首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
The extractable fraction of aqueous colloidal C60 nanoparticles (nC60) was quantified using a liquid–liquid extraction method in the presence of five types of dissolved organic matter (DOM): Aldrich humic acid (AHA), Suwannee River fulvic acid (SFA), sodium dodecyl sulfate (SDS) micelle, liposomes composed of 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine (POPC), and bovine serum albumin (BSA). The changes in toluene extractable fraction highly depended on the type and dose of DOM. Whereas an environmentally relevant concentration of AHA, 2–20 mg L?1, was sufficient to reduce the nC60 fraction easily destabilized, much higher dose of fulvic acid was needed to result in the similar degree of stabilization. A big contrast between two types of self‐organized DOM, SDS micelle and POPC liposomes, was observed. Although SDS micelle significantly decreased the toluene extractable fraction of nC60 at the dose greater than its critical micelle concentration, no apparent decrease in toluene extractable fraction was found in the presence of POPC liposomes up to 3000 mg L?1. The toluene extractable fraction of nC60 in the presence of BSA rapidly decreases at lower doses then gradually decreased at higher doses. An equilibrium complexation model was proposed to quantitatively describe the decrease in the extractability of nC60 in the presence of DOM. The observed decrease in the extractability of nC60 was well explained by the model and the complexation of nC60 with DOM was thought to occur close to 1:1 molar ratio except for BSA. The association constants of nC60 with DOM were in the order of BSA, AHA, SFA, and SDS micelle, showing the differences in the affinity to nC60.  相似文献   

2.
We report on the concentration and compositional features of n-alkanes of natural and anthropogenic origins in the snow samples collected from the Qiyi glacier in the Qilian Mountains, the Yuzhufeng glacier in eastern Kunlun Mountains, the Xiaodongkemadi glacier in the Tanggula Mountains, and the Gurenhekou glacier in the Nyainqêntanglha Range. The results indicate a decrease in the total n-alkane concentration (T-HCs) from the northeast to the south over the Tibetan Plateau. The T-HCs in these studied areas were close to those in the Belukha and Sofiyskiy glacier, Russian Alati Mountains and the Dasuopu glacier in the Himalaya but were much higher than those in the Greenland ice sheet, suggesting that the mountain glaciers in the Asian continent may receive a higher loading of n-alkanes than the Greenland ice core. Moreover, the compositional characteristics of n-alkanes indicated that the n-alkanes in the studied areas were probably originated from the plant waxes as well as the fossil-fuel combustion exhaust, whereas the contribution from the lower organisms was small. In addition, the plant wax (Cn(wax)) and anthropogenic (non-Cn(wax)) contributions revealed that fast industrialization may have significant effects on the organic pollutant composition in glacier over the Tibetan Plateau and its circumference environment. Particularly, except for the Yuzhufeng glacier, the ΣnC21 /ΣnC22 + and (nC15+nC17+nC19)/(nC27+nC29+nC31) ratio decreased from the Qiyi glacier to the Gurenhekou glacier over the Tibetan Plateau, while the carbon preference index (CPI) values increased. These results indicate a decrease in terrigenous input while an increase in marine input from the northeast to the south over the Tibetan Plateau. These two ratios can be used as the climatic and environmental change indicators.  相似文献   

3.
Prediction of CO2 injection performance in deep subsurface porous media relies on the ability of the well to maintain high flow rates of carbon dioxide during several decades typically without fracturing the host formation or damaging the well. Dynamics of solid particulate suspensions in permeable media are recognized as one major factor leading to injection well plugging in sandstones. The invading supercritical liquid-like fluid can contain exogenous fine suspensions or endogenous particles generated in situ by physical and chemical interactions or hydrodynamic release mechanisms. Suspended solids can plug the pores possibly leading to formation damage and permeability reduction in the vicinity of the injector. In this study we developed a finite volume simulator to predict the injectivity decline near CO2 injection wells and also for production wells in the context of enhanced oil recovery. The numerical model solves a system of two coupled sets of finite volume equations corresponding to the pressure-saturation two-phase flow, and a second subsystem of solute and particle convection-diffusion equations. Particle transport equations are subject to mechanistic rate laws of colloidal, hydrodynamic release from pore surfaces, blocking in pore bodies and pore throats, and interphase particle transfer. The model was validated against available laboratory experiments at the core scale. Example results reveal that lower CO2 residual saturation and formation porosity enhance CO2-wet particle mobility and clogging around sinks and production wells. We conclude from more realistic simulations with heterogeneous permeability spanning several orders of magnitude that the control mode of mobilization, capture of particles, and permeability reduction processes strongly depends on the type of permeability distribution and connectivity between injection and production wells.  相似文献   

