首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
范彩伟  胡林  胡潜伟 《地球科学》2022,47(7):2328-2336
晚中生代是古太平洋板块俯冲和南海北部岩浆弧发育时期,开展珠江口盆地KP1-1-1井钻遇的浅变质砂岩的近源沉积研究有助于揭示岩浆弧源区的构造特点.根据LA-ICPMS碎屑锆石分析,KP1-1-1浅变质砂岩中存在129~155 Ma、155~172 Ma和172~196 Ma三个年龄组分,这一特点与区域上构造岩浆事件一致.碎屑岩浆锆石流体活动性元素富集(如U和Th),高场强元素亏损(如Nb、Hf和Ti);元素组成U/Yb(0.34~3.92)、Sc/Yb(0.48~2.28)、Hf/Th(14.4~186.6)和Th/Nb(24.3~462.7)具有大陆岩浆弧特点;计算的锆石Ti温度为551~786℃,表明属于低温弧岩浆作用.碎屑岩中172~196 Ma锆石组分记录了东沙-大仑-雁荡岩浆弧向西南的进一步延伸,与侏罗纪早期古太平洋斜向俯冲到华南陆块之下有关.155~172 Ma岩浆锆石与古板块强烈俯冲有关,对应于华南165~150 Ma大规模花岗质岩浆活动.129~155 Ma时期板块俯冲减弱或俯冲带后撤,可与浙闽同时期板内强烈火山活动对比.碎屑岩中测得最年轻年龄为128.8 Ma,表明KP1-1-1钻遇浅变质砂岩形成时代晚于128 Ma,应属于白垩系,不是传统上认为的下古生界岩系.   相似文献   

2.
陆弧和弧前盆地是俯冲体系中具有密切联系的构造单元。中生代以来,华南受多期板块俯冲的控制,发育大规模岩浆岩带及海域广泛分布的弧前盆地。但陆域弧岩浆岩较少,海域又缺乏足够钻井,各时期陆弧的位置存在较大争议,同时,南海北部至东海一带弧前盆地也缺乏系统认识,因此,亟须新的研究思路深化对华南晚中生代俯冲体系和俯冲过程的认识。本文以前人研究为基础,对海域钻遇中生界的典型钻井进行了详细分析,系统开展了海域盆地区域构造和沉积对比,将弧前盆地发育与岛弧变迁相结合综合分析。结果表明早侏罗世—早白垩世陆弧位于南海北部—东海靠近陆域一侧,经历了早侏罗世局限陆弧、中晚侏罗世沿海陆弧带、早白垩世向海沟方向的迁移。在此过程中,华南海域弧前盆地群于中侏罗世正式形成,早白垩世发育盆缘角度不整合,粗碎屑相带向海沟方向迁移,晚白垩南海北部与东海各自进入新的构造体制,结束弧前盆地的发育。华南沿海海域中生代盆地的发育可为陆弧的展布提供重要约束,弧岩浆岩带的迁移控制了弧前盆地的演化。  相似文献   

3.
The Wolhyeonri complex in the southwestern margin of the Korean Peninsula is divided into three lithotectonic units: Late Paleozoic Zone I to the west, Middle Paleozoic Zone II in the middle and Early Paleozoic Zone III to the east. Zones II and III display characteristics of continental arc magmatic sequence. Zone II is dominated by mafic metavolcanics, whereas zone III is characterized by the presence of dismembered serpentinite bodies including chaotic mélange. These zones are proposed to have been formed in a convergent margin setting associated with subduction. Here we present zircon SHRIMP U–Pb ages from the various units within the Wolhyeonri complex which reveal the Paleozoic tectonic history of the region. The Late Carboniferous ages obtained from the main shear zone between the Wolhyeonri complex and the Paleoproterozoic Gyeonggi massif are thought to mark the timing of continental arc magmatism associated with the subduction process. In contrast, Zone I with Neoproterozoic arc magmatic remnants might indicate deposition in a forearc basin. The Wolhyeonri complex also preserves strong imprints of the Triassic collisional event, including the presence of Middle Triassic high-pressure metabasites and eclogites near the eastern boundary of the Zone III. These range of radiogenic ages derived from the Wolhyeonri complex correlate well with subduction and accretion history between the North and South China cratons. Similar geochronological features have also been indentified from the Qinling, Tongbai–Xinxian, and northern Dabie areas in east-central China. The existence of Paleozoic coeval subduction in East Asia prior to the Triassic collision is broadly consistent with a regional tectonic linkage to Gondwana.  相似文献   

