首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first high-precision δ18O analyses of glass, δ18O of minerals, and trace element concentrations in glass and minerals for the 260–79 ka Central Plateau Member (CPM) rhyolites of Yellowstone, a >350 km3 cumulative volume of lavas erupted inside of 630 ka Lava Creek Tuff (LCT) caldera. The glass analyses of these crystal-poor rhyolites provide direct characterization of the melt and its evolution through time. The δ18Oglass values are low and mostly homogeneous (4.5 ± 0.14 ‰) within and in between lavas that erupted in four different temporal episodes during 200 ka of CPM volcanism with a slight shift to lower δ18O in the youngest episode (Pitchstone Plateau). These values are lower than Yellowstone basalts (5.7–6 ‰), LCT (5.5 ‰), pre-, and extracaldera rhyolites (~7–8 ‰), but higher than the earliest 550–450 ka post-LCT rhyolites (1–2 ‰). The glass δ18O value is coupled with new clinopyroxene analyses and previously reported zircon analyses to calculate oxygen isotope equilibration temperatures. Clinopyroxene records >900 °C near-liquidus temperatures, while zircon records temperatures <850 °C similar to zircon saturation temperature estimates. Trace element concentrations in the same glass analyzed for oxygen isotopes show evidence for temporal decreases in Ti, Sr, Ba, and Eu—related to Fe–Ti oxide and sanidine (±quartz) crystallization control, while other trace elements remain similar or are enriched through time. The slight temporal increase in glass Zr concentrations may reflect similar or higher temperature magmas (via zircon saturation) through time, while previosuly reported temperature decreases (e.g., Ti-in-quartz) might reflect changing Ti concentrations with progressive melt evolution. Multiple analyses of glass across single samples and in profiles across lava flow surfaces document trace element heterogeneity with compatible behavior of all analyzed elements except Rb, Nb, and U. These new data provide evidence for a three-stage geochemical evolution of these most recent Yellowstone rhyolites: (1) repeated batch melting events at the base of a homogenized low-δ18O intracaldera fill resulting in liquidus rhyolite melt and a refractory residue that sequesters feldspar-compatible elements over time. This melting may be triggered by conductive "hot plate" heating by basaltic magma intruding beneath the Yellowstone caldera resulting in contact rhyolitic melt that crystallizes early clinopyroxene and/or sanidine at high temperature. (2) Heterogeneity within individual samples and across flows reflects crystallization of these melts during preeruptive storage of magma at at lower, zircon-saturated temperatures. Compatible behavior and variations of most trace elements within individual lava flows are the result of sanidine, quartz, Fe–Ti oxide, zircon, and chevkinite crystallization at this stage. (3) Internal mixing immediately prior to and/or during eruption disrupts, these compositional gradients in each parental magma body that are preserved as melt domains distributed throughout the lava flows. These results based on the most recent and best-preserved volcanic products from the Yellowstone volcanic system provide new insight into the multiple stages required to generate highly fractionated hot spot and rift-related rhyolites. Our proposed model differs from previous interpretations that extreme Sr and Ba depletion result from long-term crystallization of a single magma body—instead we suggest that punctuated batch melting events generated a sanidine-rich refractory residue and a melt source region progressively depleted in Sr and Ba.  相似文献   

2.
The nature of compositional heterogeneity within large silicic magma bodies has important implications for how silicic reservoirs are assembled and evolve through time. We examine compositional heterogeneity in the youngest (~170 to 70 ka) post-caldera volcanism at Yellowstone caldera, the Central Plateau Member (CPM) rhyolites, as a case study. We compare 238U–230Th age, trace-element, and Hf isotopic data from zircons, and major-element, Ba, and Pb isotopic data from sanidines hosted in two CPM rhyolites (Hayden Valley and Solfatara Plateau flows) and one extracaldera rhyolite (Gibbon River flow), all of which erupted near the caldera margin ca. 100 ka. The Hayden Valley flow hosts two zircon populations and one sanidine population that are consistent with residence in the CPM reservoir. The Gibbon River flow hosts one zircon population that is compositionally distinct from Hayden Valley flow zircons. The Solfatara Plateau flow contains multiple sanidine populations and all three zircon populations found in the Hayden Valley and Gibbon River flows, demonstrating that the Solfatara Plateau flow formed by mixing extracaldera magma with the margin of the CPM reservoir. This process highlights the dynamic nature of magmatic interactions at the margins of large silicic reservoirs. More generally, Hf isotopic data from the CPM zircons provide the first direct evidence for isotopically juvenile magmas contributing mass to the youngest post-caldera magmatic system and demonstrate that the sources contributing magma to the CPM reservoir were heterogeneous in 176Hf/177Hf at ca. 100 ka. Thus, the limited compositional variability of CPM glasses reflects homogenization occurring within the CPM reservoir, not a homogeneous source.  相似文献   

