共查询到20条相似文献,搜索用时 78 毫秒
1.
中旬-大具断裂南东段晚第四纪活动的地质地貌证据 总被引:1,自引:0,他引:1
中甸-大具断裂南东段位于哈巴和玉龙雪山北麓,属于川西北次级块体西南边界,断裂总体走向310°~320°,是一条重要的边界断裂。了解该断裂的活动性质、活动时代和滑动速率等对分析川西北次级块体运动,研究该断裂与玉龙雪山东麓断裂的交切关系等问题具有重要意义。文中基于1︰5万活动断层地质填图,对断裂沿线地层地貌、陡坎地貌、地表破裂、典型断层剖面以及河流阶地等进行了详细的研究。研究表明:1)中甸-大具断裂南东段按几何结构、断错地貌表现、断裂活动性可分为马家村—大具次级段和大具—大东次级段。2)通过野外地质调查发现,马家村—大具次级段断错了全新世冲洪积扇,形成了地表破裂,为全新世活动段;而大具—大东次级段虽然也断错了晚更新—全新世地层,但其断错规模及滑动速率均较小,由此认为其全新世以来活动较弱。3)通过分析断裂沿线断层陡坎、水平位错及地表破裂等地质地貌问题,认为马家村—大具次级段的活动性质为右旋走滑兼正断,其晚更新世以来的垂直滑动速率为0. 4~0. 8mm/a,水平滑动速率为1. 5~2. 4mm/a;大具—大东次级段以右旋走滑为主、正断为辅,其晚更新世晚期以来的垂直滑动速率为0. 1mm/a。4)在大具盆地内发现的NW向地表破裂带的形成时代很年轻,不排除是1966年中甸6. 4级地震或1996年丽江7. 0级地震造成的地表破裂。 相似文献
2.
3.
临潭—宕昌断裂带总体上位于东昆仑断裂和西秦岭北缘断裂之间。作为甘东南构造转换和变形传递过程中的一条重要的断裂,其几何展布\,新活动性和运动特征对讨论地震的孕育有着至关重要的作用。前人对临潭—宕昌断裂进行了大量的调查和研究,尤其在2013年岷县—漳县MS6.6地震发生后,认为该断裂各分支断裂活动差异明显,除主干断裂南东段不活动外,其余次级断裂在晚第四纪以来皆有活动。笔者通过对临潭—宕昌主干断裂1∶5万断裂活动性填图工作,在主干断裂南东段发现了多处晚第四纪活动的地质与地貌证据,这一发现对临潭—宕昌断裂带结构特征及活动性是一个重要补充,有助于完善该地区的区域构造几何图像和运动特征,对认识区域构造活动、构造转换和变形传递有关重要的意义。 相似文献
4.
天全-荥经断裂是青藏高原东南缘的1条晚第四纪且活动资料较少的断裂,在2008年汶川M 8.0地震之后,龙门山断裂带西南端未来的地震危险性受到关注。对天全-荥经断裂晚第四纪活动特征的获取有助于理解该区地震危险性的评价。通过遥感影像解译,结合野外调查和断错地貌测量,分析了天全-荥经断裂在荥经下坝村至桂花村切过荥经河河谷晚第四纪地貌区的活动证据。断裂沿线形成冲积扇断错、阶地坎断错和断坎等地貌,并沿断裂发育滑坡。晚第四纪以来断裂以左旋走滑活动为主,其中T2/T2'阶地坎被左旋断错22—24m。利用荥经河阶地与青衣江河流阶地对比,认为该断裂20—40ka以来左旋走滑速率为0.6—1.1mm/a。仍需要从古地震等方面开展工作,来进一步确定天全-荥经断裂的地震危险性。 相似文献
5.
6.
8.
9.
五台山北麓断裂南峪口段晚第四纪活动与古地震 总被引:5,自引:0,他引:5
五台山北麓断裂位于山西断陷系的北部,是繁代断陷南界的控制断裂,其南峪口附近段落在晚第四纪表现出较强的活动性,在晚第四纪洪积扇上形成了高达20~30m的断层陡坎.近20ka以来,该断裂段的平均滑动速率不小于1.55~2.0mm/a,近6ka以来滑动速率达2.3mm/a,高出其它段落平均滑动速率近1倍.在南峪口段的2个探槽共揭露出6次可能的古地震事件,其参考年代距今分别为7600a以前、6700~7600a、5321~5575a、4400~5400a、4200~4400a和.1600a以来,平均复发间隔约为1400a.其中最新活动事件可能是公元512年的地震. 相似文献
10.
