首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional (2D) numerical model has been developed to solve shallow water equations for simulation of dam-break flows. The spatial derivatives are discretized using a well-balanced explicit central upwind conservative scheme. The scheme is Riemann solver free and guarantees the positivity of the flow depth over complex topography if the Courant number is kept less than 0.25. The time integration is performed by Euler’s scheme. The model is verified against analytical results for water surface elevation and discharge for three benchmark test cases. A good agreement between analytical solutions and computed results is observed. The property of well-balancing in still water over an uneven bottom is also confirmed. The model is then validated by simulating a laboratory experiment in which a dam break flow propagates over a triangular obstacle. The model performance was found to be satisfactory. A dam break laboratory experimental test case on a frictionless horizontal bottom is also simulated for 2D validation of the model, and good agreement between simulation and the experimental data is observed. The suitability of the proposed model for real life applications is demonstrated by simulating the Malpasset dam-break event, which occurred in 1959 in France. The computed arrival time of the flood wave front and the maximum flow depths at various observation points matched well with the measurements on a 1/400 scale physical model. The overall performance indicates that this model can be applied for simulation of dam-break waves in real life cases.  相似文献   

2.
This present paper proposes a two-dimensional lattice Boltzmann model coupled with a Large Eddy Simulation (LES) model and applies it to flows around a non-submerged groyne in a channel. The LES of shallow water equations is efficiently performed using the Lattice Boltzmann Method (LBM) and the turbulence can be taken into account in conjunction with the Smagorinsky Sub-Grid Stress (SGS) model. The bounce-back scheme of the non-equilibrium part of the distribution function is used to determine the unknown distribution functions at inflow boundary, the zero gradient of the distribution function is set normal to outflow boundary to obtain the unknown distribution functions here and the bounce-back scheme, which states that an incoming particle towards the boundary is bounced back into fluid, is applied to the solid wall to ensure non-slip boundary conditions. The initial flow field is defined firstly and then is used to calculate the local equilibrium distributions as initial conditions of the distribution functions. These coupled models successfully predict the flow characteristics, such as circulating flow, velocity and water depth distributions. The comparisons between the simulated results and the experimental data show that the model scheme has the capacity to solve the complex flows in shallow water with reasonable accuracy and reliability.  相似文献   

3.
A multilayer lattice Boltzmann (LB) model is introduced to solve three-dimensional wind-driven shallow water flow problems. The multilayer LB model avoids the expensive Navier–Stokes equations and obtains stratified horizontal flow velocities as vertical velocities are relatively small and the flow is still within the shallow water regime. A single relaxation time BGK method is used to solve each layer coupled by the vertical viscosity forcing term. To increase solution stability, an implicit step is suggested to obtain flow velocities. The main advantage of using the LBM is that after selecting appropriate equilibrium distribution functions, the LB algorithm is only slightly modified for each layer and retains all the simplicities of the LBM within the high performance computing (HPC) environment. The performance of the parallel LB model for the multilayer shallow water equations is investigated on CPU-based HPC environments using OpenMP. We found that the explicit loop control with cache optimization in LBM gives better performance on execution time, speedup and efficiency than the implicit loop control as the number of processors increases. Numerical examples are presented to verify the multilayer LB model against analytical solutions. We demonstrate the model’s capability of calculating lateral and vertical distributions of velocities for wind-driven circulation over non-uniform bathymetry.  相似文献   