4.
The incorporation of fullerenes and carbon nanotubes into electronic, optical and consumer products will inevitably lead to the presence of these anthropogenic compounds in the environment. To date, there have been few studies isolating these materials from environmental matrices. Here we report a method commonly used to quantify black carbon (BC) in soils, the benzene polycarboxylic acid (BPCA) method, for measurement of two types of single walled carbon nanotubes (SWCNTs), two types of fullerenes and two forms of soot. The distribution of BC products (BPCAs) from the high pressure and high temperature oxidation illustrates the condensed nature of these compounds because they form predominantly fully substituted mellitic acid (B6CA). The conversion of carbon nanoparticles to BPCAs was highest for fullerenes (average of 23.2 ± 4.0% C recovered for both C60 and C70) and lowest for non-functionalized SWCNTs (0.5 ± 0.1% C). The recovery of SWCNTs was 10 times higher when processed through a cation-exchange column, indicating the presence of metals in SWCNTs compromises the oxidation chemistry. While mixtures of SWCNTs, soot and sediment revealed small losses of black carbon during sample processing, the method is suitable for quantifying total BC. The BPCA distribution of mixtures did not agree with theoretical mixtures using model polyaromatic hydrocarbons, suggesting the presence of a matrix effect. Future work is required to quantify different types of black carbon within the same sample.  相似文献   

5.
With the rapid growth of nanotechnology industry, nanomaterials as an emerging pollutant are gradually released into subsurface environments and become great concerns. Simulating the transport of nanomaterials in groundwater is an important approach to investigate and predict the impact of nanomaterials on subsurface environments. Currently, a number of transport models are used to simulate this process, and the outputs of these models could be inconsistent with each other due to conceptual model uncertainty. However, the performances of different models on simulating nanoparticles transport in groundwater are rarely assessed in Bayesian framework in previous researches, and these will be the primary objective of this study. A porous media column experiment is conducted to observe the transport of Titanium Dioxide Nanoparticles (nano-TiO2). Ten typical transport models which consider different chemical reaction processes are used to simulate the transport of nano-TiO2, and the observed nano-TiO2 breakthrough curves data are used to calibrate these models. For each transport model, the parameter uncertainty is evaluated using Markov Chain Monte Carlo, and the DREAM(ZS) algorithm is used to sample parameter probability space. Moreover, the Bayesian model averaging (BMA) method is used to incorporate the conceptual model uncertainty arising from different chemical reaction based transport models. The results indicate that both two-sites and nonequilibrium sorption models can well reproduce the retention of nano-TiO2 transport in porous media. The linear equilibrium sorption isotherm, first-order degradation, and mobile-immobile models fail to describe the nano-TiO2 retention and transport. The BMA method could instead provide more reliable estimations of the predictive uncertainty compared to that using a single model.  相似文献   

6.
In the present study, chemical oxygen demand (COD) removal by packed‐columns of activated carbon (AC) derived from two different materials (coal activated carbon, CAC and wood activated carbon, WAC) is reported as part of an on‐site wastewater treatment system for handling small volumes of wastewater generated at wood‐floor industries for which there are no proper on‐site treatment options available in the market. The performance of the sorbents, the effect of bed depth (0.19 and 0.57 m) and volumetric load (0.10 and 0.24 m h?1) on the breakthrough curve of sorption systems were studied. The results indicated the feasibility of using both ACs to treat these wastewaters. At the bed depth (0.57 m), volumetric load (0.24 m h?1), and 30% breakthrough, CAC and WAC showed treatment capacity of 40.5 L kg?1 in 250 h and 23.8 L kg?1 in 63 h, respectively. This indicated that CAC requires longer retention times to reach a performance similar to WAC. The experimental data was fit into the bed depth‐service time model showing that under the same conditions, CAC had higher maximum sorption capacity (N0) than WAC. Moreover, thermal regeneration at 500°C temperature could be a cost‐effective procedure since the reuse of spent AC through such regeneration process for further treatment could still achieve 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.  相似文献   