4.
完达山造山带原型盆地及可能的造山机制   总被引:5,自引:1,他引:4  
完达山造山带是东亚环太平洋构造带的重要组成部分,是中国北方唯一的中生代深水活动类型沉积建造出露区。三叠纪—侏罗纪硅质岩-碎屑岩系构成了这个造山带的主体,其沉积序列总体表现为一向上变浅、碎屑颗粒变粗的沉积旋回,其中的硅质岩、泥岩稀土元素以Ce的正异常为特征;砂岩构架颗粒成分与典型的弧前盆地相同。这些特征表明,完达山造山带三叠纪—侏罗纪的原型盆地是东亚陆缘区弧前盆地的组成部分。构造解析结果进一步揭示,造山带只发育一期透入性的变形构造,与增生杂岩的变形序列明显不同。基于上述结论并结合区域构造分析结果提出,完达山造山带的隆升主要是中生代东亚陆缘型岩浆弧东移、本区卷入科迪勒拉型造山带所致。  相似文献   

5.
西秦岭楔的构造属性及其增生造山过程   总被引:27,自引:17,他引:10  
西秦岭楔是叠置于早古生代造山作用基础上形成的并插入祁连和昆仑早古生代造山带内部的楔形地质体,以大面积出露三叠系并发育多条蛇绿混杂岩带、大型韧性剪切带、中生代火山-岩浆作用和斑岩-矽卡岩型矿床为典型特征,具有增生造山作用的典型特征。这些蛇绿混杂岩带和岛弧钙碱性火山-岩浆岩的形成时代均具有向南逐渐变年轻的空间演化特征,显示了特提斯洋演化过程中海沟具有向南撤退的基本特征。砂岩碎屑组成以及源区特征研究结果表明,西秦岭楔三叠系形成于活动大陆边缘,其碎屑沉积物来自于古特提斯洋北侧的增生杂岩及岛弧。丰富的岛弧钙碱性火山-岩浆岩和沉积组合以及赋存的斑岩-矽卡岩型矿床,均与东昆仑及南秦岭相一致,呈现出相似的岩石组合类型以及岩石地球化学和同位素地球化学特征。这些事实表明,三叠纪时期,东昆仑、西秦岭以及祁连造山带是一个有机整体,自西向东存在一条三叠纪增生岩浆弧。锆石Hf同位素及岩石地球化学成分结果则表明,该增生岩浆弧部分岩浆来自于俯冲增生杂岩的部分熔融。  相似文献   