4.
A two‐dimensional (2D) finite‐difference shallow water model based on a second‐order hybrid type of total variation diminishing (TVD) approximate solver with a MUSCL limiter function was developed to model flooding and inundation problems where the evolution of the drying and wetting interface is numerically challenging. Both a minimum positive depth (MPD) scheme and a non‐MPD scheme were employed to handle the advancement of drying and wetting fronts. We used several model problems to verify the model, including a dam break in a slope channel, a dam break flooding over a triangular obstacle, an idealized circular dam‐break, and a tide flow over a mound. Computed results agreed well with the experiment data and other numerical results available. The model was then applied to simulate the dam breaking and flooding of Hsindien Creek, Taiwan, with the detailed river basin topography. Computed flooding scenarios show reasonable flow characteristics. Though the average speed of flooding is 6–7 m s?1, which corresponds to the subcritical flow condition (Fr < 1), the local maximum speed of flooding is 14·12 m s?1, which corresponds to the supercritical flow condition (Fr ≈ 1·31). It is necessary to conduct some kind of comparison of the numerical results with measurements/experiments in further studies. Nevertheless, the model exhibits its capability to capture the essential features of dam‐break flows with drying and wetting fronts. It also exhibits the potential to provide the basis for computationally efficient flood routing and warning information. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Details are given of the development and application of a numerical model for predicting free-surface flows in estuarine and coastal basins using the finite volume method. Both second- and third-order accurate and oscillation free explicit numerical schemes have been used to solve the shallow water equations. The model deploys an unstructured triangular mesh and incorporates two types of mesh layouts, namely the ‘cell centred’ and ‘mesh vertex’ layouts, and provides a powerful mesh generator in which a user can adjust the mesh-size distribution interactively to create a desirable mesh. The quality of mesh has been shown to have a major impact on the overall performance of the numerical model.The model has been applied to simulate two-dimensional dam break flows for which transient water level distributions measured within a laboratory flume were available. In total 12 model runs were undertaken to test the model for various flow conditions. These conditions include: (1) different bed slopes (ranging from zero to 0.8%), (2) different upstream and downstream water level conditions, and (3) initially wet and dry bed conditions, downstream of the dam. Detailed comparisons have been made between model predicted and measured water levels and good agreement achieved between both sets of results. The model was then used to predict water level and velocity distributions in a real estuary, i.e. the Ribble Estuary, where the bed level varies rapidly at certain locations. In order to model the whole estuary, a 1-D numerical model has also been used to model the upper part of the estuary and this model was linked dynamically to the 2-D model. Findings from this application are given in detail.  相似文献   

6.
We report a two-dimensional multi-block lattice Boltzmann model for solute transport in shallow water flows, which is developed based on the advection–diffusion equation for mass transport and the shallow water equations for the flows. A weighting factor is included in the centered scheme for improved accuracy. The model is firstly verified by simulating three benchmark tests: wind-driven circulation in a dish-shaped lake, jet-forced flow in a circular basin, and flow formed by two parallel streams containing different uniform concentrations at the same constant velocity; and then it is applied to a practical wind-induced flow, Baiyangdian Lake, which is characterized by irregular geometries and complex bathymetries. The numerical results have shown that the model is able to produce accurate and detailed results for both water flows and solute transport, which is attractive, especially for flows in narrow zones of practical terrains and certain areas with largely varying pollutant concentrations.  相似文献   

7.
This paper presents a well-balanced numerical scheme for simulating frictional shallow flows over complex domains involving wetting and drying. The proposed scheme solves, in a finite volume Godunov-type framework, a set of pre-balanced shallow water equations derived by considering pressure balancing. Non-negative reconstruction of Riemann states and compatible discretization of slope source term produce stable and well-balanced solutions to shallow flow hydrodynamics over complex topography. The friction source term is discretized using a splitting implicit scheme. Limiting value of the friction force is derived to ensure stability. This new numerical scheme is validated against four theoretical benchmark tests and then applied to reproduce a laboratory dam break over a domain with irregular bed profile.  相似文献   

8.
1 INTRODUCTION In recent years, due to the increase in population and industrial developments, mankind has faced manyproblems associated with rivers, coastal waters and reservoirs. Some of these problems are flood control,water supply, power generation, and irrigation. In addition, making new hydraulic structures changesnatural conditions. Prediction of these changes is necessary for designing such constructions. For solutionof these problems usually an assessment of flow pattern, sedim…  相似文献   

