首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of ice‐rafted detritus (IRD) is studied in three cores from the western Svalbard slope (1130–1880 m water depth, 76–78°N) covering the period 74–0 ka. The aim was to provide new insight into the dynamics of the Svalbard–Barents Sea Ice Sheet during Marine Isotope Stages (MIS) 4–1 to get a better understanding of ice‐sheet interactions with changes in ocean circulation and climate on orbital and millennial (Dansgaard–Oeschger events of stadial–interstadial) time scales. The results show that concentration, flux, composition and grain‐size of IRD vary with climate and ocean temperature on both orbital and millennial time scales. The IRD consists mainly of fragments of siltstones and mono‐crystalline transparent quartz (referred to as ‘quartz’). IRD dominated by siltstones has a local Svalbard–Barents Sea source, while IRD dominated by quartz is from distant sources. Local siltstone‐rich IRD predominates in warmer climatic phases (interstadials), while the proportion of allochthonous quartz‐rich IRD increases in cold phases (glacials and stadials/Heinrich events). During the Last Glacial Maximum and early deglaciation at 24–16.1 ka, the quartz content reached up to >90%. In warm climate, local iceberg calving apparently increased and the warmer ocean surface caused faster melting. During the glacial maxima (MIS 4 and MIS 2) and during cold stadials and Heinrich events, the local ice‐sheets must have been relatively stable with low ablation. During ice retreat phases of the MIS 4/3 and MIS 2/1 transitions, maxima in IRD deposition were dominated by local coarse‐grained IRD. These maxima correlate with episodes of climate warming, indicating a rapid, stepwise retreat of the Svalbard–Barents Sea Ice Sheet in phase with millennial‐scale climate oscillations.  相似文献   

2.
《Quaternary Science Reviews》2004,23(5-6):521-527
Different sea surface temperature (SST) reconstructions for the Last Glacial Maximum are applied to a hybrid-coupled climate model. The resulting oceanic states are perturbed by North Atlantic meltwater inputs in order to simulate the effect of Heinrich Events on the Atlantic thermohaline circulation (THC) and SST. The experiments show that both the Atlantic SST signature of the meltwater event and the time span of THC recovery strongly depend on the climatic background state. Data-model comparison reveals that the overall spatial signature of SST anomalies is captured much better in the glacial meltwater experiments than in an analogous experiment under present-day conditions. In particular, a breakdown of the modern THC would induce a much stronger temperature drop in high northern latitudes than did Heinrich Events during the ice age. Moreover, our results suggest that the present-day circulation can settle into a stable ‘off’ mode, whereas the glacial THC was mono-stable. Mono-stability may serve as an explanation for the recovery of the THC after Heinrich Event shutdowns during the Last Glaciation.  相似文献   

3.
The composition of ice‐rafted debris (IRD) within a sediment core from the European continental slope (core OMEX‐2K; 49° 5′ N, 13° 26′ W) has been examined using environmental magnetic analyses. The data demonstrate compositional variability of the IRD within Heinrich layers 2 (H2) and 1 (H1) and these differences are most readily explained by changes in the contribution of different IRD sources to the core site. Some IRD within the main Heinrich layers show magnetic signatures that are similar to IRD derived from the Laurentide ice sheet found in cores from within the main North Atlantic IRD‐belt. In contrast, other IRD‐rich layers, both prior to and within the main Heinrich layers, demonstrate different magnetic behaviour, suggesting a contribution from a non‐Laurentide sourced IRD, most likely derived from ice streams discharging from northeast Atlantic ice sheets such as the British and Fennoscandian ice sheets. These data are consistent with published compositional data from the same core and, given the rapid, highly sensitive and non‐destructive nature of the method, suggest that environmental magnetic analysis has considerable potential for characterising IRD materials within Heinrich layers for the purposes of defining provenance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Heinrich事件和末次冰期气候的不稳定性   总被引:10,自引:0,他引:10  
对北大西洋深海沉积物的研究表明:末次冰期北大西洋沉积物记录中有多次洋面温度降低、有孔虫含量减少、盐度降低和粗颗粒的碳酸盐碎屑快速堆积的现象,这些时间跨度上千年或几百年的气候快速波动被称为Heinrich事件[1-4],很难用古气候的米兰科维奇理论来解释。最近对末次冰期中国马兰黄土堆积的调查发现,在末次冰期之中东亚冬季风也有多次加强,它与北大西洋沉积物中的Heinrich事件对应很好,暗示着东亚季风的变迁更直接受控于北半球冰量的变化,而不是过去人们认为的东亚古季风气候变化与地球轨道变化引起太阳辐射变化直接相关。   相似文献   