6.
Cathy Busby   《Tectonophysics》2004,392(1-4):241
Mesozoic rocks of the Baja California Peninsula form one of the most areally extensive, best-exposed, longest-lived (160 my), least-tectonized and least-metamorphosed convergent-margin basin complexes in the world. This convergent margin shows an evolutionary trend that may be typical of arc systems facing large ocean basins: a progression from highly extensional (phase 1) through mildly extensional (phase 2) to compressional (phase 3) strain regimes. This trend is largely due to the progressively decreasing age of lithosphere that is subducted, which causes a gradual decrease in slab dip angle (and concomitant increase in coupling between lower and upper plates), as well as progressive inboard migration of the arc axis.This paper emphasizes the usefulness of sedimentary and volcanic basin analysis for reconstructing the tectonic evolution of a convergent continental margin. Phase 1 consists of Late Triassic to Late Jurassic oceanic intra-arc to backarc basins that were isolated from continental sediment sources. New, progressively widening basins were created by arc rifting and sea floor spreading, and these were largely filled with progradational backarc arc-apron deposits that record the growth of adjacent volcanoes up to and above sea level. Inboard migration of the backarc spreading center ultimately results in renewed arc rifting, producing an influx of silicic pyroclastics to the backarc basin. Rifting succeeds in conversion of the active backarc basin into a remnant backarc basin, which is blanketed by epiclastic sands.Phase 1 oceanic arc–backarc terranes were amalgamated by Late Jurassic sinistral strike slip faults. They form the forearc substrate for phase 2, indicating inboard migration of the arc axis due to decrease in slab dip. Phase 2 consists of Early Cretaceous extensional fringing arc basins adjacent to a continent. Phase 2 forearc basins consist of grabens that stepped downward toward the trench, filled with coarse-grained slope apron deposits. Phase 2 intra-arc basins show a cycle of (1) arc extension, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions, followed by (2) arc rifting, characterized by widespread dike swarms and extensive mafic lavas and hyaloclastites. This extensional-rifting cycle was followed by mid-Cretaceous backarc basin closure and thrusting of the fringing arc beneath the edge of the continent, caused by a decrease in slab dip as well as a possible increase in convergence rate.Phase 2 fringing arc terranes form the substrate for phase 3, which consists of a Late Cretaceous high-standing, compressional continental arc that migrated inboard with time. Strongly coupled subduction resulted in accretion of blueschist metamorphic rocks, with development of a broad residual forearc basin behind the growing accretionary wedge, and development of extensional forearc (trench–slope) basins atop the gravitationally collapsing accretionary wedge. Inboard of this, ongoing phase 3 strongly coupled subduction, together with oblique convergence, resulted in development of forearc strike-slip basins upon arc basement.The modern Earth is strongly biased toward long-lived arc–trench systems, which are compressional; therefore, evolutionary models for convergent margins must be constructed from well-preserved ancient examples like Baja California. This convergent margin is typical of many others, where the early to middle stages of convergence (phases 1 and 2) create nonsubductable arc–ophiolite terranes (and their basin fills) in the upper plate. These become accreted to the continental margin in the late stage of convergence (phase 3), resulting in significant continental growth.  相似文献   

7.
New geochronological and geochemical data for Late Neoproterozoic to Mesozoic intrusive rocks from NW Iran define major regional magmatic episodes and track the birth and growth of one of the Cimmerian microcontinents: the Persian block.After the final accretion of the Gondwanan terranes, the subduction of the Prototethyan Ocean beneath NW Gondwana during the Late Neoproterozoic was the trigger for high magmatic fluxes and the emplacement of isotopically diverse arc-related intrusions in NW Gondwana. The Late Neoproterozoic rocks of NW Iran belong to this magmatic event which includes intrusions with highly variable εHf(t) values. This magmatism continued until a magmatic lull during the Ordovician, which led to the erosion of the Neoproterozoic arc, and then was followed by a rifting event which controlled the opening of Paleotethys. In addition, it is supposed that a prolonged pulse of rift magmatism in Persia lasted from Devonian-Carboniferous to Early Permian time. These magmatic events are geographically restricted and are mostly recorded from NW Iran, although there is some evidence for these magmatic events in other segments of Iran. The Jurassic rocks of NW Iran are interpreted to be the along-strike equivalents of a Mesozoic magmatic belt (the Sanandaj-Sirjan Zone; SaSZ) toward the NW. Magmatic rocks from the SaSZ show pulsed magmatism, with high-flux events at both ~176–160 Ma and ~130 Ma. The SaSZ magmatic rocks are suggested to be formed along a continental arc but a rift setting is also considered for the formation of the SaSZ rocks based on the plume-related geochemical signatures. The arc signatures are represented by Nb-Ta depletion in the highly contaminated (by upper continental crust) plutonic rocks whereas the plume-related signature of less-contaminated melts is manifested by enrichment in Nb-Ta and high εHf(t) values, with peaks at +0.6 and +11.2. All these magmatic pulses led to pre-Cimmerian continental growth and reworking during the Late Neoproterozoic, rifting and detachment of the Cimmerian blocks from Gondwana in Mid-Late Paleozoic time and further crustal growth and reworking of Cimmeria during the Mesozoic.  相似文献   