7.
The fate of 14C‐labeled sulfamethoxazole and acetyl‐sulfamethoxazole in soil has been investigated with special respect to possible entry routes of human and veterinary pharmaceuticals into soil environments. Therefore, the stability of the test substances was monitored first in sewage sludge and bovine manure. Within the incubation period of 72 d, 1% at maximum of the initially applied radiotracers was released as 14C‐carbon dioxide while ?75% was transferred to non‐extractable residues that were operationally defined by the ethyl acetate extraction. Test‐sludge and test‐manure samples with defined aged residues were prepared and, supplementary to standard solutions, applied to silty‐clay soil samples. After standard and test‐sludge application, soil/water distribution coefficients of Kd < 5 L kg–1 were determined revealing both test substances as potential leachers. In contrast, the sorption of sulfamethoxazole increased after test‐manure application (Kd > 10 L kg–1). In the long‐term degradability tests, the metabolic fate of both test substances was characterized by the continuous decrease of extractable residues, resulting in disappearance times of DT90 ? 33 d, and the increase of non‐extractable residues. Mineralization reached 11% at maximum. Thereby, the dynamics of these processes differed whether the test substances were applied via standard, test‐sludge or test‐manure application. This fact emphasized the relevance of entry route specific matrix effects on the fate of both test substances in soil.  相似文献   

8.
云南抚仙湖窑泥沟复合湿地的除氮效果   总被引:11,自引:3,他引:8  
为了延缓抚仙湖局部湖湾水体富营养化趋势,在北岸建设了净化面积1hm2.的复合人工湿地.综合利用生物氧化塘、水平潜流湿地和表面流湿地治理技术,对入湖河道窑泥沟污水中氮的去除效果进行了试验研究.试验结果表明,湿地系统的除氮效果十分明显,水力负荷年平均为437mm/d,氮负荷年平均为3.315 g/(m2·d),湿地系统氮滞留量年平均为1.91g/(m2·d).其中,通过植物吸收同化作用除氮量为0.142g/(m2·d),占总氮滞留量的7.5%左右.湿地系统对污水中硝酸盐及亚硝酸盐氮(NOX-)、氨氮(NH4+)、有机氮(TON)和总氮(TN)的去除率年平均分别为62.7%、53.8%、62.4%和57.5%.在湿地系统各功能区中,表面流人工湿地除氮效果最佳,氮去除率年平均为39.4%,硝化和反硝化作用均较强;生物净化塘除氮效果次之,氮去除率年平均为18.5%;潜流人工湿地氮去除率年平均为10.6%;沉淀池中氮去除率年平均只有3.6%.  相似文献   

9.
The capacity for subsurface sediments to sequester radionuclide contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to the long‐term stewardship of re‐mediated sites. In U bioremediation strategies, carbon amendment stimulates bioreduction of U(VI) to U(IV), immobilizing it within the sediments. Sediments enriched in natural organic matter are naturally capable of sequestering significant U, but may serve as sources to the aquifer, contributing to plume persistence. Two types of organic‐rich sediments were compared to better understand U release mechanisms. Sediments that were artificially primed for U removal were retrieved from an area previously biostimulated while detrital‐rich sediments were collected from a location never subject to amendment. Batch incubations demonstrated that primed sediments rapidly removed uranium from the groundwater, whereas naturally reduced sediments released a sizeable portion of U before U(VI)‐reduction commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally reduced sediments, demonstrating their sink‐source behavior. Acetate addition to primed sediments shifted the microbial community from sulfate‐reducing bacteria within Desulfobacteraceae to the iron‐reducing Geobacteraceae and Firmicutes, associated with efficient U(VI) removal and retention, respectively. In contrast, Geobacteraceae communities in naturally reduced sediments were replaced by sequences with similarity to Pseudomonas spp. during U release, while U(VI) removal only occurred with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U‐contaminated sites prior to the determination of a remedial strategy to identify areas, which may contribute to long‐term sourcing of the contaminants.  相似文献   

