首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We develop a new method for the statistical estimation of the tail of the distribution of earthquake sizes recorded in the Harvard catalog of seismic moments converted to m W -magnitudes (1977–2004 and 1977–2006). For this, we suggest a new parametric model for the distribution of main-shock magnitudes, which is composed of two branches, the pure Gutenberg-Richter distribution up to an upper magnitude threshold m 1, followed by another branch with a maximum upper magnitude bound M max, which we refer to as the two-branch model. We find that the number of main events in the catalog (N = 3975 for 1977–2004 and N = 4193 for 1977–2006) is insufficient for a direct estimation of the parameters of this model, due to the inherent instability of the estimation problem. This problem is likely to be the same for any other two-branch model. This inherent limitation can be explained by the fact that only a small fraction of the empirical data populates the second branch. We then show that using the set of maximum magnitudes (the set of T-maxima) in windows of duration T days provides a significant improvement, in particular (i) by minimizing the negative impact of time-clustering of foreshock/main shock/aftershock sequences in the estimation of the tail of magnitude distribution, and (ii) by providing via a simulation method reliable estimates of the biases in the Moment estimation procedure (which turns out to be more efficient than the Maximum Likelihood estimation). We propose a method for the determination of the optimal choice of the T value minimizing the mean-squares-error of the estimation of the form parameter of the GEV distribution approximating the sample distribution of T-maxima, which yields T optimal = 500 days. We have estimated the following quantiles of the distribution of T-maxima for the whole period 1977–2006: Q 16%(M max) = 9.3, Q 50%(M max) = 9.7 and Q 84%(M max) = 10.3. Finally, we suggest two more stable statistical characteristics of the tail of the distribution of earthquake magnitudes: The quantile Q T (q) of a high probability level q for the T-maxima, and the probability of exceedance of a high threshold magnitude ρ T (m*)  = P{m k  ≥ m*}. We obtained the following sample estimates for the global Harvard catalog and The comparison between our estimates for the two periods 1977–2004 and 1977–2006, where the latter period included the great Sumatra earthquake 24.12.2004, m W  = 9.0 confirms the instability of the estimation of the parameter M max and the stability of Q T (q) and ρ T (m*) = P{m k  ≥ m*}.  相似文献   

2.
The source parameters of the M W = 7.6 Olyutorskii earthquake were estimated using the moments of the slip rate function with degrees 1 and 2. The moments were estimated from broadband P-wave records at 52 stations of the worldwide network. The first step was to find a function S(t) for each station; this function is an apparent source time function, i.e., the P-wave slip as radiated by the source toward a station under consideration. The method of empirical Green’s functions was used to estimate S(t). The next step was to calculate the moments of S(t) of degrees 1 and 2 over time and to set up relevant equations to be solved by least squares for the unknown source moments. The horizontal linear source was used as a nonparametric model for calculating the source moments. Haskell’s parametric model was used for further interpretation of the source moments. The resulting estimates are as follows: the source centroid was 13–25 km southwest of the epicenter, the source was 105–120 km long, the source strike was 222°–228°, the rupture velocity was 2.7–3.0 km/s, and the total radiation duration was 24–27 s. These estimates indicate a bilateral rupture dominated by a southwestward sense of rupture propagation. The source characteristics are consistent with the aftershock area geometry and with the focal mechanism, as well as with surface breakage as observed by geologists in the field.  相似文献   

