land types will respond to climate change, and identifying how location-specific land type characteristics, climate and land management control the magnitude and direction of its responses to change. Here, a simulation analysis is used to explore how forage production in 14 land types of the north-eastern Australian rangelands responds to three climate change scenarios of +3°C, +17% rainfall; +2°C, ?7% rainfall; and +3°C, ?46% rainfall. Our results demonstrate that the controls on forage production responses are complex, with functional characteristics of land types interacting to determine the magnitude and direction of change. Forage production may increase by up to 60% or decrease by up to 90% in response to the extreme scenarios of change. The magnitude of these responses is dependent on whether forage production is water or nitrogen (N) limited, and how climate changes influence these limiting conditions. Forage production responds most to changes in temperature and moisture availability in land types that are water-limited, and shows the least amount of change when growth is restricted by N availability. The fertilisation effects of doubled atmospheric CO2 were found to offset declines in forage production under 2°C warming and a 7% reduction in rainfall. However, rising tree densities and declining land condition are shown to reduce potential opportunities from increases in forage production and raise the sensitivity of pastures to climate-induced water stress. Knowledge of these interactions can be applied in engaging with stakeholders to identify adaptation options.  相似文献   

8.
Ensemble regional model simulations over the central US with 30-km resolution are analyzed to investigate the physical processes of projected precipitation changes in the mid-twenty-first century under greenhouse gas forcing. An atmospheric moisture balance is constructed, and changes in the diurnal cycle are evaluated. Wetter conditions over the central US in April and May occur most strongly in the afternoon and evening, supported primarily by moisture convergence by transient eddy activity, indicating enhanced daytime convection. In June, increased rainfall over the northern Great Plains is strongest from 0000 to 0600 LT. It is supported by positive changes in stationary meridional moisture convergence related to a strengthening of the GPLLJ accompanied by an intensification of the western extension of the North Atlantic subtropical high. In the Midwest, decreased rainfall is strongest at 1500 LT and 0000 LT. Both a suppression of daytime convection as well as changes in the zonal flow in the GPLLJ exit region are important. Future drying over the northern Great Plains in summer is triggered by weakened daytime convection, and persists throughout August and September when a deficit in soil moisture develops and land–atmosphere feedbacks become increasingly important.  相似文献   

9.
Projected production responses were derived for confined swine and beef and for milk-producing dairy cattle based on climate change projections in daily ambient temperature. Milk production from dairy cattle and the number of days to grow swine and beef cattle were simulated. Values were obtained for three central United States transects and three climate scenarios which were based on projected mean daily ambient temperatures associated with a baseline, doubling, and tripling of atmospheric greenhouse gas (CO2) levels for the period June 1 to October 31. For swine, a slight northwest to southeast gradient is evident. Transect 1 (west side) shows no losses under the doubling scenario and losses up to 22.4% under the tripling scenario. Transect 3 (east side) displays losses of over 70% under the tripling scenario. For beef, positive benefits were simulated in Transect 1 with increasing temperatures, although a northwest to southeast gradient was also evident. For dairy, no positive benefits in milk production were found due to climate effects. Projected production declines ranged from 1% to 7.2%, depending on location. However, ranges in predicted differences were less than those simulated for beef and swine. These simulations suggest regional differences in animal production due to climate change will be apparent. For small changes in climate conditions, animals will likely be able to adapt, while larger changes in climate conditions will likely dictate that management strategies be implemented. Exploration of the effects of climate changes on livestock should allow producers to adjust management strategies to reduce potential impact and economic losses due to environmental changes.  相似文献   

10.
This paper uses a modified form of Thornthwaite’s moisture index to better quantify climate variability by integrating the effects of temperature and precipitation. Using the moisture index, trends were evaluated over the last 112 years (1895–2006), when unique changes in temperature and precipitation have been documented to have occurred. In addition, data on potential evapotranspiration and the moisture index were used to investigate changing climate and vegetation regions. The results show that the eastern half of the country has been getting wetter, even as temperatures have continued to increase in many areas. In particular, conditions have become wetter in the South, Northeast, and East North Central regions. The changing climate is illustrated by computing climate and vegetation regions for three 30-year periods (1910–1939, 1940–1969, and 1970–1999). Climate regions based on the moisture index show an expansion of the Humid region (where precipitation vastly exceeds climatic demands for water) across the East as well as a westward shift in the zero moisture index line. In terms of vegetation zones, the most dramatic change occurs across the Midwestern prairie peninsula where the wetter conditions lead to a westward expansion of conditions favorable for oak–hickory–pine vegetation.  相似文献   

