首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims at evaluating the uncertainty in the prediction of soil moisture (1D, vertical column) from an offline land surface model (LSM) forced by hydro-meteorological and radiation data. We focus on two types of uncertainty: an input error due to satellite rainfall retrieval uncertainty, and, LSM soil-parametric error. The study is facilitated by in situ and remotely sensed data-driven (precipitation, radiation, soil moisture) simulation experiments comprising a LSM and stochastic models for error characterization. The parametric uncertainty is represented by the generalized likelihood uncertainty estimation (GLUE) technique, which models the parameter non-uniqueness against direct observations. Half-hourly infra-red (IR) sensor retrievals were used as satellite rainfall estimates. The IR rain retrieval uncertainty is characterized on the basis of a satellite rainfall error model (SREM). The combined uncertainty (i.e., SREM + GLUE) is compared with the partial assessment of uncertainty. It is found that precipitation (IR) error alone may explain moderate to low proportion of the soil moisture simulation uncertainty, depending on the level of model accuracy—50–60% for high model accuracy, and 20–30% for low model accuracy. Comparisons on the basis of two different sites also yielded an increase (50–100%) in soil moisture prediction uncertainty for the more vegetated site. This study exemplified the need for detailed investigations of the rainfall retrieval-modeling parameter error interaction within a comprehensive space-time stochastic framework for achieving optimal integration of satellite rain retrievals in land data assimilation systems.  相似文献   

2.
Soil moisture data, obtained from four AmeriFlux sites in the US, were examined using an ecohydrological framework. Sites were selected for the analysis to provide a range of plant functional type, climate, soil particle size distribution, and time series of data spanning a minimum of two growing seasons. Soil moisture trends revealed the importance of measuring water content at several depths throughout the rooting zone; soil moisture at the surface (0–10 cm) was approximately 20–30% less than that at 50–60 cm. A modified soil moisture dynamics model was used to generate soil moisture probability density functions at each site. Model calibration results demonstrated that the commonly used soil matric potential values for finding the vegetation stress point and field content may not be appropriate, particularly for vegetation adapted to a water-controlled environment. Projections of future soil moisture patterns suggest that two of the four sites will become severely stressed by climate change induced alterations to the precipitation regime.  相似文献   

3.
ABSTRACT

In order to improve the soil moisture (SM) modelling capacity, a regional SM assimilation scheme based on an empirical approach considering spatial variability was constructed to assimilate in situ observed SM data into a hydrological model. The daily variable infiltration capacity (VIC) model was built to simulate SM in the Upper Huai River Basin, China, with a resolution of 5 km × 5 km. Through synthetic assimilation experiments and validations, the assimilated SM was evaluated, and the assimilation feedback on evapotranspiration (ET) and streamflow are analysed and discussed. The results show that the assimilation scheme improved the SM modelling capacity, both spatially and temporally. Moreover, the simulated ET was continually affected by changes in SM simulation, and the streamflow predictions were improved after applying the SM assimilation scheme. This study demonstrates the potential value of in situ observations in SM assimilation, and provides valuable ways for improving hydrological simulations.  相似文献   

4.
The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important water cycle and agricultural applications. Recent work has demonstrated that thermal remote sensing estimates of surface radiometric temperature provide a complementary source of land surface information that can be used to define a robust proxy for root-zone (top 1 m of the soil column) soil moisture availability. In this analysis, we examine the potential benefits of simultaneously assimilating both microwave-based surface soil moisture retrievals and thermal infrared-based root-zone soil moisture estimates into a soil water balance model using a series of synthetic twin data assimilation experiments conducted at the USDA Optimizing Production Inputs for Economic and Environmental Enhancements (OPE3) site. Results from these experiments illustrate that, relative to a baseline case of assimilating only surface soil moisture retrievals, the assimilation of both root- and surface-zone soil moisture estimates reduces the root-mean-square difference between estimated and true root-zone soil moisture by 50% to 35% (assuming instantaneous root-zone soil moisture retrievals are obtained at an accuracy of between 0.020 and 0.030 m3 m−3). Most significantly, improvements in root-zone soil moisture accuracy are seen even for cases in which root-zone soil moisture retrievals are assumed to be relatively inaccurate (i.e. retrievals errors of up to 0.070 m3 m−3) or limited to only very sparse sampling (i.e. one instantaneous measurement every eight days). Preliminary real data results demonstrate a clear increase in the R2 correlation coefficient with ground-based root-zone observations (from 0.51 to 0.73) upon assimilation of actual surface soil moisture and tower-based thermal infrared temperature observations made at the OPE3 study site.  相似文献   