3.
A voluminous (>600 km3) and long-lived (~520–75 ka) phase of rhyolitic eruptions followed collapse of the Yellowstone caldera 640 ka. Whether these eruptions represent a dying cycle, or the growth of a new magma chamber, remains an important question. We use new U–Th zircon ages and δ18O values determined by ion microprobe, and sanidine Pb isotope ratios determined by laser ablation, to investigate the genesis of voluminous post-caldera rhyolites. The oldest post-caldera rhyolites, erupted between ~520 and 470 ka, exhibit extreme age and oxygen isotopic heterogeneity, requiring derivation from individual parcels of low-δ18O melts. We find a progressive increase in zircon homogeneity for rhyolite eruptions from ~260 to 75 ka, with homogeneous low-δ18O zircon values of 2.7–2.8‰ that are in equilibrium with low-δ18O host melts for the majority of the youngest eruptions. New sanidine Pb isotope data define separate arrays for post-caldera rhyolites and the caldera-forming tuffs that preceded them, indicating that they were not sourced from a mushy Lava Creek Tuff batholith that remained after caldera collapse. Rather, our new age and isotopic data indicate that the post-caldera rhyolites were generated by remelting of a variety of intracaldera source rocks, consisting of pre-Lava Creek Tuff volcanic and plutonic rocks and earlier erupted post-Lava Creek Tuff rhyolites. Batch assembly of low-δ18O melts starting at ~260 ka resulted in progressive homogenization, followed by differentiation and cooling up until the last rhyolite eruption ~75 ka, a trend that we interpret to be characteristic of a dying magma reservoir beneath the Yellowstone caldera.  相似文献   

4.
Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750–800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800–850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos-Kos stage. The recent eruptions of the high-SiO2 rhyolite on Yali Island, which are low temperature and hydrous phases (sanidine, quartz, biotite), suggest that another large, potentially explosive magma chamber is presently building under the Kos-Nisyros volcanic center.  相似文献   