通过卫星影像解译、野外实地调查并结合前人研究成果,对位于祁连山北缘的玉门—北大河断裂晚第四纪构造活动特征进行研究。结果表明,玉门—北大河断裂为一条全新世活动的逆冲断裂,该断裂西起玉门青草湾,向东经老玉门市、大红泉止于骨头泉,全长约80km,整体走向NWW。根据断裂的几何结构及活动习性可将其分为三段:东段构造形态简单连续,为逆冲断层陡坎为主的古地震地表破裂带;中段结构复杂,由多条次级断层组成,以逆冲扩展为主;西段未出露地表而成为盲断裂-褶皱带。通过对断层陡坎差分GPS测量及相应地貌面年代测试,得到断裂晚更新世以来逆冲速率约为(0.73±0.09)mm/a。 相似文献
11.
以甘孜-玉树断裂带东南段的地质地貌为研究对象,在遥感解译的基础上,通过对典型地区的详细野外调查和探槽研究对该段晚第四纪活动性进行研究。在断裂沿线的生康乡、仁果乡、错阿乡、日阿乡进行了断错地貌分析和晚第四纪滑动速率计算, 生康区的水平滑动速率为(7.6±0.5)mm/a, 垂直滑动速率为(1.1±0.1)mm/a; 仁果区的水平滑动速率为(8.0±0.3)mm/a,垂直滑动速率为(1.1±0.1)mm/a; 错阿区的水平滑动速率为(10.3±0.4)mm/a; 日阿区的水平滑动速率为(10.8±0.8)mm/a, 垂直滑动速率为(1.1±0.1)mm/a。在仁果乡和错阿乡进行了探槽研究,两处探槽都揭示了多次古地震事件,虽然揭露的断层构造样式有所不同,但总体上都是以走滑为主兼有一定的逆冲分量。综合古地震事件和滑动速率分析表明,甘孜-玉树断裂带东南段晚第四纪尤其是全新世以来活动剧烈。 相似文献
12.
LATE QUATERNARY ACTIVITY AND PALEOSEISMIC RUPTURE BEHAVIOR FOR THE SOUTHEAST SECTION OF THE GANZI-YUSHU FAULT 下载免费PDF全文
WANG Ming-ming HE Yu-lin LIU Shao WANG Shi-yuan MA Chao ZHANG Wei JIA Zhao-liang 《地震地质》2018,40(4):738-752
The Ganzi-Yushu Fault, the boundary of Bayan Har active tectonic block, Qiantang active tectonic block and Sichuan-Yunan active tectonic block, is a sinistral strike-slip fault zone with intensive Holocene activity. Thus, the study of activity characteristics and rupture behavior of paleoearthquakes in the late Quaternary on the Ganzi-Yushu Fault is of fundamental importance for understanding the future seismic risk of this fault. The southeast section of Ganzi-Yushu Fault is made up of three segments of Ganzi, Manigange and Dengke, where a MS7.3 earthquake in 1866, a MS7.7 earthquake in 1854 and a MS7.3 in 1896 occurred, respectively. There is still lack of in-depth study on the active features and the cascading rupture possibility of these segments, which hindered the evaluation of seismic risk for the southeast section of Ganzi-Yushu Fault. By the means of field geological survey and micro topography measurement, this paper studied the geological and geomorphological features of the southeast section of the Ganzi-Yushu Fault. The results show that the Ganzi and Dengke segments show obvious extension movement, in addition to the left-lateral movement. For Manigange segment, the characteristics of the movement are mainly left-lateral strike-slip and thrusting, and the maximum vertical displacement of the Holocene strata is greater than 2m. In part areas, the movement is normal faulting, which perhaps relates to the left stepping zone in the local stress environment. Therefore, combining the research results such as the fracture distribution in different motion characteristics, rupture behavior of paleoearthquakes, and the distribution of historical earthquake surface ruptures, we divide the southeast section of Ganzi Yushu Fault into Ganzi, Manigange and Dengke segment, and consider the Yakou and the Dengke Basin as the stepovers and the segments' boundaries. As the small scale of impermanent barriers including Dengke Basin and the ridge near Yakou, of which the width is about 1~2km, they may be broken through in great earthquake rupture in future. A trench was excavated in Zhuqing township to investigate the paleoearthquakes on the Manigange segment, radiocarbon dating was employed and 3 paleoseismic events were revealed in the Zhuqing trench, which are the seismic events occurring respectively at 3875~3455BC, after 775BC, and the latest one that ruptured the surface. Compared with the previous results of paleoseismology in the southeast section of Ganzi-Yushu Fault, it is found that the paleoseismic events in the Manigange segment are obviously different with that in Ganzi segment and Dengke segment. Due to the lack of sufficient data on the southeast section of the Ganzi-Yushu Fault, it still needs further discussion whether the cascade-rupturing between these segments exists. 相似文献
13.