5.
Pluvial lakes were abundant in the southwestern United States during Pleistocene glaciations, particularly in the Great Basin. Many of these lakes occupied closed basins; therefore, fluctuations of their water surface elevations are valuable sources of paleoclimate information. Histories of the largest lakes are well constrained, whereas dozens of smaller lakes that were present in this region have received relatively little scientific attention. Given their dimensions, these smaller lakes were climatically sensitive and can offer important information about Quaternary climate variability. Here we present new ages for the highstands of three previously undated small lakes based on radiocarbon dating of gastropod shells recovered from beach ridges. These results are combined with other published and unpublished 14C ages to yield an extensive compilation of highstand shoreline ages for lakes of all sizes throughout the southwestern US. The results indicate that although some lakes reached highstands during the Last Glacial Maximum, the strongest temporal correspondence is between highstands and Heinrich Event H1. These results are consistent with speleothem‐based reconstructions of effective moisture in the southwestern US, which show increased precipitation during stadials of the last glacial cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Haapaniemi, A.I., Scourse, J.D., Peck, V.L., Kennedy, H., Kennedy, P., Hemming, S.R., Furze, M.F.A., Pieńkowski, A.J., Austin, W.E.N., Walden, J., Wadsworth, E. & Hall, I.R. 2010: Source, timing, frequency and flux of ice‐rafted detritus to the Northeast Atlantic margin, 30–12 ka: testing the Heinrich precursor hypothesis. Boreas, Vol. 39, pp. 576–591. 10.1111/j.1502‐3885.2010.00141.x. ISSN 0300‐9483. Increased fluxes of ice‐rafted detritus (IRD) from European ice sheets have been documented some 1000–1500 years before the arrival of Laurentide Ice Sheet (LIS)‐sourced IRD during Heinrich (H) events. These early fluxes have become known as ‘precursor events’, and it has been suggested that they have mechanistic significance in the propagation of H events. Here we present a re‐analysis of one of the main cores used to generate the precursor concept, OMEX‐2K from the Goban Spur covering the last 30 ka, in order to identify whether the British–Irish Ice Sheet (BIIS) IRD fluxes occur only as precursors before H layers. IRD characterization and planktonic foraminiferal δ18O measurements constrained by a new age model have enabled the generation of a continuous record of IRD sources, timing, frequency and flux, and of local contemporary hydrographic conditions. The evidence indicates that BIIS IRD precursors are not uniquely, or mechanistically, linked to H events, but are part of the pervasive millennial‐scale cyclicity. Our results support an LIS source for the IRD comprising H layers, but the ambient glacial sections are dominated by assemblages typical of the Irish Sea Ice Stream. Light isotope excursions associated with H events are interpreted as resulting from the melting of the BIIS, with ice‐sheet destabilization attributed to eustatic jumps generated by LIS discharge during H events. This positive‐feedback mechanism probably caused similar responses in all circum‐Atlantic ice‐sheet margins, and the resulting gross freshwater flux contributed to the perturbation of the Atlantic Meridional Overturning Circulation during H events.  相似文献   