10.
In this study, a full survey of pollutant sources and water quality was conducted, followed by the application of a water quality model (Water Quality Analysis Simulation Program, WASP) to establish strategies of water quality control in Carp Lake, Taiwan. Results of the field investigation show that both point and non‐point source (NPS) pollutants were responsible for the poor water quality. The contributions of biochemical oxygen demand (BOD) from point source and NPS pollution were 45.9 and 55.1%, respectively. About 80% of total phosphorus (TP) were contributed by NPS. Additionally, point source and NPS pollution discharged 55.5 and 44.5% of NH3–N load, respectively. The Carlson's Trophic State Index ranged from 61.9 to 69.2 showing serious eutrophic problems in Carp Lake. The calculated BOD, NH3–N, and TP carrying capacity were approximately 2.8, 0.42, and 0.15 kg per day, respectively. However, the current pollutant loadings are approximately 3.0–5.5 times the calculated carrying capacity. With the help of the calibrated WASP model, remedial strategies for the lake water from short‐term to long‐term were developed. The completion of the small local sewer system to remove 80% of the point source pollution can serve as a short‐term goal while 40–60% of NPS removal by natural treatment systems may serve as a mid‐term goal. Furthermore, 80% of both source point and NPS pollution removal can be considered as a long‐term strategy. Results of heavy metal analysis show that the enriched sediment would be safe for agricultural applications.  相似文献   

11.
In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir conditions (9 MPa and 45 °C). Fluorescence microscopy and image analysis are used to quantitatively characterize bubble formation, morphology, and mobility. Observations indicate the strong influence of interfacial tension and pore-geometry on bubble growth and evolution. Most of the gas exhibits little mobility during the course of depressurization and clogs water flow paths. However, a snap-off mechanism mobilizes a small portion of the trapped gas along the water flow paths. This feature contributes to the transport of the dispersed exsolved gas phase and the formation of intermittent gas flow. A new definition of critical gas saturation is proposed accordingly as the minimum saturation that snap-off starts to produce mobile bubbles. Low mobility of the water phase and CO2 phase in exsolution is explained by formation of dispersed CO2 bubbles which block water flow and lack the connectivity to create a mobile gas phase.  相似文献   

12.
Accurate modeling of storage of carbon dioxide (CO2) in heterogeneous aquifers requires experiments of the capillary pressure as function of temperature and pressure. We present a method with which static drainage and imbibition capillary pressures can be measured continuously as a function of saturation at various temperature (T) and pressure (P) conditions. The measurements are carried out at (TP) conditions of practical interest. Static conditions can be assumed as small injection rates are applied. The capillary pressure curves are obtained for the unconsolidated sand–distilled water–CO2 system. The experimental results show a decrease of drainage and imbibition capillary pressure for increasing CO2 pressures and pronounced dissolution rate effects for gaseous CO2. Significant capillary pressure fluctuations and negative values during imbibition are observed at near critical conditions. The measurement procedure is validated by a numerical model that simulates the experiments.  相似文献   

13.
The selection and the subsequent design of a subsurface CO2 storage system are subject to considerable uncertainty. It is therefore important to assess the potential risks for health, safety and environment. This study contributes to the development of methods for quantitative risk assessment of CO2 leakage from subsurface reservoirs. The amounts of leaking CO2 are estimated by evaluating the extent of CO2 plumes after numerically simulating a large number of reservoir realizations with a radially symmetric, homogeneous model. To conduct the computationally very expensive simulations, the ‘CO2 Community Grid’ was used, which allows the execution of many parallel simulations simultaneously. The individual realizations are set up by randomly choosing reservoir properties from statistical distributions. The statistical characteristics of these distributions have been calculated from a large reservoir database, holding data from over 1200 reservoirs. An analytical risk equation is given, allowing the calculation of average risk due to multiple leaky wells with varying distance in the surrounding of the injection well. The reservoir parameters most affecting risk are identified. Using these results, the placement of an injection well can be optimized with respect to risk and uncertainty of leakage. The risk and uncertainty assessment can be used to determine whether a site, compared to others, should be considered for further investigations or rejected for CO2 storage.  相似文献   