5.
In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.  相似文献   

6.
This analysis compares decreases in soil moisture (SM) at Utah snow telemetry (SNOTEL) sites during the summer months with discharge at nearby stream gauging locations using data from water years 2008–2012. The following characteristics were evaluated: (1) the influence of the SM loss at mid‐depths (20 cm) on hydrograph recession, (2) the influence of moisture loss from deeper portions of the soil (50 cm) on late‐season baseflow and (3) the timing of this transition. Thirty‐four pairings were used between SNOTEL sites and nearby stream gauges in select locations throughout Utah, for 3–5 years each depending on data quality, to generate 143 total comparisons of soil moisture loss and stream discharge. Regressions were fairly strong (r2 > 0.8) where the SNOTEL site was in a location with slow meltout rates, ample infiltration and minimal summer precipitation. In a few cases, the correlation was remarkably strong (r2 > 0.95), even for SNOTEL sites located far from respective stream gauges (e.g. >30‐km, >1000‐m elevation difference for the best pairing). At such sites, transition timing in 2013 (between predominantly 20‐ vs 50‐cm SM loss) was well predicted from 2012 data given the similarity in water years, with discharges at the transition point less than 30% different than observed values in 2013. An index of the robustness of each pairing was generated to determine where this type of analysis might be most successful; however, results suggest that identification of high‐quality pairings may need to be site by site. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

7.
Accurate forecasting of snow properties is important for effective water resources management, especially in mountainous areas like the western United States. Current model-based forecasting approaches are limited by model biases and input data uncertainties. Remote sensing offers an opportunity for observation of snow properties, like areal extent and water equivalent, over larger areas. Data assimilation provides a framework for optimally merging information from remotely sensed observations and hydrologic model predictions. An ensemble Kalman filter (EnKF) was used to assimilate remotely sensed snow observations into the variable infiltration capacity (VIC) macroscale hydrologic model over the Snake River basin. The snow cover extent (SCE) product from the moderate resolution imaging spectroradiometer (MODIS) flown on the NASA Terra satellite was used to update VIC snow water equivalent (SWE), for a period of four consecutive winters (1999–2003). A simple snow depletion curve model was used for the necessary SWE–SCE inversion. The results showed that the EnKF is an effective and operationally feasible solution; the filter successfully updated model SCE predictions to better agree with the MODIS observations and ground surface measurements. Comparisons of the VIC SWE estimates following updating with surface SWE observations (from the NRCS SNOTEL network) indicated that the filter performance was a modest improvement over the open-loop (un-updated) simulations. This improvement was more evident for lower to middle elevations, and during snowmelt, while during accumulation the filter and open-loop estimates were very close on average. Subsequently, a preliminary assessment of the potential for assimilating the SWE product from the advanced microwave scanning radiometer (AMSR-E, flown on board the NASA Aqua satellite) was conducted. The results were not encouraging, and appeared to reflect large errors in the AMSR-E SWE product, which were also apparent in comparisons with SNOTEL data.  相似文献   