Based on the 1︰50000 active fault geological mapping, combining with high-precision remote imaging, field geological investigation and dating technique, the paper investigates the stratum, topography and faulted landforms of the Huashan Piedmont Fault. Research shows that the Huashan Piedmont Fault can be divided into Lantian to Huaxian section (the west section), Huaxian to Huayin section (the middle section) and Huayin to Lingbao section (the east section) according to the respective different fault activity.
The fault in Lantian to Huaxian section is mainly contacted by loess and bedrock. Bedrock fault plane has already become unsmooth and mirror surfaces or striations can not be seen due to the erosion of running water and wind. 10~20m high fault scarps can be seen ahead of mountain in the north section near Mayu gully and Qiaoyu gully, and we can see Malan loess faulted profiles in some gully walls. In this section terraces are mainly composed of T1 and T2 which formed in the early stage of Holocene and late Pleistocene respectively. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These indicate that in this section the fault has been active in the late Pleistocene and its activity becomes weaker or no longer active after that.
In the section between Huaxian and Huayin, neotectonics is very obvious, fault triangular facets are clearly visible and fault scarps are in linear distribution. Terrace T1, T2 and T3 develop well on both sides of most gullies. Dating data shows that T1 forms in 2~3ka BP, T2 forms in 6~7ka BP, and T3 forms in 60~70ka BP. All terraces are faulted in this section, combing with average ages and scarp heights of terraces, we calculate the average vertical slip rates during the period of T3 to T2, T2 to T1 and since the formation of T1, which are 0.4mm/a, 1.1mm/a and 1.6mm/a, and among them, 1.1mm/a can roughly represent as the average vertical slip rate since the middle stage of Holocene. Fault has been active several times since the late period of late Pleistocene according to fault profiles, in addition, Tanyu west trench also reveals the dislocation of the culture layer of(0.31~0.27)a BP. 1~2m high scarps of floodplains which formed in(400~600)a BP can be seen at Shidiyu gully and Gouyu gully. In contrast with historical earthquake data, we consider that the faulted culture layer exposed by Tanyu west trench and the scarps of floodplains are the remains of Huanxian MS8½ earthquake.
The fault in Huayin to Lingbao section is also mainly contacted by loess and mountain bedrock. Malan loess faulted profiles can be seen at many river outlets of mountains. Terrace geomorphic feature is similar with that in the west section, T1 is covered by thin incompact Holocene sand loam, and T2 is covered by Malan loess. OSL dating shows that T2 formed in the early to middle stage of late Pleistocene. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These also indicate that in this section fault was active in the late Pleistocene and its activity becomes weaker or no longer active since Holocene.
According to this study combined with former researches, we incline to the view that the seismogenic structure of Huanxian MS8½ earthquake is the Huashan Piedmont Fault and the Northern Margin Fault of Weinan Loess, as for whether there are other faults or not awaits further study. 相似文献
14.