9.
Two-dimensional finite volume method for dam-break flow simulation   总被引:2,自引:0,他引:2  
A numerical model based upon a second-order upwind ceil-center f'mite volume method on unstructured triangular grids is developed for solving shallow water equations. The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results. The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment. By usage of the HLL approximate Riemann solver, also it make possible to handle discontinuous solutions. As the assumption of a very small depth downstream oftbe dam can change the nature of the dam break flow problem which leads to incorrect results, the HLL approximate Riemann solver is used for the computation of inviscid flux functions, which makes it possible to handle discontinuous solutions. A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations. To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary, the friction source terms are treated in a fully implicit way. A third-order Runge-Kutta method is used for the time integration of semi-discrete equations. The developed numerical model has been applied to several test cases as well as to real flows. The tests are tested in two cases: oblique hydraulic jump and experimental dam break in converging-diverging flume. Numerical tests proved the robustness and accuracy of the model. The model has been applied for simulation of dam break analysis of Torogh in Iran. And finally the results have been used in preparing EAP (Emergency Action Plan).  相似文献   

10.
A kinetic flux vector splitting (KFVS) scheme for shallow water flows based on the collisionless Boltzmann equation is formulated and applied. The scheme is explicit and first order in space and time with stability governed by the Courant condition. The consistency of the KFVS scheme with the shallow water equations is proven using the equivalent differential equations approach. The accuracy and efficiency of the KFVS scheme in modeling complex flow features are compared to those of the Boltzmann Bhatnagar–Gross–Krook (BGK) scheme as well as a Riemann-based scheme. In particular, all schemes are applied to (i) strong shock waves, (ii) extreme expansion waves, (iii) a combination of strong shock waves and extreme expansion waves, and (iv) a one-dimensional dam break problem. Additionally, the KFVS, BGK and Riemann schemes are applied to a one-dimensional dam break problem for which laboratory data is available. These test cases reveal that all three schemes provide solutions of comparable accuracy, but the KFVS model is 1.5–2 times faster to execute than the BGK scheme and 2–3 times faster than the Riemann-based scheme. The absence of the collision term from the Boltzmann equation not only makes the mathematical formulation of KFVS easy but also helps elucidate this approach to the novice. The accuracy, efficiency, and simplicity of the KFVS scheme indicate its potential in modeling an array of water resources problems. Due to the scalar nature of the Boltzmann equation, the extension of the KFVS scheme to 2-D surface water flows is straightforward.  相似文献   

11.
An unstructured Godunov-type finite volume model is developed for the numerical simulation of geometrically challenging two-dimensional shallow water flows with wetting and drying over convoluted topography. In the framework of sloping bottom model, a modified formulation of shallow water equations is used to preserve mass conservation during flooding and recession. The key ingredient of the model is the use of this combination of the sloping bottom model and the modified shallow water equations to provide a robust technique for wet/dry fronts tracking and, together with centered discretization of the bed slope source term, to exactly preserve the static flow on irregular topographies. The variable reconstruction technique ensures nonnegative reconstructed water depth and reasonable reconstructed velocity, and the friction terms are solved by semi-implicit scheme that does not invert the direction of velocity components. The robustness and accuracy of the proposed model are assessed by comparing numerical and reference results of extensive test cases. Moreover, the results of a dam-break flooding over real topography are presented to show the capability of the model on field-scale application.  相似文献   

12.
The shallow water equations are used to model flows in rivers and coastal areas, and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. These equations have still water steady state solutions in which the flux gradients are balanced by the source term. It is desirable to develop numerical methods which preserve exactly these steady state solutions. Another main difficulty usually arising from the simulation of dam breaks and flood waves flows is the appearance of dry areas where no water is present. If no special attention is paid, standard numerical methods may fail near dry/wet front and produce non-physical negative water height. A high-order accurate finite volume weighted essentially non-oscillatory (WENO) scheme is proposed in this paper to address these difficulties and to provide an efficient and robust method for solving the shallow water equations. A simple, easy-to-implement positivity-preserving limiter is introduced. One- and two-dimensional numerical examples are provided to verify the positivity-preserving property, well-balanced property, high-order accuracy, and good resolution for smooth and discontinuous solutions.  相似文献   