11.
This study aims to evaluate soil climate quantitatively under present and projected climatic conditions across Central Europe (12.1°–18.9° E and 46.8°–51.1° N) and the U.S. Central Plains (90°–104° W and 37°–49° N), with a special focus on soil temperature, hydric regime, drought risk and potential productivity (assessed as a period suitable for crop growth). The analysis was completed for the baselines (1961–1990 for Europe and 1985–2005 for the U.S.) and time horizons of 2025, 2050 and 2100 based on the outputs of three global circulation models using two levels of climate sensitivity. The results indicate that the soil climate (soil temperature and hydric soil regimes) will change dramatically in both regions, with significant consequences for soil genesis. However, the predicted changes of the pathways are very uncertain because of the range of future climate systems predicted by climate models. Nevertheless, our findings suggest that the risk of unfavourable dry years will increase, resulting in greater risk of soil erosion and lower productivity. The projected increase in the variability of dry and wet events combined with the uncertainty (particularly in the U.S.) poses a challenge for selecting the most appropriate adaptation strategies and for setting adequate policies. The results also suggest that the soil resources are likely be under increased pressure from changes in climate.  相似文献   

12.
This study examines the comparative effectiveness of two important proposed solutions to climate change—energy efficiency improvement and the development and use of renewable energy sources. We focus specifically on their impacts on carbon dioxide emissions by conducting fixed effects regression analysis of panel data pertaining to U.S. states. The analysis reveals a negative relationship between both remedies and carbon dioxide emissions. Although the effects of these potential solutions are statistically equivalent, renewable energy production has a slight edge. Reflecting upon these findings and the larger environmental problem, we caution against exclusive reliance on efficiency improvement and renewable energy to the neglect of other important actions, such as lifestyle modifications. A broad range of social changes, which incorporate the remedies investigated in this paper, are needed to limit long-term global temperature increases to the desired level.  相似文献   

13.
智海  丹利  俞永强  徐永福  王盘兴 《气象学报》2009,67(6):1032-1044
利用中国科学院大气物理研究所(IAP)一个海洋-大气-动态植被耦合模式(GOALS-AVIM),进行了100年模拟积分.基于模拟结果,对东亚地区的植被净初级生产力(NPP)、降水、地面气温和短波辐射的季节变化进行了标准化对比,分析了NPP的时空格局与气候因子(气温、短波辐射和降水)的关系;利用奇异值分解(SVD)对东亚夏季降水场和NPP的关系进行分解.结果表明,夏季东亚地区植被NPP及相关气候因子的时空变化规律明显,耦合模式可以很好地模拟出观测存在的降水及NPP、LAI(叶面积指数)大值区随季节北移南退的形态;由于耦合模式中AVIM的双向特点,模式模拟的NPP与其他物理场的季节变化有很强的对应关系,而且在不同时间和地区,NPP与降水、地面气温、短波辐射表现出不同的对应关系,其中植被NPP时间变化与气温和降水的相关性都较高;从NPP场和降水场夏季逐月标准化距平奇异值分解的空间分布模态来看.NPP与降水在时空场上表现出很强的耦合性,NPP的空间格局与降水存在较好的相关性,不同地理位置的相关性强弱不同,分解出的降水场异常相关模态也再现了东亚夏季降水移动的时空特征,同时东亚雨带随季节变化与NPP的气候变率表现出不同的对应模态.  相似文献   

14.
Guodong Sun  Mu Mu 《Climatic change》2013,120(4):755-769
The approach of conditional nonlinear optimal perturbation related to parameter (CNOP-P) is employed to provide a possible climate scenario and to study the impact of climate change on the simulated net primary production (NPP) in China within a state-of-the-art Lund-Potsdam-Jena dynamic global vegetation model (LPJ DGVM). The CNOP-P, as a type of climate perturbation to bring variation in climatology and climate variability of the reference climate condition, causes the maximal impact on the simulated NPP in China. A linear climate perturbation that induces variation in climatology, as another possible climate scenario, is also applied to explore the role of variation in climate variability in the simulated NPP. It is shown that NPP decreases in northern China and increases in northeastern and southern China when the temperature changes as a result of a CNOP-P-type temperature change scenario. A similar magnitude of change in the spatial pattern variations of NPP is caused by the CNOP-P-type and the linear temperature change scenarios in northern and northeastern China, but not in southern China. The impact of the CNOP-P-type temperature change scenario on magnitude of change of NPP is more intense than that of the linear temperature change scenario. The numerical results also show that in southern China, the change in NPP caused by the CNOP-P-type temperature change scenario compared with the reference simulated NPP is sensitive. However, this sensitivity is not observed under the linear temperature change scenario. The seasonal simulations indicate that the differences between the variations in NPP due to the two types of temperature change scenarios principally stem from the variations in summer and autumn in southern China under the LPJ model. These numerical results imply that NPP is sensitive to the variation in temperature variability. The results influenced by the CNOP-P-type precipitation change scenario are similar to those under the linear precipitation change scenario, which cause the increasing NPP in arid and semi-arid regions of the northern China. The above findings indicate that the CNOP-P approach is a useful tool for exploring the nonlinear response of NPP to climate variability.  相似文献   