3.
Northeast India and adjoining regions (20°–32° N and 87°–100° E) are highly vulnerable to earthquake hazard in the Indian sub-continent, which fall under seismic zones V, IV and III in the seismic zoning map of India with magnitudes M exceeding 8, 7 and 6, respectively. It has experienced two devastating earthquakes, namely, the Shillong Plateau earthquake of June 12, 1897 (M w 8.1) and the Assam earthquake of August 15, 1950 (M w 8.5) that caused huge loss of lives and property in the Indian sub-continent. In the present study, the probabilities of the occurrences of earthquakes with magnitude M ≥ 7.0 during a specified interval of time has been estimated on the basis of three probabilistic models, namely, Weibull, Gamma and Lognormal, with the help of the earthquake catalogue spanning the period 1846 to 1995. The method of maximum likelihood has been used to estimate the earthquake hazard parameters. The logarithmic probability of likelihood function (ln L) is estimated and used to compare the suitability of models and it was found that the Gamma model fits best with the actual data. The sample mean interval of occurrence of such earthquakes is estimated as 7.82 years in the northeast India region and the expected mean values for Weibull, Gamma and Lognormal distributions are estimated as 7.837, 7.820 and 8.269 years, respectively. The estimated cumulative probability for an earthquake M ≥ 7.0 reaches 0.8 after about 15–16 (2010–2011) years and 0.9 after about 18–20 (2013–2015) years from the occurrence of the last earthquake (1995) in the region. The estimated conditional probability also reaches 0.8 to 0.9 after about 13–17 (2008–2012) years in the considered region for an earthquake M ≥ 7.0 when the elapsed time is zero years. However, the conditional probability reaches 0.8 to 0.9 after about 9–13 (2018–2022) years for earthquake M ≥ 7.0 when the elapsed time is 14 years (i.e. 2009).  相似文献   

4.
Crustal structure and the Moho depth are exceptionally well known beneath Europe. The first digital, high-resolution map of the Moho depth for the whole European Plate was compiled in 2007 and recently published in Geophysical Journal International. In the past few years, considerable developments have taken place in the receiver function techniques. Different receiver function techniques provide new, independent information, in particular on the S-wave velocity distribution in the crust and on the Moho depth. This gives an opportunity to compare the Moho depth from the Moho depth map of the European Plate (H MM) and the Moho depth from receiver function studies (H RF). Herein, we also compile and analyze the uncertainty of the crustal thickness determinations data obtained with receiver function analysis. The uncertainty is found to be ±2 km for 20-km-thick crust and about ±4 km for 60-km-thick crust. Comparison of the Moho depths shows an approximately linear trend between H RF and H MM. For the Moho depth of 30–40 km, the values are approximately equal, while for thin crust, H RF is about 5 km shallower than H MM, and for thick crust, it is about 5 km deeper than H MM. Possible reasons for this, the observed discrepancy between the Moho depths HMM and HRF, are discussed.  相似文献   

5.
The magnitude (M w) 7.9 Wenchuan earthquake occurred on 12 May 2008 in the Longmen Shan region of China, the transition zone between the Tibetan Plateau and the Sichuan Basin, resulting in widespread damage throughout central and western China. The steep, high-relief eastern margin of the Tibetan Plateau has undergone rapid Cenozoic uplift and denudation accompanied by folding and thrusting, yet no large thrust earthquakes are known prior to the 2008 M w 7.9 Wenchuan earthquake. Field and excavation investigations reveal that a great historical earthquake occurred in the Sichuan region that ruptured a >200-km-long thrust fault within the Longmen Shan Thrust Belt, China, which also triggered the 2008 M w 7.9 Wenchuan earthquake. The average co-seismic slip amount produced by this historical earthquake is estimated to be 2–3 m, comparable with that caused by the 2008 Wenchuan earthquake. Paleoseismic and archaeological evidence and radiocarbon dating results show that the penultimate great earthquake occurred in the Sichuan region during the late Tang-Song Dynasty, between AD 800 and 1000, suggesting a recurrence interval of ~1,000–1,200 years for Wenchuan-magnitude (M = ~8) earthquakes in the late Holocene within the Longmen Shan Thrust Belt. This finding is in contrast with previous estimates of 2,000–10,000 years for the recurrence interval of large earthquakes within the Longmen Shan Thrust Belt, as obtained from long-term slip rates based on the Global Positioning System and geological data, thereby necessitating substantial modifications to existing seismic-hazard models for the densely populated region at the eastern marginal zone of the Tibetan Plateau.  相似文献   