Based on the 1︰50000 geological and geomorphologic mapping of active fault, the structural geomorphic features and activity of Hancheng Fault are investigated in detail. In the study, we divide the fault into three sections from north to south: the section between Xiweikou and Panhe River, the section between Panhe River and Xingjiabao and the section between Xingjiabao and Yijing, the three sections show different characters of tectonic landform. The section between Xiweikou and Panhe River is a kind of typical basin-mountain landform, where diluvial fans spread widely. In the north of Yumenkou, the fault deforms the diluvial fans, forming scarps, along which the fault extends. In the south of Yumenkou, the fault extends along the rear edge of the diluvial fans. In the section between Panhe River and Xingjiabao the fault extends along the front of the loess mesa. In the section between Xingjiabao and Yijing the fault forms scarp in the loess and extends as an arc shaped zone, and the landform is formed by the accumulative deformation of the fault. The activity of the fault becomes weak gradually from northeast to southwest. The fault activity of the section between Xiweikou and Panhe River is the strongest, and the latest age of activity is Holocene. The slip rate since the mid-Holocene is bigger than 0.8mm/a at Yumenkou. The fault activity of the section between Panhe River and Xingjiabao is weaker than the north part, the fault's latest active age is identified as the later period of Late Pleistocene and the activity becomes weak gradually from northeast to southwest. At the estuary of the Jushui River the slip rate of the fault is about 0.49mm/a since late Late Pleistocene. The fault activity of the section between Xingjiabao and Yijing is the weakest. There is no evidence of paleosol S1 deformed in fault profiles, and only some phenomena of fracture and sand liquefaction in the earlier Late Pleistocene loess. The activity of the fault is in line with the fault landform feature. At macro level, the relationship between the uplifted side and the thrown side of the fault switches gradually from the Ordos uplifting region and the rifted basin to the interior blocks of the rifted basin, which maybe is the regional reason why the activity of the Hancheng Fault becomes weak from the northeast to the southwest. 相似文献
15.
遥感影像解译和野外地质地貌调查表明,龙陵-瑞丽断裂(南支)北段是以左旋走滑为主兼张性正断的区域性活动断裂。根据一些断错地貌点的大比例尺填图、实地测量及其年代学分析,确定了该断裂为全新世活动断裂,断裂晚更新世以来的平均水平滑动速率为2.2mm/a,平均垂直滑动速率为0.6mm/a;全新世以来的平均水平滑动速率为1.8~3.0mm/a,平均垂直滑动速率为0.5mm/a。断裂晚更新世以来的滑动速率在不同的时间尺度上变化不大,反映了该断裂晚更新世以来的活动强度比较平稳 相似文献
16.
在野外考察的基础上 ,结合所采集的各条断裂之上的覆盖物或断层带物质的热释光 (TL)或电子自旋共振 (ESR)样品年龄 ,对龙门山断裂带北段的晚第四纪活动性进行了分析 ,认为 :后山断裂在第四纪早 -中期曾有过活动 ,晚更新世以来已不再活动 ;中央断裂早更新世或前第四纪是活动的 ;前山断裂在白龙江以北变成一些小的、零星分布的断裂 ,它们在第四纪早期以前有过活动。而已有研究表明龙门山断裂带中段和西南段晚第四纪以来仍在活动。造成龙门山断裂带不同段落新活动时代不同的主要原因 ,可能是区域应力场的变化所导致的活动地块边界的变化。龙门山断裂带的北段现在已不构成活动块体的边界 ,加之岷山隆起对龙门山断裂带东北段的屏障作用 ,使得龙门山断裂带北段活动减弱。而龙门山推覆构造带中南段和岷山隆起构造带共同成为块体持续挤压作用的东界。这为研究青藏高原的运动学及动力学等问题提供了重要信息 相似文献
17.
用岷江都江堰—汶川段晚第四纪阶地面的变形量估算了龙门山断裂带中段的滑动速率。岷江及其支流发育3级晚第四纪河流阶地,阶地面的年龄分别约为10,20,50kaBP。阶地纵剖面在茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂处有明显的垂直变形。断裂活动具有间歇性特点,晚第四纪以来有过3期活动,其起始时间分别为50,20,10kaBP。依据各级阶地面年龄和变形量估算的茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂晚第四纪逆冲滑动速率分别为0.5,0.6~0.3,0.2mm/a;据阶地走滑位错估算的茂汶-汶川断裂和北川-映秀断裂的晚第四纪右旋走滑速率均约为1mm/a。现代河床之下发育很厚的河流堆积物表明,龙门山的构造抬升经历了较为复杂的过程 相似文献
18.