15.
Jeremiah Bohr 《Climatic change》2014,122(1-2):217-227
The paper includes the reconstruction and analysis of rare historic records of relative humidity (RH). After having highlighted the story of the development of the hygrometer, the paper considers two instruments that in 1783 were submitted to the prize of the Theodoro-Palatina Academy of Sciences, Mannheim, for a new hygrometer with comparable readings. De Saussure proposed a hair wound on a cylinder connected to a pointer and Chiminello a goose pen fixed to a glass tube and filled with mercury. Chiminello won the prize for the corrections of the temperature dependence. In the Astronomic Observatory, Padua, two rare parallel series of RH observations were made in the same place, and at the same sampling time (tree readings a day) with a Chiminello and a de Saussure hygrometer, over the 1794–1826 period. A study was made to know these instruments and interpret the readings. A replica of the goose-quill hygrometer was built to verify in the lab instrumental performances and calibration problems. After having recovered the data, calibrated the instrument, transformed readings to modern units (%), corrected errors and homogenised the series, the paper compares the RH variability in Padua between early and recent instrumental measurements. It includes predictions of RH for two periods of the 21st century, concluding that no major modifications are expected. The paper highlights the importance of looking for metadata about early station sites, instruments and observers, in order to reconstruct early series as correctly as possible.  相似文献   

16.
We use a physically-based water and energy balance model to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. Projected season lengths are combined with baseline estimates of winter recreation activity, entrance fee information, and potential changes in population to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Our results identify changes in winter recreation season lengths across the United States that vary by location, recreational activity type, and climate scenario. However, virtually all locations are projected to see reductions in winter recreation season lengths, exceeding 50% by 2050 and 80% in 2090 for some downhill skiing locations. We estimate these season length changes could result in millions to tens of millions of foregone recreational visits annually by 2050, with an annual monetized impact of hundreds of millions of dollars. Comparing results from the alternative emissions scenarios shows that limiting global greenhouse gas emissions could both delay and substantially reduce adverse impacts to the winter recreation industry.  相似文献   

17.
We examine whether conservative white males are more likely than are other adults in the U.S. general public to endorse climate change denial. We draw theoretical and analytical guidance from the identity-protective cognition thesis explaining the white male effect and from recent political psychology scholarship documenting the heightened system-justification tendencies of political conservatives. We utilize public opinion data from ten Gallup surveys from 2001 to 2010, focusing specifically on five indicators of climate change denial. We find that conservative white males are significantly more likely than are other Americans to endorse denialist views on all five items, and that these differences are even greater for those conservative white males who self-report understanding global warming very well. Furthermore, the results of our multivariate logistic regression models reveal that the conservative white male effect remains significant when controlling for the direct effects of political ideology, race, and gender as well as the effects of nine control variables. We thus conclude that the unique views of conservative white males contribute significantly to the high level of climate change denial in the United States.  相似文献   

18.
While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefits in the range of $6 to $30 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $198 per metric ton of CO2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.  相似文献   

19.
A method for estimating the changes in mortality resulting from observed or projected climate changes is presented. The method avoids reliance on observed and projected changes in extreme temperatures, and also avoids the confounding effects of long-term influences on mortality such as changes in populations and improvements in medical services. The method relies on the existence of a close correlation between high-pass filtered values of a health indicator variable and a climate variable. Where such a relationship exists, the method provides a simple and robust way to estimate past and future health effects of climate trends. The method is used to estimate the effects of warming of winter temperatures on mortality amongst persons aged 65 years and above, in Melbourne, Australia. The observed warming of 0.7°C over the period 1979–2001 is estimated to have caused a decline in winter mortality of 4.5%, slightly offsetting an observed increase in mortality due to an increasing elderly population. A further 2°C warming could be expected to lead to a decline in winter mortality of 13%. The method was also tested on summer mortality of New York City residents aged 75 years and above. In this case a 2°C warming would lead to a 2.6% increase in mortality.  相似文献   

20.
在验证CENTURY模型对中国陆地植被净初级生产力(Net Primary Productivity,NPP)模拟能力的基础上,利用该模型探讨了1981-2008年中国陆地植被NPP的年际变异和变化趋势对CO2浓度、温度和降水变化的响应。结果表明,中国陆地植被NPP对不同气候因子的响应程度存在明显不同。其中,CO2浓度变化对植被NPP年际变异的影响不显著,但能够引起中国大部分地区植被NPP趋势系数增大;温度对中国中高纬度地区植被NPP的年际变化影响显著,但就全国范围而言,植被NPP年际变异对温度变化的响应程度总体低于对降水变化的响应程度;降水变化是对中国植被NPP变化趋势起主导作用的气候因子。此外,综合考虑温度和降水变化的影响发现,植被NPP变化趋势的响应特征类似于降水单独变化时植被NPP变化趋势的响应特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号