6.
We test the hypothesis that the general trend of P-wave and S-wave sonic log velocities and resistivity with depth in the pilot hole of the KTB site Germany, can be explained by the progressive closure of the compliant porosity with increasingly effective pressure. We introduce a quantity θc characterizing the stress sensitivity of the mentioned properties. An analysis of the downhole measurements showed that estimates of the quantitiy θc for seismic velocities and electrical formation factor of the in situ formation coincide. Moreover, this quantity is 3.5 to 4.5 times larger than the averaged stress sensitivity obtained from core samples. We conclude that the hypothesis mentioned above is consistent with both data sets. Moreover, since θc corresponds approximately to the inverse of the effective crack aspect ratio, larger in situ estimates of θc might reflect the influence of fractures and faults on the stress sensitivity of the crystalline formation in contrast to the stress sensitivity of the nearly intact core samples. Finally, because the stress sensitivity is directly related to the elastic nonlinearity we conclude that the elastic nonlinearity (i.e., deviation from linear stress-strain relationship i.e., Hooke's law) of the KTB rocks is significantly larger in situ than in the laboratory.  相似文献   

7.
The December 26, 2004 Sumatra–Andaman Island earthquake, which ruptured the Sunda Trench subduction zone, is one of the three largest earthquakes to occur since global monitoring began in the 1890s. Its seismic moment was M 0 = 1.00 × 1023–1.15 × 1023 Nm, corresponding to a moment-magnitude of M w = 9.3. The rupture propagated from south to north, with the southerly part of fault rupturing at a speed of 2.8 km/s. Rupture propagation appears to have slowed in the northern section, possibly to ∼2.1 km/s, although published estimates have considerable scatter. The average slip is ∼5 m along a shallowly dipping (8°), N31°W striking thrust fault. The majority of slip and moment release appears to have been concentrated in the southern part of the rupture zone, where slip locally exceeded 30 m. Stress loading from this earthquake caused the section of the plate boundary immediately to the south to rupture in a second, somewhat smaller earthquake. This second earthquake occurred on March 28, 2005 and had a moment-magnitude of M w = 8.5.  相似文献   

8.
We investigated whether accelerated seismic strain release precedes large earthquakes occurring in and around the Sistan Suture Zone, Eastern Iran. Online catalogs of teleseismic events occurring post-1960 within the region 27.0°–37.0°N, 55.0°–65.0°E, report five M w > 7.0 earthquakes, namely, 1968 Dasht-e-Bayaz, 1978 Tabas, 1979 Khuli-Buniabad, 1981 Sirch and 1997 Zirkuh-e-Q’aenat events. We defined four earthquake test episodes, 1968–1978, 1978–1981, 1979–1981, and 1981–1997, with all catalogued intermediate events having magnitudes within 2.0 units that of the final large event. Using the 1968 event as the starting point, we investigated possible increased moderate earthquake activity patterns prior to the large events of 1978, 1981 and 1997 by examining if the cumulative Benioff strain released from such preceding events followed a power law time-to-failure. Our investigation seem to suggest that the 1978, 1981 and 1997 events (i) followed a period of accelerated moderate earthquake activity and (ii) the radius of their optimal critical region, R, scaled with their magnitude, M, according to the scaling law log R ∝ 0.36 M. Our suggestions conform to those proposed by similar investigations in varied seismotectonic regimes.  相似文献   

9.
A method estimating the stress level in the focal region of an earthquake is proposed here. Taking the 2001 M=8.1 Western Kunlun Mountain Pass earthquake as an example, we estimate its stress level in the focal region before and after it by this method. The results show that the stress level in the focal region just prior to the initiation of this event is approximately 6.3–8 MPa, and about 5–6.7 MPa remained in the focal region after its occurrence. The stress in the focal region decreased by roughly twenty percent after this event. Contribution No. 05FE3026, Institute of Geophysics, China Earthquake Administration.  相似文献   

10.
本文根据Aki等人提出的尾波理论,导出了地方震尾波水平分量与垂直分量的持续时间比的具体表达式: τ_H/τ_V=I_H/I_V(Q_H/Q_V)~(1/4)·B_H/B_V。该式表明,τ_H/τ_V的变化主要反映了震源体一定范围内,由于介质的各向异性而引起的尾波在不同方向上的激发及衰减能力的差异。本文还讨论了地震前τ_H/τ_V短临异常的物理机制,认为异常的产生与孕震期间介质内裂隙的出现和闭合有关。1986年门源6.4级地震和1975年海城7.3级地震前,τ_H/τ_V都有不同程度的短期低值异常及临震高值突跳。门源地震前后门源台记录的直达S波的最大振幅比A_(mH)/A_(mv)也有与尾波持续时间比类似的异常。最后通过对一些震例的分析,初步得到震级与异常时间的关系为M=0.657lnT+3.44。  相似文献   