13.
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.  相似文献   

14.
Modelling dam-break flows over mobile beds using a 2D coupled approach   总被引:1,自引:0,他引:1  
Dam-break flows usually propagate along rivers and floodplains, where the processes of fluid flow, sediment transport and bed evolution are closely linked. However, the majority of existing two-dimensional (2D) models used to simulate dam-break flows are only applicable to fixed beds. Details are given in this paper of the development of a 2D morphodynamic model for predicting dam-break flows over mobile beds. In this model, the common 2D shallow water equations are modified, so that the effects of sediment concentrations and bed evolution on the flood wave propagation can be considered. These equations are used together with the non-equilibrium transport equations for graded sediments and the equation of bed evolution. The governing equations are solved using a matrix method, thus the hydrodynamic, sediment transport and morphological processes can be jointly solved. The model employs an unstructured finite volume algorithm, with an approximate Riemann solver, based on the Roe-MUSCL scheme. A predictor–corrector scheme is used in time stepping, leading to a second-order accurate solution in both time and space. In addition, the model considers the adjustment process of bed material composition during the morphological evolution process. The model was first verified against results from existing numerical models and laboratory experiments. It was then used to simulate dam-break flows over a fixed bed and a mobile bed to examine the differences in the predicted flood wave speed and depth. The effects of bed material size distributions on the flood flow and bed evolution were also investigated. The results indicate that there is a great difference between the dam-break flow predictions made over a fixed bed and a mobile bed. At the initial stage of a dam-break flow, the rate of bed evolution could be comparable to that of water depth change. Therefore, it is often necessary to employ the turbid water governing equations using a coupled approach for simulating dam-break flows.  相似文献   

15.
Flow and transport simulation in karst aquifers remains a significant challenge for the ground water modeling community. Darcy's law–based models cannot simulate the inertial flows characteristic of many karst aquifers. Eddies in these flows can strongly affect solute transport. The simple two-region conduit/matrix paradigm is inadequate for many purposes because it considers only a capacitance rather than a physical domain. Relatively new lattice Boltzmann methods (LBMs) are capable of solving inertial flows and associated solute transport in geometrically complex domains involving karst conduits and heterogeneous matrix rock. LBMs for flow and transport in heterogeneous porous media, which are needed to make the models applicable to large-scale problems, are still under development. Here we explore aspects of these future LBMs, present simple examples illustrating some of the processes that can be simulated, and compare the results with available analytical solutions. Simulations are contrived to mimic simple capacitance-based two-region models involving conduit (mobile) and matrix (immobile) regions and are compared against the analytical solution. There is a high correlation between LBM simulations and the analytical solution for two different mobile region fractions. In more realistic conduit/matrix simulation, the breakthrough curve showed classic features and the two-region model fit slightly better than the advection-dispersion equation (ADE). An LBM-based anisotropic dispersion solver is applied to simulate breakthrough curves from a heterogeneous porous medium, which fit the ADE solution. Finally, breakthrough from a karst-like system consisting of a conduit with inertial regime flow in a heterogeneous aquifer is compared with the advection-dispersion and two-region analytical solutions.  相似文献   

16.
A mesh-free particle model for simulation of mobile-bed dam break   总被引:1,自引:0,他引:1  
Mesh-free particle (Lagrangian) methods such as Moving Particle Semi-Implicit (MPS) and Smoothed Particle Hydrodynamics (SPH) are the latest generation of methods in the field of computational fluid dynamics that attracts lots of attention in modeling applications where large interfacial deformations and fragmentations exist. Due to their mesh-free nature, these methods are capable of simulating any kind of boundary/interface deformation and fragmentations. This study aims to develop a new mesh-free particle model based on the weakly compressible MPS (WC-MPS) formulation for modeling of a dam break over a mobile bed, which is a highly erosive and transient flow problem. A multiphase model, capable of handling the density and viscosity discontinuity and in which the solid (sediment) phase is treated as a non-Newtonian fluid, is introduced. The resulting model is first validated using a two-phase dam break problem and is then applied to the mobile-bed dam break problem with different conditions, comparing the results to those obtained from some experimental works.  相似文献   