7.
Surface exposure dating of boulders on an exceptionally well‐preserved sequence of moraines in the Peruvian Andes reveals the most detailed record of glaciation heretofore recognised in the region. The high degree of moraine preservation resulted from dramatic changes in the flow path of piedmont palaeoglaciers at the southern end of the Cordillera Blanca (10° 00′ S, 77° 16′ W), which, in turn, generated a series of cross‐cutting moraines. Sixty 10Be surface exposure ages indicate at least four episodes of palaeoglacier stabilisation (>65, ca. 65, ca. 32 and ca. 18–15 ka) and several minor advances or stillstands on the western side of the Nevado Jeulla Rajo massif. The absence of ages close to the global Last Glacial Maximum (ca. 21 ka) suggests that if an advance culminated at that time any resulting moraines were subsequently overridden. The timing of expanded ice cover in the central Peruvian Andes correlates broadly with the timing of massive iceberg discharge (Heinrich) events in the North Atlantic Ocean, suggesting a possible causal connection between southward migration of the Intertropical Convergence Zone during Heinrich events and a resultant increase in precipitation in the tropical Andes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Establishing the precise timing of continental glacial dynamics and abrupt high‐latitude climate events is crucial to understanding the causes of global climate change. Here we present multi‐proxy records in a lake sediment core from arid Inner Mongolia (Wuliangsuhai Lake) that show two distinct glacially derived sedimentation events at ~26.2–21.8 and ~17.3–11.5k cal a BP. Fine sediments from the Last Glacial Maximum separate these glacially derived coarse sediments. Within these intervals, the occurrence of granite clasts at ~24–23.5, 17.3–17 and 15.6–14.1k cal a BP implies either sediment discharge by meltwater as well as strong current flow in the Yellow River and/or sediment influx through hill‐slope mass wasting and landsliding from the nearby Yin Mountains. Surface microfeatures of quartz grains and spot elemental analysis of black specks in these intervals, however, indicate that physical weathering is dominant and that the provenance of the rocks is probably from a glacial source. To the best of our knowledge, this is the first time glacier‐derived materials have been detected in any desert lake in the Yellow River basin. The occurrence of granite clasts roughly correlates with Heinrich events in the North Atlantic, suggesting synchronous ice sheet dynamics in high‐ and mid‐latitude regions during the Last Glacial period. Although our data provide unprecedented evidence for the influence of glacier‐related processes in arid Inner Mongolia, further well‐dated records are clearly needed to re‐evaluate the correlative inference drawn between granite clast layers in Wuliangsuhai Lake and Heinrich events in the North Atlantic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The British and Irish Ice Sheet (BIIS) was highly dynamic during the Late Quaternary, with considerable regional differences in the timing and extent of its change. This was reflected in equally variable offshore ice-rafted debris (IRD) records. Here we reconcile these two records using the FRUGAL intermediate complexity iceberg–climate model, with varying BIIS catchment-level iceberg fluxes, to simulate change in IRD origin and magnitude along the western European margin at 1000-year time steps during the height of the last BIIS glaciation (31–6 ka bp ). This modelled IRD variability is compared with existing IRD records from the deep ocean at five cores along this margin. There is general agreement of the temporal and spatial IRD variability between observations and model through this period. The Porcupine Bank off northwestern Ireland was confirmed by the modelling as a major dividing line between sites possessing exclusively northern or southern source regions for offshore IRD. During Heinrich events 1 and 2, the cores show evidence of a proportion of North American IRD, more particularly to the south of the British Isles. Modelling supports this southern bias for likely Heinrich impact, but also suggests North American IRD will only reach the British margin in unusual circumstances.  相似文献   

10.
Recent data from exposures of terrestrial Pleistocene sediments in the Fraser Lowland of southwestern British Columbia reveal at least two ‘Bond cycles’ within Oxygen Isotope Stage 2. The maximum of the Coquitlam Stade coincides with the timing of Heinrich event H2, the Port Moody Interstade with Dansgaard–Oeschger (D–O) interstade 2, the maximum of the Vashon Stade with H1, and the Fort Langley interval with D–O interstade 1. The Sumas Stade apparently preceded H0 (Younger Dryas) but could have been in response to the same climatic signal. The timing of Sumas advances may be explained by a combination of glacio-isostatic rebound, destabilisation of the ice margin, and rapid movement over a short distance on soft muddy beds of a rising sea floor, thereby leading the timing of North Atlantic events by hundreds of years. In contrast, Coquitlam and Vashon advances were mainly over permeable glaciofluvial sediments and because of this their maxima probably did not precede the timing of H2 and H1. The Port Moody Interstade coincided with the global Last Glacial Maximum, due in part to the moderating effect of moist summer storms in a southward-shifted jet stream that influenced the Fraser Lowland at that time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
We describe the last glaciation climatic history Marine Isotope Stage(MIS, 2-4) from 66.7 ka to 14.5 ka in Hexigten, northeast Inner Mongolia, North China. The climate of the region experienced frequent and significant fluctuations between dry-cold and less dry-cold during the late MIS4. The climate was generally warm and humid during early MIS3(MIS3 c) and late MIS3(MIS3 a), whereas it was cold and dry in middle MIS3(MIS3 b) and during MIS2. In this study, the cold and dry conditions were correlated with a stronger East Asian winter monsoon and strong dune activity; whereas, warm and humid conditions were related to a stronger East Asian summer monsoon(EASM) and weak dune activity. This study establishes six distinct dry and cold intervals during the last glacial period(66.7-14.5 ka) based on optically stimulated luminescence data, multi-proxies record(magnetic susceptibility, grain size analysis, Rb/Sr, SiO2/TiO2) and chemical index of alteration(CIA). The last glacial period may be correlated with Heinrich events 1 to 6 which were further confirmed by comparison with the Hulu cave stalagmites and Greenland ice core records. It is concluded that the study area was substantially affected by the EASM, as compared with the loess-desert transition zone of the Chinese Loess Plateau, especially in MIS3 c and suggested that the East Asian monsoon played a pivotal role in the last glacial period climate and dune activity.  相似文献   