8.
南沙海区及其周缘中-新生代岩浆活动及构造意义   总被引:16,自引:3,他引:13  
通过对南沙海区及其周缘地区中-新生代以来4个主要地质时期即燕山期、喜山早期、喜山晚期一幕和二幕各种类型岩浆岩的发育特征(包括时空分布、地球化学及构造环境)的综合分析,重构了研究区中-新生代岩浆活动的演化历程:燕山期(侏罗纪到白垩纪)在南沙西面和西南面陆区以中酸性岩浆活动为主,代表中生代东亚陆缘火山岩带的南段。同时在南沙与加里曼丹之间广泛发育的是基性-超基性岩,是在俯冲过程中折返到浅部的古南海洋壳碎片。喜山早期(古新世至始新世)岩浆活动微弱。喜山晚期一幕(晚渐新世至中中新世)在加里曼丹—卡加延一带岩浆活动相对重新活跃,西段主要有英安岩、花岗闪长岩、安山岩、闪长岩等,东段主要为玄武安山岩,但规模较小,似乎不足以构成与古南海俯冲伴生的火山岩带。喜山晚期二幕(晚中新世至第四纪)岩浆活动出现高峰,为大规模的中基性火山喷发,与燕山期及喜山早期截然不同,在中南半岛南部和加里曼丹岛中-北部尤为广泛,可能是该区出现上涌的地幔热团的指示。  相似文献   

9.
胶东半岛中生代侵入岩浆活动序列及其构造制约   总被引:25,自引:0,他引:25  
胶东半岛是我国东部中生代花岗质岩石较为发育的地区。通过对该区中生代侵入岩体高精度年代学数据资料分析,建立了区内中生代花岗质岩石3个显著不同的演化序列:晚三叠世(225~205 Ma)幔源型花岗岩、晚侏罗世(160~150 Ma)地壳重熔型花岗岩和早白垩世(130~105 Ma)壳幔混合型花岗岩。通过与辽东和鲁西–徐淮地区中生代岩浆活动年代学格架的对比分析,探讨了华北东部地区中生代岩石圈构造演化和深部地球动力学过程。指出胶辽地区晚侏罗世(160~150 Ma)地壳重熔型花岗岩记录了华北东部一次重要的岩石圈地壳增厚事件,其区域动力学背景可能与古太平洋板块低角度向亚洲大陆俯冲作用密切相关。正是这次增厚作用导致了早白垩世时期岩石圈拆沉减薄和大规模伸展型花岗质岩浆活动。岩石圈地壳增厚和减薄作用过程主导了中国东部中生代陆内构造应力体制的转换和岩浆活动序列。  相似文献   

10.
The timing of the Palaeo-Pacific Plate (PPP) subduction in East Asia, following the amalgamation of the North and South China Blocks (NCB and SCB), remains equivocal despite several investigations on the widespread subduction-related Mesozoic magmatism in this region. Here we report newly discovered granodiorites in the East China Sea Basin (ECSB) from deep boreholes (2945–2983 m), which yield SHRIMP zircon U–Pb age of 174 ± 1.1 Ma. The rock shows relatively high Sr/Y and La/Yb ratios, low contents of Ni, Cr, and MgO, and markedly negative values of εHf(t) (21.0 to ?27.0). These geochemical and isotopic features are similar to those of the tonalite-trondhjemite-granodiorite (TTG) suites produced by the partial melting of the thickened lower continental crust. Our data, together with the ca. 190–180 Ma I-type granites reported from the eastern Zhejiang–Fujian and Taiwan areas, lead us to conclude that the continental crust in the coastal areas of South China underwent some degree of thickening during the Early Jurassic. A comparison with the coeval magmatic rocks in South Korea and Japan suggests that a large NE-trending continental arc (ca. 190–170 Ma) might have been constructed along the eastern margin of Asia at this time. Our study provides insights into the initiation of the Palaeo-Pacific tectono-magmatic cycle immediately following the consolidation of the SCB and NCB.  相似文献   