14.
人为干扰和气候变化会改变湖泊水位状态,明确不同水位条件下湖泊沉积物有机碳矿化特征及其影响因素,对了解内陆水生态系统碳循环具有重要意义.为探究干旱区典型盐湖沉积物有机碳矿化速率对水位变化的响应,以巴里坤湖干涸湖底原状沉积物为研究对象,初步探究了0(T1)、-9(T2)、-23(T3)、-34(T4)和-45 cm(T5)水位处理对沉积物有机碳矿化速率的影响.结果表明,T1、T2和T3处理有机碳矿化速率在试验初期较高(0~10 d),10 d后缓慢下降,T4和T5处理有机碳矿化速率呈先增加后降低趋势;T1(1.718 μmol/(m2·s))与T3(1.784 μmol/(m2·s))处理有机碳矿化速率不存在显著差异,T1处理有机碳矿化速率是T2、T4和T5处理的1.09、3.31和3.57倍,不同处理有机碳累积矿化量表现为T3 > T1 > T2 > T4 > T5.有机碳累积矿化量(Ct)占沉积物有机碳(C0)的比例(Ct/C0)介于0.012~0.044之间,沉积物有机碳潜在排放量(Ci)占C0的比例(Ci/C0)介于0.018~0.045之间;水位降低,沉积物有机碳矿化常数(k值)减小,T1处理k值最大(0.137 d),T4处理最小(0.032 d).线性方程Cr=0.008x+0.488能较好地模拟有机碳矿化速率(Cr)与水位(x)的关系;不同水位处理有机碳矿化速率与模拟柱中沉积物5 cm温度呈显著的指数函数关系,T4、T5处理有机碳矿化温度敏感系数(Q10)显著高于T1、T2和T3处理,即水位降低增加了巴里坤湖干涸湖底沉积物Q10.因此,就巴里坤湖干涸湖底沉积物而言,水位从0 cm降至-45 cm时有机碳矿化速率降低,Q10增加;反之水位上升则会促进有机碳矿化分解,Q10降低.水位持续下降抑制有机碳矿化可能是维持干旱区盐湖沉积物碳库稳定的机制之一.  相似文献   

15.
Li  Yingnian  Sun  Xiaomin  Zhao  Xinquan  Zhao  Liang  Xu  Shixiao  Gu  Song  ZhangG  Fawei  Yu  Guirui 《中国科学:地球科学(英文版)》2006,49(2):174-185

The study by the eddy covariance technique in the alpine shrub meadow of the Qinghai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m−2 respectively, yielding an average of 253.1 gCO2·m−2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g C·m−2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m−2 in 2003 and 74.9 g C·m−2 in 2004) in the corresponding plant growing season.

  相似文献   

16.
Global peatlands store an unparalleled proportion of total global organic carbon but it is vulnerable to erosion into fluvial systems. Fluvial networks are being recognized as areas of carbon transformation, with eroded particulate organic carbon processed to dissolved organic carbon and CO2. Existing studies indicate biodegradation and photodegradation as key processes controlling the transformation of organic carbon in fluvial systems, with initial concentrations of dissolved organic carbon (DOC) identified as a control on the rate of carbon mineralization. This study manipulates temperature and incident light intensity to investigate carbon mineralization rates in laboratory simulations of peatland sediment transport into fluvial systems. By directly measuring gaseous CO2 emissions from sampled stream water, the relationship of temperature and light intensity with carbon efflux is identified. In simulations where sediment (as particulate organic matter, POM) is absent, temperature is consistently the dominant factor influencing carbon efflux rates. This influence is independent of the initial DOC concentration of the water sample. In simulations where POM was added, representing a peatland river receiving eroded terrestrial sediment, initial DOC concentration predicts 79% of the variation in total gaseous carbon efflux whereas temperature and light intensity predict 12% and 3%, respectively. When sampled stream water's mineralization rates in the presence of added POM are analysed independently, removing DOC as a model variable, the dominant variable affecting CO2 efflux is opposite for each sample. This study presents novel data suggesting peatland erosion introduces further complexity to dynamic stream systems where rates of carbon transformation processes and the influence of specific environmental variables are interdependent. Anthropogenic climate change is identified as a leading risk factor perpetuating peatland erosion; therefore, understanding the fate of terrestrial sediment in rivers and further quantifying the benefits of protecting peatland soils will be of increasing importance to carbon budgeting and ecosystem function studies.  相似文献   

17.
The efficiency of mixing in density-driven natural-convection is largely governed by the aquifer permeability, which is heterogeneous in practice. The character (fingering, stable mixing or channeling) of flow-driven mixing processes depends primarily on the permeability heterogeneity character of the aquifer, i.e., on its degree of permeability variance (Dykstra-Parsons coefficient) and the correlation length. Here we follow the ideas of Waggoner et al. (1992) [13] to identify different flow regimes of a density-driven natural convection flow by numerical simulation. Heterogeneous fields are generated with the spectral method of Shinozuka and Jan (1972) [13], because the method allows the use of power-law variograms. In this paper, we extended the classification of Waggoner et al. (1992) [13] for the natural convection phenomenon, which can be used as a tool in selecting optimal fields with maximum transfer rates of CO2 into water. We observe from our simulations that the rate of mass transfer of CO2 into water is higher for heterogeneous media.  相似文献   