11.
We develop a data set of aftershock recordings of the 1999, M = 7.4 Izmit and M = 7.2 Duzce (Turkey) earthquakes to study their source parameters. We combined seismograms from 44 stations maintained by several sources (organizations) to obtain a unified data set of events (2.1 ≤ Mw ≤ 5.5). We calculate source parameters of these small earthquakes by two methods that use different techniques to address the difficulty in obtaining source spectra for small earthquakes subject to interference from site response. One method (program NetMoment (NM), Hutchings, 2004) uses spectra of direct S waves in a simultaneous inversion of local high-frequency network data to estimate seismic moment, source corner frequency (fc), site attenuation (k) and whole-path Q. This approach takes advantage of the source commonality in all recordings for a particular earthquake by fitting a common Brune source spectrum to the data with a and individual k. The second approach (Mayeda et al., 2003) uses the coda method (CM) to obtain “nonmodel-based” source spectra and moment estimates from selected broadband recording sites. We found that both methods do well for events that allow the comparison with seismic moment estimates derived from waveform modeling. Also, source spectra obtained from the two methods are very closely matched for most of the events they have in common. We use an F test to examine the trade-off between k and fc picks identified by the direct S-wave method. About half of the events could be constrained to have less than a 50% average uncertainty in fc and k. We used these source spectra solutions to calculate energy and apparent stress and compare these to estimates from the selected “good quality” source spectra from CM. Both studies have values mutually consistent and show a similar increase in apparent stress with increasing moment. This result has added merit due to the independent approaches to calculate apparent stress. We conclude that both methods are at least partially validated by our study, and they both have usefulness for different circumstances of recording local small earthquakes. CM would work well in studies for which there is a broad magnitude range of events and NM works well for local events recorded by band-limited recorders.  相似文献   

12.
IntroductionIn the book Future CataS~ologr published in 1992, we proposed a viewpoiflt on using the"criterion of activity in quiescence" to predict big eathquake (MsZ7) (GUO, et al, 1992), and predicted in the book that in futore several years or in ten years a big earthquake (Ms27) will be possible to occur in the Zhongdian and nearby in Yunnan Province. In the 1994 nation-wide earthquake tendency consultation meeting we pointed out, once more, in the Zhongdian region of Yunnan Province…  相似文献   

13.
The ~4-ka trachytic Rungwe Pumice (RP) deposit from Rungwe Volcano in South-Western Tanzania is the first Plinian-style deposit from an African volcano to be closely documented focusing on its physical characterization. The RP is a mostly massive fall deposit with an inversely graded base. Empirical models suggest a maximum eruption column height H T of 30.5–35 km with an associated peak mass discharge rate of 2.8–4.8 × 108 kg/s. Analytical calculations result in H T values of 33 ± 4 km (inversion of TEPHRA2 model on grain size data) corresponding to mass discharge ranging from 2.3 to 6.0 × 108 kg/s. Lake-core data allow extrapolation of the deposit thinning trend far beyond onland exposures. Empirical fitting of thickness data yields volume estimates between 3.2 and 5.8 km3 (corresponding to an erupted mass of 1.1–2.0 × 1012 kg), whereas analytical derivation yields an erupted mass of 1.1 × 1012 kg (inversion of TEPHRA2 model). Modelling and dispersal maps are consistent with nearly no-wind conditions during the eruption. The plume corner is estimated to have been ca. 11–12 km from the vent. After an opening phase with gradually increasing intensity, a high discharge rate was maintained throughout the eruption, without fountain collapse as is evidenced by a lack of pyroclastic density current deposits.  相似文献   