11.
华南构造演化的基本特征   总被引:95,自引:11,他引:84  
舒良树 《地质通报》2012,31(7):1035-1053
华南至少经历了4期区域规模的大陆动力学过程,除新元古代和晚中生代具有活动陆缘背景外,均在板块内部发生并完成。华夏块体是一个以新元古代岩石为主体构成的前南华纪基底,不是稳定的克拉通古陆,经历了聚合-裂解-再聚合的复杂构造演化。志留纪发生的板内碰撞-拼合事件使华夏块体与扬子块体再次缝合,形成真正统一的中国南方大陆。在震旦纪—早侏罗世期间,整个华南基本处于陆内滨海-浅海-斜坡环境,内部没有切穿岩石圈的断层,没有大规模幔源岩浆和火山喷发的记录,多次构造变形与岩浆活动均在统一的华南岩石圈之上进行。经过早—中侏罗世的构造体制转换,才演化成为晚中生代西太平洋活动大陆边缘的一部分。从早到晚,华南岩石圈经历了多期、幕式的生长,以侧向增生为主(块体拼合),垂向生长为辅(岩浆上侵)。到晚中生代,在古太平洋板块俯冲和陆内伸展的背景下,形成了独特的华南盆岭构造。长期的板内构造演化和多期的花岗岩浆活动使华南具有很好的成矿条件,成为各种矿产与资源的富集区。新元古代南华纪和晚中生代晚侏罗世—早白垩世是华南最有利的成矿期,尤以后者矿种最多、储量最大。  相似文献   

12.
台湾造山带是中新世晚期以来相邻菲律宾海板块往北西方向移动,导致北吕宋岛弧系统及弧前增生楔与欧亚大陆边缘斜碰撞形成的。目前该造山带仍在活动,虽然规模很小,但形成了多数大型碰撞造山带中的所有构造单元,是研究年轻造山系统的理想野外实验室,为理解西太平洋弧-陆碰撞过程和边缘海演化提供了一个独特的窗口。本文总结了二十一世纪以来对台湾造山带的诸多研究进展,讨论了其构造单元划分及演化过程。我们将台湾造山带重新划分为6个构造单元,由西至东分依次为:(1)西部前陆盆地;(2)中央山脉褶皱逆冲带;(3)太鲁阁带;(4)玉里-利吉蛇绿混杂岩带;(5)纵谷磨拉石盆地;(6)海岸山脉岛弧系统。其中,西部前陆盆地为6.5Ma以来伴随台湾造山带的隆升剥蚀形成沉积盆地。中央山脉褶皱逆冲带为新生代(57~5.3Ma)欧亚大陆东缘伸展盆地沉积物由于弧-陆碰撞受褶皱、逆冲及变质作用改造形成的。太鲁阁带是造山带中的古老陆块,主要记录中生代古太平洋俯冲在欧亚大陆活动边缘形成的岩浆、沉积和变质岩作用。玉里-利吉蛇绿混杂岩带和海岸山脉岛弧系统分别为中新世中期(~18Ma)以来南中国海板块向菲律宾海板块之下俯冲形成的岛弧和弧前增生楔,其中玉里混杂岩中有典型低温高压变质作用记录,变质年龄为11~9Ma;岛弧火山作用的主要时限为9.2~4.2Ma。纵谷磨拉石盆地记录1.1Ma以来的山间盆地沉积。台湾造山带的构造演化可划分为4个阶段:(a)古太平洋板块俯冲与欧亚大陆边缘增生阶段(200~60Ma);(b)欧亚大陆东缘伸展和南中国海扩张阶段(60~18Ma);(c)南中国海俯冲阶段(18~4Ma);(d)弧-陆碰撞阶段(<6Ma)。台湾弧-陆碰撞造山带是一个特殊案例,其弧-陆碰撞并不伴随着弧-陆之间的洋盆消亡,而是由于北吕宋岛弧及弧前增生楔伴随菲律宾海板块运动向西北方走滑,仰冲到欧亚大陆边缘,形成现今的台湾造山带。  相似文献   