18.
Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the process of oil cracking into gas under different pressures.With an initial experimental temperature set at 300°C,the temperature was increased to 650°C at a heating rate of 30°C/h.The products were tested every 50°C starting at 300°C,and a pressure of 20 MPa was achieved using a water column.The low-maturity crude oil sample was from the Paleogene system in the Dongying sag in eastern China.The threshold temperature obtained for the primary oil cracking process in both pressure systems was 450°C.Before the oil was cracked into gas,some components,including macromolecular n-alkanes,were cracked into medium-or small-sized n-alkanes.The secondary oil cracking of heavy hydrocarbon gases of C2–5to methane mainly occurred between 550°C to 650°C,and the parameters Ln(C1/C2)and Ln(C1/C3),as well as the dry coefficients,increased.Overpressure inhibited the oil cracking process.In the 20 MPa system,the oil conversion rate decreased,the temperature threshold for gas generation rose,and oil cracking was inhibited.Compared with the normal pressure system,high-carbon n-alkanes and other compounds in the 20 MPa pressure system were reserved.Furthermore,the parameters∑C21-/∑22+,Ln(C1/C2),and Ln(C1/C3),as well as the dry coefficients,decreased within the main temperature range.During secondary oil cracking(550°C to 600°C),the Ph/nC18and Pr/nC17decreased.High pressure influenced the evolution of the biomarkers Ts and Tm,C31homohopane,C29sterane,and their related maturity parameters to different extents during oil cracking under different temperature ranges.  相似文献   

19.
Soil bulk density (ρb) is commonly treated as static in studies of land surface dynamics. Magnitudes of errors associated with this assumption are largely unknown. Our objectives were to (a) quantify ρb effects on soil hydrologic and thermal properties and (b) evaluate effects of ρb on surface energy balance and heat and water transfer. We evaluated 6 soil properties, volumetric heat capacity, thermal conductivity, soil thermal diffusivity, water retention characteristics, hydraulic conductivity, and vapour diffusivity, over a range of ρb, using a combination of 6 models. Thermal conductivity, water retention, hydraulic conductivity, and vapour diffusivity were most sensitive to ρb, each changing by fractions greater than the associated fractional changes in ρb. A 10% change in ρb led to 10–11% change in thermal conductivity, 6–11% change in saturated and residual water content, 49–54% change in saturated hydraulic conductivity, and 80% change in vapour diffusivity. Subsequently, 3 field seasons were simulated with a numerical model (HYDRUS‐1D) for a range of ρb values. When ρb increased 25% (from 1.2 to 1.5 Mg m?3), soil temperature variation decreased by 2.1 °C in shallow layers and increased by 1 °C in subsurface layers. Surface water content differed by 0.02 m3 m?3 for various ρb values during drying events but differences mostly disappeared in the subsurface. Matric potential varied by >100 m of water. Surface energy balance showed clear trends with ρb. Latent heat flux decreased 6%, sensible heat flux increased 9%, and magnitude of ground heat flux varied by 18% (with a 25% ρb increase). Transient ρb impacted surface conditions and fluxes, and clearly, it warrants consideration in field and modelling investigations.  相似文献   

20.
The goal of this research was to compare hyporheic activity in recently restored and adjacent un‐restored reaches of the Truckee River downstream from the Reno/Sparks metropolitan area. The installation of rocky riffles and raised channel bed elevations in the restored reaches may have increased the degree of surface–subsurface interaction. A fluctuating chloride concentration signal served as the tracer, induced by the variable influx of higher salinity water several miles upstream from the study reach. The solute transport model, OTIS, was used in conjunction with the hydrodynamic model, DYNHYD5, to estimate transient storage parameters under unsteady flow conditions. The model was calibrated to chloride concentrations measured over a period of three days at six in‐stream locations representing restored and un‐restored reaches. An automated parameter estimation algorithm (SCE‐UA) was used to optimize parameters for multiple reaches simultaneously and generate a distribution of parameter estimates. Results suggest that the transient storage zone cross‐sectional area (As) is larger in the restored reaches than in the unrestored reaches, but the exchange coefficient (α) is smaller, leading to increased hyporheic residence time and hydrologic retention in the vicinity of channel reconstructions. Scenarios were used to simulate the potential effects of increased subsurface residence time on denitrification and in‐stream NO3‐N concentrations. Monte Carlo analysis was performed to assess uncertainty in the simulation results and show the potential for greater nutrient retention in the lower Truckee River as a result of channel restoration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号