8.
D. Raje  P. Priya  R. Krishnan 《水文研究》2014,28(4):1874-1889
In climate‐change studies, a macroscale hydrologic model (MHM) operating over large scales can be an important tool in developing consistent hydrological variability estimates over large basins. MHMs, which can operate at coarse grid resolutions of about 1° latitude by longitude, have been used previously to study climate change impacts on the hydrology of continental scale or global river basins. They can provide a connection between global atmospheric models and water resource systems on large spatial scales and long timescales. In this study, the variable infiltration capacity (VIC) MHM is used to study large scale hydrologic impacts of climate change for Indian river basins. Large‐scale changes in runoff, evapotranspiration and soil moisture for India, as well as station‐scale changes in discharges for three major river basins with distinct climatic and geographic characteristics are examined in this study. Climate model projections for meteorological variables (precipitation, temperature and wind speed) from three general circulation models (GCMs) and three emissions scenarios are used to drive the VIC MHM. GCM projections are first interpolated to a 1° by 1° hydrologic model grid and then bias‐corrected using a quantile–quantile mapping. The VIC model is able to reproduce observed statistics for discharges in the Ganga, Narmada and Krishna basins reasonably well, even at the coarse grid resolution employed using a calibration period for years 1965–1970 and testing period from 1971–1973/1974. An increasing trend is projected for summer monsoon surface runoff, evapotranspiration and soil moisture in most central Indian river basins, whereas a decrease in runoff and soil moisture is projected for some regions in southern India, with important differences arising from GCM and scenario variability. Discharge statistics show increases in mid‐flow and low flow at Farakka station on Ganga River, increased high flows at Jamtara station upstream of Narmada, and increased high, mid‐flow and low flow for Vijayawada station on Krishna River in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

In this study we analyzed two models commonly used in remote sensing-based root-zone soil moisture (SM) estimations: one utilizing the exponential decaying function and the other derived from the principle of maximum entropy (POME). We used both models to deduce root-zone (0–100 cm) SM conditions at 11 sites located in the southeastern USA for the period 2012–2017 and evaluated the strengths and weaknesses of each approach against ground observations. The results indicate that, temporally, at shallow depths (10 cm), both models performed similarly, with correlation coefficients (r) of 0.89 (POME) and 0.88 (exponential). However, with increasing depths, the models start to deviate: at 50 cm the POME resulted in r of 0.93 while the exponential filter (EF) model had r of 0.58. Similar trends were observed for unbiased root mean square error (ubRMSE) and bias. Vertical profile analysis suggests that, overall, the POME model had nearly 30% less ubRMSE compared to the EF model, indicating that the POME model was relatively better able to distribute the moisture content through the soil column.  相似文献   

10.
Satellite‐based soil moisture data accuracies are of important concerns by hydrologists because they could significantly influence hydrological modelling uncertainty. Without proper quantification of their uncertainties, it is difficult to optimize the hydrological modelling system and make robust decisions. Currently, the satellite soil moisture data uncertainty has been limited to summary statistics with the validations mainly from the in situ measurements. This study attempts to build the first error distribution model with additional higher‐order uncertainty modelling for satellite soil moisture observations. The methodology is demonstrated by a case study using the Soil Moisture and Ocean Salinity satellite soil moisture observations. The validation is based on soil moisture estimates from hydrological modelling, which is more relevant to the intended data use than the in situ measurements. Four probability distributions have been explored to find suitable error distribution curves using the statistical tests and bootstrapping resampling technique. General extreme value is identified as the most suitable one among all the curves. The error distribution model is still in its infant stage, which ignores spatial and temporal correlations, and nonstationarity. Further improvements should be carried out by the hydrological community by expanding the methodology to a wide range of satellite soil moisture data using different hydrological models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, we evaluate uncertainties propagated through different climate data sets in seasonal and annual hydrological simulations over 10 subarctic watersheds of northern Manitoba, Canada, using the variable infiltration capacity (VIC) model. Further, we perform a comprehensive sensitivity and uncertainty analysis of the VIC model using a robust and state-of-the-art approach. The VIC model simulations utilize the recently developed variogram analysis of response surfaces (VARS) technique that requires in this application more than 6,000 model simulations for a 30-year (1981–2010) study period. The method seeks parameter sensitivity, identifies influential parameters, and showcases streamflow sensitivity to parameter uncertainty at seasonal and annual timescales. Results suggest that the Ensemble VIC simulations match observed streamflow closest, whereas global reanalysis products yield high flows (0.5–3.0 mm day−1) against observations and an overestimation (10–60%) in seasonal and annual water balance terms. VIC parameters exhibit seasonal importance in VARS, and the choice of input data and performance metrics substantially affect sensitivity analysis. Uncertainty propagation due to input forcing selection in each water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is examined separately to show both time and space dimensionality in available forcing data at seasonal and annual timescales. Reliable input forcing, the most influential model parameters, and the uncertainty envelope in streamflow prediction are presented for the VIC model. These results, along with some specific recommendations, are expected to assist the broader VIC modelling community and other users of VARS and land surface schemes, to enhance their modelling applications.  相似文献   