13.
The Dom Feliciano Belt evolution is reviewed based on cross-sections, space–time diagrams, P-T paths, and Sr–Nd isotopic data of pre-collisional metaigneous rocks. The belt is divided into northern, central and southern sectors, subdivided into tectonic domains, developed at Neoproterozoic pre-, syn- and post-collisional stages. The northern sector foreland pre-collisional setting represents a rift, with tholeiitic (meta)volcanic rocks (∼800 Ma) chronocorrelated to hinterland intermediate and acidic orthogneisses of high-K calc-alkaline arc signature. In contrast, the central sector records a complete section from the forearc towards the back-arc region during pre-collisional times. In the western domain, ophiolites (∼920 Ma) are associated with arc-related orthogneisses and metavolcanic rocks (880–830 Ma; 760–730 Ma). At back-arc position, continental arc-related magmatism (800–780 Ma) is registered by hinterland orthogneisses and central foreland metavolcanic rocks. Ophiolites on the hinterland opposite side comprise two compositional groups, with N-MORB and supra subduction signature, interpreted as a back-arc basin record (∼750 Ma). The pre-Neoproterozoic basement of the whole belt is correlated with the Nico Perez Terrane and Luis Alves Block (Archean to Mesoproterozoic, with Congo Craton affinity). This contrasts with the Piedra Alta Terrane (Rio de La Plata Craton, only Paleoproterozoic), westernmost Uruguay. The suture between the Piedra Alta and Nico Perez terranes is correlated with the suture zone in the westernmost central sector. Transpression affected both foreland and hinterland during collision (660–640 Ma), with high-T/low-P hinterland progressive exhumation, whilst foreland low- to medium-grade correlated sequences record underthrusting. Post-collisional processes included magmatism throughout the belt (640–580 Ma), strain partitioning along strike-slip shear zones, and foreland basin fill. Late tectono-metamorphic and magmatic processes (560–540 Ma) were attributed to the Kalahari Craton collision. Arc magmatism migration due to subduction angle variations suggests modern-style plate tectonics during Gondwana amalgamation. Diachronism and kinematic inversion are characteristic of an oblique convergent multi-plate orogenic system.  相似文献   

14.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

15.
华北地块北缘广泛发育石炭纪-三叠纪岩浆岩,岩浆岩的时空展布及反映的构造背景对研究古亚洲洋的俯冲增生作用具有重要的意义.然而,目前的研究集中在华北地块北缘中东部,该期岩浆活动的向西延伸有待深入研究.通过对狼山地区近年来获得的晚古生代-早中生代岩浆岩岩石学、地球化学、锆石U-Pb年龄及Hf同位素数据的综合分析,结果表明该区经历了早石炭世-晚二叠世、中-晚三叠世两期构造岩浆作用.其中,早石炭世-晚二叠世岩浆活动时限在338~251 Ma,岩性主要为辉长岩、角闪辉长岩、闪长岩、石英闪长岩、花岗闪长岩及二长花岗岩,辉长岩类的微量元素蛛网图及稀土元素配分型式与岛弧火山岩的曲线类似,花岗岩类具高Sr(>250×10-6,平均值为425×10-6)低Y(6.89×10-6~24.30×10-6)的特点.中-晚三叠世岩浆活动时限在245~228 Ma,岩性主要为正长花岗岩,花岗岩具高K2O/Na2O(1.48~1.58)、低Sr(154×10-6~49×10-6)低Yb(1.01×10-6~1.38×10-6)的特点,稀土配分曲线表现为轻稀土略富集、Eu负异常中等-强(Eu*=0.54~0.23)、重稀土平坦的近似海鸥型,总体反映了后造山花岗岩的地球化学特征.结合构造判别图解及区域地质资料,结果表明狼山地区早石炭世-晚二叠世为俯冲挤压的构造背景,中-晚三叠世则进入了后造山伸展的构造阶段.狼山地区晚古生代-早中生代发育的两期构造岩浆作用与华北陆块北缘中东部(330~265 Ma及250~200 Ma)类似,古亚洲洋的向南俯冲形成了华北陆块北缘近东西向延伸的晚古生代岩浆岩带,华北陆块与其北缘增生造山带拼贴作用的时限为二叠纪末-三叠纪初.   相似文献   