12.
Records of two loess sections located in mid-eastern and western margins of the East Asian Monsoon area captured 20 Dansgaard-Oescher events and six Heinrich events. All these suggested that the climate in the East Asian Monsoon area fluctuated rapidly on millennial to century timescales during the whole Last Glacial. We found that these loess-based events of rapid climate fluctuations were generally synchronous with those of GRIP records, but that there were differences between the Shagou loess section in the west and the Wangguan loess section in the east: the former was more sensitive to climate change than the latter. Compared with earlier studies on loess records covering the Last Glacial from neighboring areas, we discovered that the magnitude of Dansgaard-Oeschger cycles decreased gradually from west to east and we suggest that it resulted from the combined effect of the Westerlies and the East Asian Monsoon.  相似文献   

13.
In the north Irish Sea basin (ISB), sedimentary successions constrained by AMS 14C dates obtained from marine microfaunas record three major palaeoenvironmental shifts during the last deglacial cycle. (i) Marine muds (Cooley Point Interstadial) dated to between 16.7 and 14.7 14C kyr BP record a major deglaciation of the ISB following the Late Glacial Maximum (LGM). (ii) Terminal outwash and ice-contact landforms (Killard Point Stadial) were deposited during an extensive ice readvance, which occurred after 14.7 14C kyr BP and reached a maximum extent at ca.14 14C kyr BP. At this time the lowlands surrounding the north ISB were drumlinised. Coeval flowlines reconstructed from these bedforms end at prominent moraines (Killard Point, Bride, St Bees) and indicate contemporaneity of drumlinisation from separate ice dispersal centres, substrate erosion by fast ice flow, and subglacial sediment transfer to ice-sheet margins. In north central Ireland bed reorganisation associated with this fast ice-flow phase involved overprinting and drumlinisation of earlier transverse ridges (Rogen-type moraines) by headward erosion along ice streams that exited through tidewater ice margins. This is the first direct terrestrial evidence that the British Ice Sheet (BIS) participated in Heinrich event 1 (H1). (iii) Regional mud drapes, directly overlying drumlins, record high relative sea-level (RSL) with stagnation zone retreat after 13.7 14C kyr BP (Rough Island Interstadial). Elsewhere in lowland areas of northern Britain ice-marginal sediments and morainic belts record millennial-scale oscillations of the BIS, which post-date the LGM advance on to the continental shelf, and pre-date the Loch Lomond Stadial (Younger Dryas) advance in the highlands of western Scotland (ca. 11–10 14C kyr BP). In western, northwestern and northern Ireland, Killard Point Stadial (H1) ice limits are reconstructed from ice-flow lines that are coeval with those in the north ISB and end at prominent moraines. On the Scottish continental shelf possible H1-age ice limits are reconstructed from dated marine muds and associated ice marginal moraines. It is argued that the last major offshore ice expansion from the Scottish mountains post-dated ca. 15 14C kyr BP and is therefore part of the H1 event. In eastern England the stratigraphic significance of the Dimlington silts is re-evaluated because evidence shows that there was only one major ice oscillation post-dating ca.18 14C kyr BP in these lowlands. In a wider context the sequence of deglacial events in the ISB (widespread deglaciation of southern part of the BIS → major readvance during H1 → ice sheet collapse) is similar to records of ice sheet variability from the southern margins of the Laurentide Ice Sheet (LIS). Well-dated ice-marginal records, however, show that during the Killard Point readvance the BIS was at its maximum position when retreat of the LIS was well underway. This phasing relationship supports the idea that the BIS readvance was a response to North Atlantic cooling induced by collapse of the LIS. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Ice‐rafted debris (IRD) seeded into the ocean from Northern Hemisphere ice sheets is found in ocean cores along the southwestern European margin through the last glacial period. It is known that the origin of this IRD, especially off Iberia, can vary between North America and western Europe during short‐lived episodes of greatly enhanced iceberg flux, known as Heinrich events, although in most Heinrich events the IRD has a North American source. During the longer times of much lower IRD fluxes between Heinrich events, use of an intermediate complexity climate model, coupled to an iceberg dynamic and thermodynamic model, shows that background levels of IRD most likely originate from western Europe, particularly the British–Irish Ice Sheet. Combining modelling with palaeoceanographic evidence supports reconstructions of a short‐lived, but substantial, Celtic and Irish Sea Ice Stream around 23 ka. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
《Quaternary Science Reviews》2007,26(7-8):862-875
High resolution, multi-proxy records of ice-rafted debris (IRD) flux and provenance in the NE Atlantic detail the development, variability and decline of marine margins of the last glacial circum-North Atlantic ice sheets. Coupled lithological identification, Sr and Nd isotopic composition and 40Ar/39Ar ages of individual hornblende grains reduce ambiguity as to IRD potential source region, allowing clear differentiation between Laurentide (LIS), Icelandic and British (BIS) ice sheet sources (the Icelandic and BIS are collectively referred to as the NW European ice sheet, NWEIS). A step-wise increase in the flux of IRD to the core site at ∼26.5 ka BP documents BIS advance and glaciation of Ireland. Millennial-scale variability of the BIS at a ∼2 ka periodicity is inferred through clusters of pulsed IRD fluxes throughout the late glacial (26.5–10 ka BP). Combination of these European IRD events and the ∼7 ka periodicity of LIS instability is thought to account for quasi-synchronicity of the NWEIS and LIS IRD pulses at Heinrich event (H) 2 and H1, previously suggested to represent the possible involvement of the NWEIS in the initiation of H events. Furthermore, the lack of extensive NWEIS marine margin is inferred prior to H3 (31.5 ka BP), such that no ‘European precursor’ event is associated with either H5 or H4. This suggests that ‘precursor events’ were not directly implicated in the collapse of the LIS, and the persistent instabilities of the BIS that are clustered at a 2 ka periodicity are incompatible with the concept that both H events and their ‘precursors’ are independent responses to a common underlying trigger.  相似文献   