12.
With well-determined hydraulic parameters in a hydrologic model, a traditional data assimilation method (such as the Kalman filter and its extensions) can be used to retrieve root zone soil moisture under uncertain initial state variables (e.g., initial soil moisture content) and good simulated results can be achieved. However, when the key soil hydraulic parameters are incorrect, the error is non-Gaussian, as the Kalman filter will produce a persistent bias in its predictions. In this paper, we propose a method coupling optimal parameters and extended Kalman filter data assimilation (OP-EKF) by combining optimal parameter estimation, the extended Kalman filter (EKF) assimilation method, a particle swarm optimization (PSO) algorithm, and Richards’ equation. We examine the accuracy of estimating root zone soil moisture through the optimal parameters and extended Kalman filter data assimilation method by using observed in situ data at the Meiling experimental station, China. Results indicate that merely using EKF for assimilating surface soil moisture content to obtain soil moisture content in the root zone will produce a persistent bias between simulated and observed values. Using the OP-EKF assimilation method, estimates were clearly improved. If the soil profile is heterogeneous, soil moisture retrieval is accurate in the 0-50 cm soil profile and is inaccurate at 100 cm depth. Results indicate that the method is useful for retrieving root zone soil moisture over large areas and long timescales even when available soil moisture data are limited to the surface layer, and soil moisture content are uncertain and soil hydraulic parameters are incorrect.  相似文献   

13.
This paper presents an assessment of the relationship between near-surface soil moisture (SM) and SM at other depths in the root zone under three different land uses: irrigated corn, rainfed corn and grass. This research addresses the question whether or not near-surface SM can be used reliably to predict plant available root zone SM and SM at other depths. For this study, a realistic soil-water energy balance process model is applied to three locations in Nebraska representing an east-to-west hydroclimatic gradient in the Great Plains. The applications were completed from 1982 through to 1999 at a daily time scale. The simulated SM climatologies are developed for the root zone as a whole and for the five layers of the soil profile to a depth of 1·2 m. Over all, the relationship between near-surface SM (0–2·5 cm) and plant available root zone SM is not strong. This applies to all land uses and for all locations. For example, r estimates range from 0·02 to 0·33 for this relationship. Results for near-surface SM and SM of several depths suggest improvement in r estimates. For example, these estimates range from − 0·19 to 0·69 for all land uses and locations. It was clear that r estimates are the highest (0·49–0·69) between near-surface and the second layer (2·5–30·5 cm) of the root zone. The strength of this type of relationship rapidly declines for deeper depths. Cross-correlation estimates also suggest that at various time-lags the strength of the relationship between near-surface SM and plant available SM is not strong. The strength of the relationship between SM modulation of the near surface and second layer over various time-lags slightly improves over no lags. The results suggest that use of near-surface SM for estimating SM at 2·5–30 cm is most promising. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This article investigates the soil moisture dynamics within two catchments (Stanley and Krui) in the Goulburn River in NSW during a 3‐year period (2005–2007) using the HYDRUS‐1D soil water model. Sensitivity analyses indicated that soil type, and leaf area index were the key parameters affecting model performance. The model was satisfactorily calibrated on the Stanley microcatchment sites with a single point rainfall record from this microcatchment for both surface 30 cm and full‐profile soil moisture measurements. Good correlations were obtained between observed and simulated soil water storage when calibrations for one site were applied to the other sites. We extended the predictions of soil moisture to a larger spatial scale using the calibrated soil and vegetation parameters to the sites in the Krui catchment where soil moisture measurement sites were up to 30 km distant from Stanley. Similarly good results show that it is possible to use a calibrated soil moisture model with measurements at a single site to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000 km2 given similar soils and vegetation and local rainfall data. Site predictions were effectively improved by our simple data assimilation method using only a few sample data collected from the site. This article demonstrates the potential usefulness of continuous time, point‐scale soil moisture data (typical of that measured by permanently installed TDR probes) and simulations for predicting the soil wetness status over a catchment of significant size (up to 1000 km2). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, we implement Particle Filter (PF)-based assimilation algorithms to improve root-zone soil moisture (RZSM) estimates from a coupled SVAT-vegetation model during a growing season of sweet corn in North Central Florida. The results from four different PF algorithms were compared with those from the Ensemble Kalman Filter (EnKF) when near-surface soil moisture was assimilated every 3 days using both synthetic and field observations. In the synthetic case, the PF algorithm with the best performance used residual resampling of the states and obtained resampled parameters from a uniform distribution and provided reductions of 76% in root mean square error (RMSE) over the openloop estimates. The EnKF provided the RZSM and parameter estimates that were closer to the truth than the PF with an 84% reduction in RMSE. When field observations were assimilated, the PF algorithm that maintained maximum parameter diversity offered the largest reduction of 16% in root mean square difference (RMSD) over the openloop estimates. Minimal differences were observed in the overall performance of the EnKF and PF using field observations since errors in model physics affected both the filters in a similar manner, with maximum reductions in RMSD compared to the openloop during the mid and reproductive stages.  相似文献   