16.
本文在系统收集内蒙古林西-东乌旗地区晚古生代-早中生代岩浆岩的年代学、岩石地球化学以及锆石Hf同位素资料基础上,通过分析岩浆岩岩石组合随时空的变化规律,并结合区域地质资料,探讨了中亚造山带东南部洋盆演化和地壳增生等重要地质问题。研究结果表明,二连浩特-贺根山蛇绿岩带南、北两侧晚古生代-早中生代岩浆岩在年代学上显示不同的活动期次,具有不同岩石组合和地球化学特征,指示它们分属于不同的构造岩浆岩带。蛇绿岩带以北晚泥盆世-中二叠世岩浆活动在时间上呈连续分布的特征,并在晚石炭-早二叠世时期达到活动峰值。火成岩构造组合分析表明,晚泥盆世-石炭纪和早-中二叠世岩浆活动分别与二连浩特-贺根山洋盆向乌里雅斯太大陆边缘之下的俯冲和洋盆闭合后俯冲板片断离引起的软流圈上涌造成的区域伸展背景有关。蛇绿岩带以南岩浆活动时间上呈现石炭纪、早-中二叠世、晚二叠世-三叠纪幕式分布特征,各期岩浆活动前锋有随时间向南迁移的趋势。这三期岩浆活动分别与古亚洲洋板片向宝力道岛弧之下的俯冲、板片后撤以及洋盆消失之后古板块的碰撞造山作用有关。锆石Hf同位素分析表明,中亚造山带东南部晚古生代至早中生代时期存在显著的地壳增生;其中二连浩特-贺根山蛇绿岩带以北表现为地壳的垂向增生,以南表现为地壳的侧向增生。  相似文献   

17.
Abstract

The granitoid suites encountered by drilling in the northern South China Sea (SCS) remain important for understanding the evolution of the late Mesozoic Southeast Asian continental margin. They comprise a range of rock types including diorite, tonalite, granodiorite, monzogranite and syenogranite with SiO2 spanning 56.4–76.8%. Newly acquired secondary ion mass spectrometry (SIMS) U–Pb ages of samples from 14 boreholes indicate two key magmatic episodes: Late Jurassic (161.6–148.2 Ma) and Early Cretaceous (136.5–101.7 Ma). Jurassic magmatism probably began in late Middle Jurassic time, documented by the dates of inherited zircons. The granitoids are dominated by metaluminous to weakly peraluminous I-type granites, are transitional between magnesian and ferroan, and encompass calc-alkaline, high-K calc-alkaline, and shoshonitic series. The geochemical signatures suggest that these granitoids were mostly generated in a normal continental arc environment. Notable features of the I-type samples are well-defined negative Nb–Ta–Ti anomalies typical of arc-related magmas. Taken together, the late Mesozoic arc granites of the SCS, the accretionary wedge of the Palawan terrane to the southeast, and the zone of lithospheric extension north of the SCS throughout Southeast China, define a southeast-to-northwest trench-arc-backarc architecture for the late Mesozoic Southeast Asian continental margin whose geodynamic setting is related to subduction of the Palaeo-Pacific slab beneath the Asian continent. Two key subduction episodes are recognized, one in Late Jurassic and the other in Early Cretaceous time.  相似文献   