14.
Recent seismic events for which macroseismic intensities and accelerometric records are simultaneously available are investigated in order to derive empirical relationships between intensities and ground accelerations. 20 events with local magnitudes 3.0 to 5.4 are selected in a single country (France), in order to have homogeneous intensity data. Records are obtained in about 50 stations. Relationships are first established between intensities, magnitudes and distances on one side, between S-wave horizontal peak ground accelerations (PGA), magnitudes and distances R on the other side. They show that the PGA decays with distance roughly as R −2, in agreement with previous studies, and that PGA and intensities lead to different attenuation models. An intensity-acceleration relationship is established from direct observations, and from a combination of the previous relationships. It reveals that the intensity felt depends not only on the PGAs, but also on the distance. This may be explained by the frequency dependent attenuation of the waves, and by a different sensitivity of humans to the different frequencies. The influence of frequency on the felt intensity is then investigated, and a relation between intensity, PGA and frequency is established. It shows that the acceleration needed to be felt with a given intensity is larger at high frequency than at low frequency.Finally, as sound also contributes to earthquake perception, the P-wave displacement is analysed in an attempt to find in which conditions a perceptible sound is generated. The perturbation in air pressure induced by the P-wave is compared to the threshold of hearing in two frequency ranges, 20–40 Hz and 40–60 Hz. The maximum distance of perceptibility as a function of magnitude deduced from the P-wave displacement alone is found to be below the experimental distances of perception reported in the macroseismic enquiries.  相似文献   

15.
The M w 6.3 L’Aquila earthquake of April 6, 2009 hit a wide area of the Abruzzo region (Central Italy). The epicentre of the main shock was very close to the urban centre of L’Aquila, the regional capital, with an epicentral distance less than 10 km. It was the strongest earthquake ever recorded in Italy which has provided ground motion recordings from accelerometric stations located in close proximity to the epicentre. Because of this, several remarkable results can be achieved by analysing the strong motion recorded signals in terms of peak (PGA, PGV and PGD) and integral (Housner Intensity, I H) seismic parameters. Additionally, an alternative time-domain representation of recorded signals has been used to furnish a rapid comparison of traces recorded at different stations and along different directions. Some comparisons between the response spectra derived from the recordings and the elastic demand spectra provided in the new seismic Italian code have also been performed. PGA recorded values are very high and generally higher than code values for seismic actions with return period T R = 475 years. In some cases, this also happens for seismic actions with T R up to 2,475 years. With regard to I H, recorded values are generally higher for T R = 475 years, whilst they are remarkably lower for T R = 2,475 years. Accurate analyses have been carried out in the article to better understand the above differences and their significance and implications.  相似文献   

16.
Throughout their long history, the towns of Lod and Ramle have been severely affected by strong earthquakes. The last destructive earthquake occurred on July 11, 1927 and caused the destruction of large parts of these cities, reaching a seismic intensity of VIII–IX on the MSK scale. Such a high intensity from a relatively distant earthquake (about 70 km) of magnitude 6.2 is likely to be the result of local site effects of the sedimentary layers that may have significantly enhanced earthquake ground motions. This study is focused on estimating the seismic hazard to Lod and Ramle by implementing a three-step process (1) detailed mapping of the characteristics of the H/V spectral ratios from ambient noise, (2) incorporating geological information and well data to construct subsurface models for different sites within the investigated area and (3) estimating the seismic hazard in terms of uniform hazard site-specific accelerations. The horizontal-to-vertical spectral ratios of ambient noise were used to approximate the fundamental resonance frequencies of the subsurface and their associated amplitudes. About 360 sites in Lod and Ramle were instrumented for varying periods. The soil sites exhibits H/V peak amplitudes ranging from 4 to 6 in the frequency range 0.5–2.5 Hz. These data were used to constrain 1-D subsurface models that were developed using geological data and borehole information. H/V spectral ratio observations were checked against theoretical subsurface transfer functions at locations where borehole information is available farther constraint the range of possible Vs velocities of the different layers and thus, by means of trial an error it was possible to conclude a systematic spatial distribution of the Vs velocity and thickness in the substrata that are also consistent with the spatial distribution of the fundamental resonance frequencies of the soft sediments obtained by means of the H/V spectral ratios, and other geological and geophysical information available at different locations in the study area. The evaluated subsurface models are introduced using the SEEH procedure of Shapira and van~Eck [(1993) Natural Hazards 8, 201–205] to assess Uniform Hazard Site-Specific Acceleration Spectra for different zones within the towns of Lod and Ramle. These evaluations are very important for realistic assessment of the vulnerabilities of all types of existing and newly designed structures and for urban and land use planning.  相似文献   