THE TECTONIC ACTIVITY CHARACTERISTICS OF AWANCANG FAULT IN THE LATE QUATERNARY,THE SUB-STRAND OF THE EASTERN KUNLUN FAULT 下载免费PDF全文
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet. 相似文献
19.
The Shanxi Graben System is one of the intracontinental graben systems developed around the Ordos Block in North China since the Cenozoic, and it provides a unique natural laboratory for studying the long-term tectonic history of active intracontinental normal faults in an extensional environment. Comparing with the dense strong earthquakes in its central part, no strong earthquakes with magnitudes over 7 have been recorded historically in the Jin-Ji-Meng Basin-and-Range Province of the northern Shanxi Graben System. However, this area is located at the conjunction area of several active-tectonic blocks(e.g. the Ordos, Yan Shan and North China Plain blocks), thus it has the tectonic conditions for strong earthquakes. Studying the active tectonics in the northern Shanxi Graben System will thus be of great significance to the seismic hazard assessment. Based on high-resolution remote sensing image interpretations and field investigations, combined with the UAV photogrammetry and OSL dating, we studied the late Quaternary activity and slip rate of the relatively poorly-researched Yanggao-Tianzhen Fault(YTF)in the Jin-Ji-Meng Basin-and-Range Province and got the followings: 1)The YTF extends for more than 75km from Dashagou, Fengzhen, Inner Mongolia in the west to Yiqingpo, Tianzhen, Shanxi Province in the east. In most cases, the YTF lies in the contact zone between the bedrock mountain and the sediments in the basin, but the fault grows into the basin where the fault geometry is irregular. At the vicinity of the Erdun Village, Shijiudun Village, and Yulinkou Village, the faults are not only distributed at the basin-mountain boundary, we have also found evidence of late Quaternary fault activity in the alluvial fans that is far away from the basin-mountain boundary. The overall strike of the fault is N78°E, but the strike gradually changes from ENE to NE, then to NWW from the west to the east, with dips ranging from 30° to 80°. 2)Based on field surveys of tectonic landforms and analysis of fault kinematics in outcrops, we have found that the sense of motion of the YTF changes along its strikes: the NEE and NE-striking segments are mainly normal dip-slip faults, while the left-laterally displaced gullies on the NWW segment and the occurrence characteristics of striations in the fault outcrop indicate that the NWW-striking segment is normal fault with minor sinistral strike-slip component. The sense of motion of the YTF determined by geologic and geomorphic evidences is consistent with the relationship between the regional NNW-SSE extension regime and the fault geometry. 3)By measuring and dating the displaced geologic markers and geomorphic surfaces, such as terraces and alluvial fans at three sites along the western segment of the YTF, we estimated that the fault slip rates are 0.12~0.20mm/a over the late Pleistocene. In order to compare the slip rate determined by geological method with extension rate constrained by geodetic measurement, the vertical slip rates were converted into horizontal slip rate using the dip angles of the fault planes measured in the field. At Zhuanlou Village, the T2 terrace was vertically displaced for(2.5±0.4)m, the abandonment age of the T2 was constrained to be(12.5±1.6)ka, so we determined a vertical slip rate of(0.2±0.04)mm/a using the deformed T2 terrace and its OSL age. For a 50°dipping fault, it corresponds to extension rate of(0.17±0.03)mm/a. At Pingshan Village, the vertical displacement of the late Pleistocene alluvial fan is measured to be(5.38±0.83)m, the abandonment age of the alluvial fan is(29.7±2.5)ka, thus we estimated the vertical slip rate of the YTF to(0.18±0.02)mm/a. For a 65° dipping fault, it corresponds to an extension rate of(0.09±0.01)mm/a. Ultimately, the corresponding extensional rates were determined to be between 0.09mm/a and 0.17mm/a. Geological and geodetic researches have shown that the northern Shanxi Graben System are extending in NNW-SSE direction with slip rates of 1~2mm/a. Our data suggests that the YTF accounts for about 10% of the crustal extension rate in the northern Shanxi Graben System. 相似文献
20.