18.
南海的右行陆缘裂解成因   总被引:33,自引:2,他引:31  
周蒂  俞何兴等 《地质学报》2002,76(2):180-190
南海成果是西太平洋边缘海动力学研究的重要部分,也关系到特提期,环太平洋两大超级会聚带的相互作用,是国内外地学界长期研究的热点问题。西太平洋边缘海内带,尤其是日本海和南海在形成时代,海盆形态和海底地貌,海底扩张的多轴,多阶段,由东向西扩展特征,岩石圈地幔的地球化学异常等方面具有共同特征,可能在成因上也相似,南海的海盆的楔形的楔形形状,海底扩张及陆架盆地的断陷的由北向南发展和自东向西推进的特征,地壳伸展减薄和海底扩张程度的由东向西减弱都可用尖端向西的“剪刀模型”来描述,即南海的张开是近南北向右行剪切力作用下东亚陆缘发生裂解的结果。南海张开的同时在海盆内及其西缘印支半岛上发育大量近南北向右行走滑断裂,表明当时存在区域性的近南北向右行剪切应力,而在其东缘现在看不到大型近南北向右行走滑断裂,可能是在中中新世以后受从赤道附近近滑移北上并沿马尼拉海沟仰冲的菲律宾群岛所破坏的结果。晚中生代以来,在西太平洋构造域,特提斯构造域西段(印度)及东段(澳大利亚)先后发生了朝欧亚大陆的,不同方向和速度的会聚。在这三大作用的复合和竞争的动力学背景下,东亚陆缘发生了有地幔参加传动的“超级剪切”,其应力场经历了左行压扭体制和右行张扭体制交替的阶段性变化,正是在特提斯构造域西段的会聚起主导作用的阶段,东亚陆缘在右行张扭应力场作用下发生裂解,形成了南海和其他内带边缘海。  相似文献   

19.
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous.  相似文献   

20.
Age-dating of detrital zircons from 22 samples collected along, and adjacent to, the Yarlung-Tsangpo suture zone, southern Tibet provides distinctive age-spectra that characterize important tectonostratigraphic units. Comparisons with data from Nepal, northern India and the Lhasa and Qiangtang terranes of central Tibet constrain possible sources of sediment, and the history of tectonic interactions.Sedimentary rocks in the Cretaceous–Paleogene Xigaze terrane exhibit strong Mesozoic detrital zircon peaks (120 and 170 Ma) together with considerable older inheritance in conglomeratic units. This forearc basin succession developed in association with a continental volcanic arc hinterland in response to Neotethyan subduction under the southern edge of the Eurasia. Conspicuous sediment/source hinterland mismatches suggest that plate convergence along this continental margin was oblique during the Late Cretaceous. The forearc region may have been translated > 500 km dextrally from an original location nearer to Myanmar.Tethyan Himalayan sediments on the other side of the Yarlung-Tsangpo suture zone reveal similar older inheritance and although Cretaceous sediments formed 1000s of km and across at least one plate boundary from those in the Xigaze terrane they too contain an appreciable mid-Early Cretaceous (123 Ma) component. In this case it is attributed to volcanism associated with Gondwana breakup.Sedimentary overlap assemblages reveal interactions between colliding terranes. Paleocene Liuqu conglomerates contain a cryptic record of Late Jurassic and Cretaceous rock units that appear to have foundered during a Paleocene collision event prior the main India–Asia collision. Detrital zircons as young as 37 Ma from the upper Oligocene post-collisional Gangrinboche conglomerates indicate that subduction-related convergent margin magmatism continued through until at least Middle and probably Late Eocene along the southern margin of Eurasia (Lhasa terrane).Although the ages of detrital zircons in some units appear compatible with more than one potential source with care other geological relationships can be used to further constrain some linkages and eliminate others. The results document various ocean closure and collision events and when combined with other geological information this new dataset permits a more refined understanding of the time–space evolution of the Cenozoic India–Asia collision system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号