16.
The evolution and dynamics of the last British–Irish Ice Sheet (BIIS) have hitherto largely been reconstructed from onshore and shallow marine glacial geological and geomorphological data. This reconstruction has been problematic because these sequences and data are spatially and temporally incomplete and fragmentary. In order to enhance BIIS reconstruction, we present a compilation of new and previously published ice-rafted detritus (IRD) flux and concentration data from high-resolution sediment cores recovered from the NE Atlantic deep-sea continental slope adjacent to the last BIIS. These cores are situated adjacent to the full latitudinal extent of the last BIIS and cover Marine Isotope Stages (MIS) 2 and 3. Age models are based on radiocarbon dating and graphical tuning of abundances of the polar planktonic foraminifera Neogloboquadrina pachyderma sinistral (% Nps) to the Greenland GISP2 ice core record. Multiple IRD fingerprinting techniques indicate that, at the selected locations, most IRD are sourced from adjacent BIIS ice streams except in the centre of Heinrich (H) layers in which IRD shows a prominent Laurentide Ice Sheet provenance. IRD flux data are interpreted with reference to a conceptual model explaining the relations between flux, North Atlantic hydrography and ice dynamics. Both positive and rapid negative mass balance can cause increases, and prominent peaks, in IRD flux. First-order interpretation of the IRD record indicates the timing of the presence of the BIIS with an actively calving marine margin. The records show a coherent latitudinal, but partly phased, signal during MIS 3 and 2. Published data indicate that the last BIIS initiated during the MIS 5/4 cooling transition; renewed growth just before H5 (46 ka) was succeeded by very strong millennial-scale variability apparently corresponding with Dansgaard–Oeschger (DO) cycles closely coupled to millennial-scale climate variability in the North Atlantic region involving latitudinal migration of the North Atlantic Polar Front. This indicates that the previously defined “precursor events” are not uniquely associated with H events but are part of the millennial-scale variability. Major growth of the ice sheet occurred after 29 ka with the Barra Ice Stream attaining a shelf-edge position and generating turbiditic flows on the Barra–Donegal Fan at ~27 ka. The ice sheet reached its maximum extent at H2 (24 ka), earlier than interpreted in previous studies. Rapid retreat, initially characterised by peak IRD flux, during Greenland Interstadial 2 (23 ka) was followed by readvance between 22 and 16 ka. Readvance during H1 was only characterised by BIIS ice streams draining central dome(s) of the ice sheet, and was followed by rapid deglaciation and ice exhaustion. The evidence for a calving margin and IRD supply from the BIIS during Greenland Stadial 1 (Younger Dryas event) is equivocal. The timing of the initiation, maximum extent, deglacial and readvance phases of the BIIS interpreted from the IRD flux record is strongly supported by recent independent data from both the Irish Sea and North Sea sectors of the ice sheet.  相似文献   