16.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin–Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture–atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.  相似文献   

18.
The upper 30 cm of the soil profile, which hosts the majority of the root biomass, can be considered as the shallow agricultural root zone of most temperate crops. The electromagnetic wave velocity in the soil obtained from reflection hyperbolas in ground-penetrating radar (GPR) data can be used to estimate soil moisture (SM). Finding shallow hyperbolas in a radargram and minimizing the subjective error associated with the hyperbola fitting are the main challenges in this approach. Nevertheless, we were motivated by the recent improvements of hyperbola fitting algorithms, which can reduce the subjective error and processing time. To overcome the difficulty of finding very shallow hyperbolas, we applied the hyperbola fitting method to reflections ranging from 27- to 50-cm depth using a 500-MHz centre-frequency GPR and compared the estimated moisture with vertically installed, 30-cm-long time-domain reflectometry (TDR) sensors. We also compared TDR and GPR sample areas in a 2-D plane using different GPR survey types and different hyperbola depths. SM measured with TDR and GPR were not significantly different according to Mann–Whitney's test. Our analyses showed that a root mean square error of 0.03 m3 m−3 was found between the two methods. In conclusion, the proposed method might be suitable to estimate SM with an acceptable accuracy within the root zone if the soil profile is fairly uniform within the application depth range.  相似文献   

19.
Soil moisture prediction is of great importance in crop yield forecasting and drought monitoring. In this study, the multi-layer root zone soil moisture (0-5, 0-10, 10-40 and 40-100 cm) prediction is conducted over an agriculture dominant basin, namely the Xiang River Basin, in southern China. The support vector machines (SVM) coupled with dual ensemble Kalman filter (EnKF) technique (SVM-EnKF) is compared with SVM for its potential capability to improve the efficiency of soil moisture prediction. Three remote sensing soil moisture products, namely SMAP, ASCAT and AMSR2, are evaluated for their performance in multi-layer soil moisture prediction with SVM and SVM-EnKF, respectively. Multiple cases are designed to investigate the performance of SVM, the effectiveness of coupling dual EnKF technique and the applicability of the remote sensing products in soil moisture prediction. The main results are as follows: (a) The efficiency of soil moisture prediction with SVM using meteorological variables as inputs is satisfactory for the surface layers (0-5 and 0-10 cm), while poor for the root zone layers (10-40 and 40-100 cm). Adding SMAP as input to SVM can improve its performance in soil moisture prediction, with more than 47% increase in the R-value and at least 11% reduction in RMSE for all layers. However, adding ASCAT or AMSR2 has no improvement for its performance. (b) Coupling dual EnKF can significantly improve the performance of SVM in the soil moisture prediction of both surface and the root zone layers. The increase in R-value is above 80%, while the reduction in BIAS and RMSE is respectively more than 90% and 63%. However, adding remote sensing soil moisture products as inputs can no further improve the performance of SVM-EnKF. (c) The SVM-EnKF can eliminate the influence of remote sensing soil moisture extreme values in soil moisture prediction, therefore, improve its accuracy.  相似文献   

20.
The topographically explicit distributed hydrology–soil–vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf‐area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land‐cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号