17.
The influence of the four different methods of measuring Lg amplitude, and the selection of different geometrical attenuation coefficient ζ-values (=5/6 or 1) on the determination ofγ value of Lg wave are discussed.γ=0.0034±0.0001km−1 (when ζ=5/6) for six eastern provinces is redetermined. The revised magnitude calibration function ofm Lg (mxh),q E (Δ)=(5/6)logΔ+0.00147Δ+1.81 is deduced. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 171–178, 1991. Projects sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

18.
The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes (M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of − 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = − 0.4, when compared to the regional networks operating in West Bohemia (M c > 0.0). In the course of this work, the main temporal features (frequency–magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg–Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.  相似文献   

19.
The source parameters of the Bohai Sea earthquake, July 18, 1969 and Yongshan, Yunnan earthquake, May 11, 1974 were determined by full — wave theory synthetic seismograms of teleseismic P waves. P+pP+sP wereform were calculated with WKBJ approximation and real integral paths. One — dimensional unilateral, finite propagation source was also considered. By trail — and — error in comparing the theoretical seismograms with the observational ones of WWSSN stations, the source parameters were obtained as follow: for Bohai earthquake, φ=195°, δ=85°, λ=65°,M o=0.9×1019Nm,L=59.9km.V R=3.5km/s, ∧ R =160°; for Yongshan earthquake, φ=240°, δ=80°, ∧=150°,M o=1.3×1018Nm,L=48.8km,V R=3km/s, ∧ R =−10°, where φ is strike, δ dip angle, λ slip angle,M o seismic moment,L rupture length,V R rupture propagation speed. As III type fractures the faulting propagated along the fault planes, and ∧ R is the angle from the strike to the propagation direction. Yongshan earthquake showed complexity in its focal process, having four sub—ruptures during the first 60 seconds. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 1–8, 1991.  相似文献   

20.
The first of four successive pulses of the 1974 explosive eruption of Fuego volcano, Guatemala, produced a small volume (∼0.02 km3 DRE) basaltic sub-plinian tephra fall and flow deposit. Samples collected within 48 h after deposition over much of the dispersal area (7–80 km from the volcano) have been size analyzed down to 8 φ (4 μm). Tephra along the dispersal axis were all well-sorted (σ φ = 0.25–1.00), and sorting increased whereas thickness and median grain size decreased systematically downwind. Skewness varied from slightly positive near the vent to slightly negative in distal regions and is consistent with decoupling between coarse ejecta falling off the rising eruption column and fine ash falling off the windblown volcanic cloud advecting at the final level of rise. Less dense, vesicular coarse particles form a log normal sub-population when separated from the smaller (Mdφ < 3φ or < 0.125 mm), denser shard and crystal sub-population. A unimodal, relatively coarse (Mdφ = 0.58φ or 0.7 mm σ φ = 1.2) initial grain size population is estimated for the whole (fall and flow) deposit. Only a small part of the fine-grained, thin 1974 Fuego tephra deposit has survived erosion to the present day. The initial October 14 pulse, with an estimated column height of 15 km above sea level, was a primary cause of a detectable perturbation in the northern hemisphere stratospheric aerosol layer in late 1974 to early 1975. Such small, sulfur-rich, explosive eruptions may substantially contribute to the overall stratospheric sulfur budget, yet leave only transient deposits, which have little chance of survival even in the recent geologic record. The fraction of finest particles (Mdφ = 4–8φ or 4–63 μm) in the Fuego tephra makes up a separate but minor size mode in the size distribution of samples around the margin of the deposit. A previously undocumented bimodal–unimodal–bimodal change in grain size distribution across the dispersal axis at 20 km downwind from the vent is best accounted for as the result of fallout dispersal of ash from a higher subplinian column and a lower “co-pf” cloud resulting from pyroclastic flows. In addition, there is a degree of asymmetry in the documented grain-size fallout pattern which is attributed to vertically veering wind direction and changing windspeeds, especially across the tropopause. The distribution of fine particles (<8 μm diameter) in the tephra deposit is asymmetrical, mainly along the N edge, with a small enrichment along the S edge. This pattern has hazard significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号