首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
深度学习在遥感影像分类与识别中的研究进展综述   总被引:5,自引:0,他引:5  
王斌  范冬林 《测绘通报》2019,(2):99-102,136
深度学习一直是机器学习和人工智能研究的热门主题,特别是将深度学习这一深层网络学习算法和遥感影像分类与识别联合起来,使得传统训练算法的局部最小性得以解决。本文首先简要介绍了遥感影像分类与识别算法的发展和经典算法的局限性,其次介绍了深度学习的几种主流算法并分析它们在遥感影像分类与识别处理方面的应用现状,最后对未来深度学习应用于遥感识别与分类趋势进行了展望。  相似文献   

2.
目标识别是遥感高分辨率影像时代的重要应用方向.采用深度卷积神经网络对遥感影像学习训练,能够从遥感影像中自动提取出多个具有代表性的典型地物特征以及特征组合,并应用于多变而复杂的遥感影像数据中进行目标分类识别.本研究选用NWPU VHR-10数据应用于Faster R-CNN卷积神经网络模型中,并采用MAP进行评价,研究中...  相似文献   

3.
高分辨率遥感影像信息提取与目标识别技术研究   总被引:23,自引:7,他引:23  
由于高空间分辨率遥感影像海量数据、复杂细节和尺度依赖的特点决定了高分辨率遥感影像处理的技术难点。在总结以往高分辨率影像(航空影像)信息提取技术的主要难点和不足,从理论上和实践上分析了基于特征基元的高分辨率遥感影像处理与分析的意义,提出了基于特征基元的高分辨率遥感影像多尺度信息提取技术框架。最后对此框架进行总结与分析,指出了目前研究中仍存在的难点和今后的研究重点。  相似文献   

4.
论述了在已有的GIS数据基础之上,将GIS数据与知识综合运用于遥感影像监督法分类的分类方法,着重对样区的自动选取、非训练样区的分类等几个有关的问题进行了分析,并对该分类法的优势进行了分析和总结。  相似文献   

5.
基于特征的模糊神经网络遥感图像目标分类识别   总被引:5,自引:0,他引:5  
特征是图像处理中用于辨识目标的最基本属性.提出了利用模糊神经网络方法,针对舰船的几何特征、矩特征和纹理特征进行舰船目标识别处理.首先简单地描述了几何特征、矩特征尤其是Hu矩特征、一阶纹理特征和二阶纹理特征.然后分别对仿真数据、卫星观测数据中的舰船目标,以及自动检测处理获取的舰船目标的几何特征、Hu机特征和纹理特征进行了提取和分析.模糊神经网络方法可以综合模糊集理论和神经网络方法的优势,有效地实现基于特征的图像目标分类识别处理.文章首先描述了一种主从神经元结构的模糊神经网络分类识别方法,然后利用该方法对大型舰船进行分类识别,包括基于单类舰船特征的分类识别和基于多源(时相)数据融合的分类识别.实验结果表明,基于大型舰船的几何特征、矩特征和纹理特征,利用模糊神经网络方法可以实现对大型舰船目标的有效分类识别.通过多源数据融合处理,可以改善分类识别效果.  相似文献   

6.
董志鹏  王密  李德仁  王艳丽  张致齐 《测绘学报》2019,48(10):1285-1295
高分辨率遥感影像的目标检测与识别,是高分对地观测系统中影像信息自动提取及分析理解的重要内容。针对传统影像目标检测与识别算法中人工设计特征稳健性与普适性差的问题,本文提出基于高分辨率遥感影像目标尺度特征的卷积神经网络检测与识别方法。首先通过统计遥感影像目标的尺度范围,获得卷积神经网络训练与测试过程中目标感兴趣区域合适的尺度大小。然后根据目标感兴趣区域合适的尺度,提出基于高分辨率遥感影像目标尺度特征的卷积神经网络检测与识别架构。通过WHU-RSone数据集对本文卷积神经网络架构与Faster-RCNN架构对比测试验证。试验结果表明,本文架构ZF模型和本文架构VGG-16模型的mean average precision(mAP)分别比Faster-RCNNZF模型和Faster-RCNNVGG-16模型提高8.17%和8.31%,本文卷积神经网络架构可获得良好的影像目标检测与识别效果。  相似文献   

7.
青海湖流域土壤遥感分类   总被引:2,自引:0,他引:2  
选择青海湖流域内一个代表性区域为试验区,以TM数据和地形数据为主要数据源,在GeoEye-1高分辨率影像和土壤图的辅助下,采用最大似然监督分类方法,探讨了遥感技术在青海湖流域土壤分类中的可行性。使用主成分分析、缨帽变换、波段组合等图像处理技术,从TM图像中提取了多种图像特征,并结合高程、坡度及坡向等地形参数,共同生成分类特征数据集进行遥感分类。研究表明,基于遥感图像和地形数据提取的分类特征,有效地区分出试验区内9个土壤亚类和1个非土壤单元,总体分类精度达到了91.76%。  相似文献   