17.
Irrespective of their spatial extent, free-surface shallow flows are challenging measurement environments for most instruments due to the relatively small depths and velocities typically associated with these flows. A promising candidate for enabling measurements in such conditions is Large-scale Particle Image Velocimetry (LSPIV). This technique uses a non-intrusive approach to measure two-dimensional surface velocity fields with high spatial and temporal resolutions. Although there are many publications documenting the successful use of LSPIV in various laboratory and field open-channel flow situations, its performance has not been equally substantiated for measurement in shallow flows. This paper aims at filling in this gap by demonstrating the capabilities of LSPIV to: (a) accurately evaluate complex flow patterns in shallow channel flows; and (b) estimate depth in shallow flows using exclusively LSPIV measurements. The demonstration is provided by LSPIV measurements in three shallow flow laboratory situations with flow depths ranging from 0.05 to 0.31 m. The obtained measurements illustrate the LSPIV flexibility and reliability in measuring velocities in shallow and low-velocity (near-zero) flows. Moreover, the technique is capable to evaluate and map velocity-derived quantities that are difficult to document with alternative measurement techniques (e.g. vorticity and shear stress distributions and mapping of large-scale structure in the body of water).  相似文献   

18.
A total variation diminishing (TVD) modification of the MacCormack scheme is developed for simulating shallow water dynamics on a uniform Cartesian grid. Results obtained using conventional and deviatoric forms of the conservative non-linear shallow water equations (SWEs) are compared for cases where the bed has a varying topography. The comparisons demonstrate that the deviatoric form of the SWEs gives more accurate results than the conventional form, in the absence of numerical balancing of the flux-gradient and source terms. A further comparison is undertaken between the TVD-MacCormack model and an alternating direction implicit (ADI) model for cases involving steep-fronted shallow flows. It is demonstrated that the ADI model is unable to predict trans-critical flows correctly, and artificial viscosity has to be introduced to remove spurious oscillations. The TVD-MacCormack model reproduces all flow regimes accurately. Finally, the TVD-MacCormack model is used to predict a laboratory-scale dyke break undertaken at Delft University of Technology. The predictions agree closely with the experimental data, and are in excellent agreement with results from an alternative Godunov-type model.  相似文献   

19.
In this study an incompressible smoothed particle hydrodynamics (ISPH) approach coupled with the sediment erosion model is developed to investigate the sediment bed scour and grain movement under the dam break flows. Two-phase formulations are used in the ISPH numerical algorithms to examine the free surface and bed evolution profiles, in which the entrained sediments are treated as a different fluid component as compared with the water. The sediment bed erosion model is based on the concept of pick-up flow velocity and the sediment is initiated when the local flow velocity exceeds a critical value. The proposed model is used to reproduce the sediment erosion and follow-on entrainment process under an instantaneous dam break flow and the results are compared with those from the weakly compressible moving particle semi-implicit (WCMPS) method as well as the experimental data. It has been demonstrated that the two-phase ISPH model performed well with the experimental data. The study shows that the ISPH modelling approach can accurately predict the dynamic sediment scouring process without the need to use empirical sediment transport formulas.  相似文献   

20.
A reduced three-dimensional mathematical model of a free-flow stream in nondeformable channels (a model of a long shallow flow), proposed earlier, has been studied analytically and numerically. The reduced model has been verified by direct numerical simulation of the flow by full hydrodynamic models in COMSOL finite-element software complex for laminar and turbulent flows of a viscous fluid. The obtained results show that the proposed reduced model of a shallow weakly curved stream flow adequately describes its hydrodynamics, so it can be used in systems of complex simulation of the ecology of water objects and the use of water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号