17.
It has been proposed that tropical events could have participated in the triggering of the classic, high-latitude, iceberg-discharge Heinrich events (HE). We explore low-latitude Heinrich events equivalents at high resolution, in a piston core recovered from the tropical north-western African margin. They are characterized by an increase of total dust, lacustrine diatoms and fibrous lacustrine clay minerals. Thus, low-latitude events clearly reflect severe aridity events that occurred over Africa at the Saharan latitudes, probably induced by southward shifts of the Inter Tropical Convergence Zone. At a first approximation, it seems that there is more likely synchronicity between the high-latitude Heinrich Events (HEs) and low-latitude events (LLE), rather than asynchronous behaviours.  相似文献   

18.
通过对位于东亚季风区中东部与西部边缘的两个高分辨率黄土剖面记录的对比研究,发现它们不仅捕捉到了20个Dansgaard Oeschger事件与6个Heinrich事件,而且黄土记录与GRIP冰芯记录的这些快速气候波动基本上是同步的。暗示在整个末次冰期,东亚季风气候同样存在千年—百年尺度上的快速波动。所不同的是,西面的沙沟剖面对这些快速气候波动的反应比东面的王官剖面敏感。结合末次冰期中国黄土记录的先前研究结果,我们发现,自西向东Dansgaard Oeschger旋回的幅度逐渐变小,推测这主要是由西风与东亚夏季风共同作用所造成的。  相似文献   

19.
High resolution multiproxy analysis (microcharcoal, pollen, organic carbon, Neogloboquadrina pachyderma (s), ice rafted debris) of the deep-sea record MD04-2845 (Bay of Biscay) provides new insights for understanding mechanisms of fire regime variability of the last glacial period in western France. Fire regime of western France closely follows Dansgaard–Oeschger climatic variability and presents the same pattern than that of southwestern Iberia, namely low fire regime associated with open vegetation during stadials including Heinrich events, and high fire regime associated with open forest during interstadials. This supports a regional climatic control on fire regime for western Europe through fuel availability for the last glacial period. Additionally, each of Heinrich events 6, 5 and 4 is characterised by three episodes of fire regime, with a high regime bracketed by lower fire regime episodes, related to vegetational succession and complex environmental condition changes.  相似文献   

20.
New records of planktonic foraminiferal δ18O and lithic and foraminiferal counts from Eirik Drift are combined with published data from the Nordic Seas and the “Ice Rafted Debris (IRD) belt”, to portray a sequence of events through Heinrich event 1 (H1). These events progressed from an onset of meltwater release at ~19 ka BP, through the ‘conventional’ H1 IRD deposition phase in the IRD belt starting from ~17.5 ka BP, to a final phase between 16.5 and ~15 ka BP that was characterised by a pooling of freshwater in the Nordic Seas, which we suggest was hyperpycnally injected into that basin. After ~15 ka BP, this freshwater was purged from the Nordic Seas into the North Atlantic, which preconditioned the Nordic Seas for convective deep-water formation. This allowed an abrupt re-start of North Atlantic Deep Water (NADW) formation in the Nordic Seas at the Bølling warming (14.6 ka BP). In contrast to previous estimates for the duration of H1 (i.e., 1000 years to only a century or two), the total, combined composite H1 signal presented here had a duration of over 4000 yrs (~19–14.6 ka BP), which spanned the entire period of NADW collapse. It appears that deep-water formation and climate are not simply controlled by the magnitude or rate of meltwater addition. Instead the location of meltwater injections may be more important, with NADW formation being particularly sensitive to surface freshening in the Arctic/Nordic Seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号