8.
土壤遥感分类识别推理决策器的设计   总被引:5,自引:0,他引:5  
付炜 《遥感学报》2001,5(6):434-441
介绍了干旱区土壤遥感分类识别推理决策器的设计原理与实现方法。在用TM遥感图像对土壤类型进行非监督分类的基础上,建立了正向推理与逆向推理相结合的推理机制,对土壤类型进行分类识别决策。用知识表示的产生式规则与框架式规则相结合的数据结构表示土壤学专家的土壤分类识别知识。用像结构模式建立了土壤分类识别的规则,构造了土壤分类判决树,并用典型像例模式进行了各类型土壤判据文件的组织。用该方法对新疆天山北麓阜康试验区的土壤分类识别进行了试验研究。结果表明,该方法分类精度可靠,为干旱区土壤分类识别开辟了一条新的途径。  相似文献   

9.
高分辨率遥感影像中的场景信息,对影像解译和现实世界的理解具有重要意义。传统的场景分类方法多利用中、低层人工特征,但是高分辨率遥感影像的信息丰富,场景构成复杂,需要高层次的特征来表达。本文提出一种基于PCAnet的高分影像场景分类算法,无监督地逐级提取深层特征。首先,利用显著性探测算法获取显著图,根据显著区域,采样具有代表性的影像块作为初始样本集;然后,将样本集输入到PCAnet中进行特征提取;最后,利用支持向量机(SVM)进行分类。高分影像场景数据UC Merced 21类实验表明,与已有方法相比,本文方法能够有效地提高分类精度。  相似文献   

10.
本文主要研究探讨遥感影像分类的监督分类法原理、技术、步骤及精度等问题。通过采用最大似然分类法对各种融合影像进行监督分类,比对结果,阐述最大似然分类法的特点。  相似文献   

11.
赵理君  唐娉 《遥感学报》2016,20(2):157-171
目前普遍采用的分类器通常都是针对单一或小量任务而设计的,在小数据量的处理中能取得比较满意的结果。但对于海量遥感数据的处理,其在处理时效和分类精度方面还有待研究。本文以遥感图像场景分类任务为例,着重对遥感数据分类问题中几种典型分类方法的适用性进行比较研究,包括K近邻(KNN)、随机森林(RF),支持向量机(SVM)和稀疏表达分类器(SRC)等。分别从参数敏感性,训练样本数据量,待分类样本数据量和样本特征维数对分类器性能的影响等几个方面进行比较分析。实验结果表明:(1)KNN,RF和L0-SRC方法相比RBF-SVM,Linear-SVM和L1-SRC,受参数影响的程度更弱;(2)待分类样本固定的情况下,随着训练样本数目的增加,SRC类型分类方法的分类性能最佳,SVM类型方法次之,然后是RF和KNN,在总体分类时间上呈现出L0-SRCL1-SRCRFRBF-SVM/Linear-SVMKNN/L0-SRC-Batch的趋势;(3)训练样本固定的情况下,所有分类方法的分类精度几乎都不受待分类样本数目变化的影响,RBF-SVM方法性能最佳,其次是L1-SRC,然后是Linear-SVM,最后是RF和L0-SRC/L0-SRC-Batch,在总体分类时间上,L1-SRC和L0-SRC相比其他分类方法最为耗时;(4)样本特征维数的变化不仅影响分类器的运行效率,同时也影响其分类精度,其中SRC和KNN分类器器无需较高的特征维数即可获得较好的分类结果,SVM对高维特征具有较强的包容性和学习能力,RF分类器对特征维数增加则表现得并不敏感,特征维数的增加并不能对其分类精度的提升带来更多的贡献。总的来说,在大数据量的遥感数据分类任务中,现有分类方法具有良好的适用性,但是对于分类器的选择应当基于各自的特点和优势,结合实际应用的特点进行权衡和选择,选择参数敏感性较小,分类总体时间消耗低但分类精度相对较高的分类方法。  相似文献   

12.
邸凯昌  刘斌  刘召芹  邹永廖 《遥感学报》2016,20(5):1230-1242
对月球探测任务、月球遥感制图技术与产品进行综述。从1958年开始,全世界已开展126次(其中70次成功)月球探测工程任务,其中月球遥感制图是其必需的基础性工作。由于月球环境的特殊性,其遥感制图技术与对地观测制图相比具有很大的挑战和更大的难度。目前,中国嫦娥二号轨道器获取的7 m分辨率立体影像是覆盖全月球分辨率最高的立体影像数据,美国月球侦察轨道器LRO任务的激光雷达高度计LOLA数据是精度和密度最高的激光测高数据,LRO NAC影像的分辨率最高(0.5—2 m)但未覆盖全球。在各个探测任务中,基于月球遥感数据和摄影测量技术,已经制作了大量的全球及区域的影像拼图、正射影像图和数字高程模型等制图产品。对月球遥感制图技术发展进行展望,探讨了利用国际多探测任务数据建立新一代控制网和进行精细制图的必要性及技术思路。  相似文献   

13.
结合数据增广和迁移学习的高分辨率遥感影像场景分类   总被引:1,自引:0,他引:1  
深度学习在计算机视觉领域取得了显著的成果,如图像分类、人脸识别、图像检索等。对于遥感领域而言,获取用于训练CNN的有标签数据集通常是一个重大挑战。本文研究了如何将CNN用于高分辨率遥感影像的场景分类,为了克服缺乏大量有标签遥感影像数据集的问题,结合CNN采用了两种技术:数据增广和迁移学习。在UC Merced Land Use数据集上,验证了VGG16、VGG19、ResNet50、InceptionV3、DenseNet121等5种网络的性能,分别达到了98.10%、96.19%、99.05%、97.62%、99.52%的分类准确率。  相似文献   

14.
为利用高分辨率遥感影像实现高精度的飞机目标变化检测,提出了一种自适应的多特征融合变化检测与深度学习相结合的方法。首先,通过加权迭代的多元变化检测法获取变化强度图,并结合自适应的直方图统计法自动获取显著的变化与不变化样本;然后,提取多时相影像的光谱、边缘和纹理特征,完成多特征融合的变化检测,并通过形态学处理得到变化图斑;最后,利用训练的NIN(Network in Network)结构的卷积神经网络飞机识别模型,完成变化图斑的类型判别,实现变化飞机的检测。实验结果表明,本文方法在两组数据的正确率分别达到100%和91.89%,均优于对比方法,能实现准确可靠的飞机目标变化检测。  相似文献   

15.
高分卫星遥感影像空间分辨率的提高,使得地物的光谱和纹理变得更加丰富和复杂,这给遥感影像的自动化分类带来严重挑战。因此,本文提出了一种结合主动学习和词袋模型的高分二号遥感影像分类方法。首先,对研究区域进行多尺度分割,建立影像分割对象集;然后,采用词袋模型构建影像对象的语义特征向量;最后,充分考虑位于分类边界的不确定性样本分布,迭代选择最优样本用于训练支持向量机,用于分类遥感影像。为了验证本文方法的有效性和稳健性,以山东省某市的高分二号遥感影像为试验数据进行了试验分析。结果表明,本文提出的方法可以有效地将研究区域分为水体、地面、植被和建筑物四类,正确率达到90.6%以上。  相似文献   

16.
17.
联合卷积神经网络与集成学习的遥感影像场景分类   总被引:1,自引:0,他引:1  
针对人工设计的中、低层特征难以实现复杂场景影像的高精度分类以及卷积神经网络依赖大量训练数据等问题,结合迁移学习与集成学习,提出了一种联合卷积神经网络与集成学习的遥感影像场景分类算法。首先基于迁移学习的思想,利用在自然影像数据集上训练好的多个深层卷积神经网络模型作为特征提取器,提取图像多个高度抽象的语义特征;然后构建由Logistic回归和支持向量机组成的Stacking集成模型,对同一图像的多个特征分别训练Logistic模型,将预测概率结果融合构建概率特征;最后利用支持向量机对概率特征训练和预测,得到场景影像的分类结果。利用UCMerced_LandUse和NWPU-RESISC 45两种不同规模的遥感影像数据集进行试验,即使在只有10%的数据作为训练样本情况下,本文方法能够分别达到90.74%和87.21%的分类精度。  相似文献   

18.
卷积神经网络在高分遥感影像分类中的应用   总被引:8,自引:0,他引:8  
针对目前应用于高分辨率遥感影像分类的常用算法,其精度已无法满足大数据环境下的分类要求的问题,该文提出了卷积神经网络分类算法。卷积神经网络模型降低了因图像平移、比例缩放、倾斜或者共他形式的变形而引起的误差。在大数据环境下,采用卷积神经网络算法对高分辨率遥感影像进行分类,避免了特征提取和分类过程中数据重建的复杂度,提高了分类精度。通过实验比对分析,证明了卷积神经网络在高分辨率遥感影像分类中的可行性及精度优势,对遥感图像处理领域等相关工作提供了参考价值。  相似文献   

19.
李湘眷  孙皓  王洪伟  王彩玲 《测绘科学》2014,39(12):128-133,137
从高分辨率遥感图像数据中准确检测多类目标的任务对于检测速度和模型训练时间提出了较高的要求.文章提出了一种MKL_mRVM方法:该方法采用基于快速边缘似然最大算法直接计算mRVM分类器的决策函数,避免了传统RVM重复计算目标函数Hessian矩阵的过程,并且因为不需要构造一系列两类分类器,缩短了多类模型的训练时间;同时,将多个基础核引入多类模型,训练过程中采用交叉验证方法确定基础核权重,在随机分出的确认集上检验分类器的精度,选取使得分类模型精度最高的值作为权重的优化结果.实验结果表明,该方法能够在保持解的稀疏性的前提下,有效地缩短模型训练时间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号