5.
Products of voluminous pyroclastic eruptions with eruptive draw-down of several kilometers provide a snap-shot view of batholith-scale magma chambers, and quench pre-eruptive isotopic fractionations (i.e., temperatures) between minerals. We report analyses of oxygen isotope ratio in individual quartz phenocrysts and concentrates of magnetite, pyroxene, and zircon from individual pumice clasts of ignimbrite and fall units of caldera-forming 0.76 Ma Bishop Tuff (BT), pre-caldera Glass Mountain (2.1-0.78 Ma), and post-caldera rhyolites (0.65-0.04 Ma) to characterize the long-lived, batholith-scale magma chamber beneath Long Valley Caldera in California. Values of '18O show a subtle 1‰ decrease from the oldest Glass Mountain lavas to the youngest post-caldera rhyolites. Older Glass Mountain lavas exhibit larger (~1‰) variability of '18O(quartz). The youngest domes of Glass Mountain are similar to BT in '18O(quartz) values and reflect convective homogenization during formation of BT magma chamber surrounded by extremely heterogeneous country rocks (ranging from 2 to +29‰). Oxygen isotope thermometry of BT confirms a temperature gradient between "Late" (815 °C) and "Early" (715 °C) BT. The '18O(quartz) values of "Early" and "Late" BT are +8.33 and 8.21‰, consistent with a constant '18O(melt)=7.8ǂ.1‰ and 100 °C temperature difference. Zircon-melt saturation equilibria gives a similar temperature range. Values of '18O(quartz) for different stratigraphic units of BT, and in pumice clasts ranging in pre-eruptive depths from 6 to 11 km (based on melt inclusions), and document vertical and lateral homogeneity of '18O(melt). Worldwide, five other large-volume rhyolites, Lava Creek, Lower Bandelier, Fish Canyon, Cerro Galan, and Toba, exhibit equal '18O(melt) values of earlier and later erupted portions in each of the these climactic caldera-forming eruptions. We interpret the large-scale '18O homogeneity of BT and other large magma chambers as evidence of their longevity (>105 years) and convection. However, remaining isotopic zoning in some quartz phenocrysts, trace element gradients in feldspars, and quartz and zircon crystal size distributions are more consistent with far shorter timescales (102-104 years). We propose a sidewall-crystallization model that promotes convective homogenization, roofward accumulation of more evolved and stagnant, volatile-rich liquid, and develops compositional and temperature gradients in pre-climactic magma chamber. Crystal + melt + gas bubbles mush near chamber walls of variable '18O gets periodically remobilized in response to chamber refill by new hotter magmas. One such episode of chamber refill by high-Ti, Sr, Ba, Zr, and volatile-richer magma happened 103-104 years prior to the 0.76-Ma caldera collapse that caused magma mixing at the base, mush thawing near the roof and walls, and downward settling of phenocrysts into this hybrid melt.  相似文献   

6.
Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up (~50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic (~62–65 wt% SiO2) ignimbrite with an estimated erupted volume of ~500 km3 and an average of ~45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from ~750 to >800?°C) of an upper crustal mush in response to hotter recharge from below. Zircon U–Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location ~0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures (~710–760?°C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.  相似文献   

7.
《International Geology Review》2012,54(16):1967-1982
ABSTRACT

The Taupo Volcanic Zone (TVZ), New Zealand, is a well-documented volcanic arc characterized by explosive rhyolitic magmas within a series of caldera complexes that include the Okataina Volcanic Centre (OVC). New quartz melt inclusion and volcanic glass data from the 45 ka caldera-forming Rotoiti eruption within the OVC are compared to published studies. The new data are characterized by low K2O (~1.5–3.5 wt.%), Rb (~30–70 ppm), Sr (~40–90 ppm), U (~0.5–2.5 ppm), and Ba (~300–1000 ppm) ranges that differ significantly from other OVC systems (~3.0–4.5 wt.% K2O, ~80–150 ppm Rb, and ~2.5–5.0 ppm U). Most interestingly, the Rotoiti melt inclusion data measured in this study show a decrease in Rb, Sr, and U, although the fractionation trends originate from the same source point as published OVC data. This progressive decreasing trend is interpreted as an interaction with a less enriched rhyolitic melt (represented by the low Rb, Sr, and U of glasses) during fractionation processes from a common TVZ source. The established model for TVZ rhyolites is that they are extracted from a middle or upper crustal source (‘mush’ zone) prior to eruption. Adding to this model, new melt inclusion data suggest that all TVZ rhyolites are fractionated from this common TVZ source and, prior to eruption, the Rotoiti system was rejuvenated by this source (evidenced by the low REE glasses). Exactly what triggers the common TVZ source to fractionate remains unclear, but a proposed mechanism to account for this involves the successive melting of the upper crust by upwelling mantle induced by incremental subduction.  相似文献   

8.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe–Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10–15 kyr before the eruption. The mush top was quartz-bearing and as shallow as ~3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of ~840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of ~790 °C, reflecting rapid cooling from the ~840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3–5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic magmas with the mush and melt-dominant body. However, the mafic magmas do not appear to have triggered the eruption or controlled magmatic temperatures in the erupted rhyolite. Integration of textural and compositional data from all available crystal types, across all dominant and subordinate magmatic components, allow the history of the Oruanui magma body to be reconstructed over a wide range of temporal scales using multiple techniques. This history spans the tens of millennia required to grow the parental magma system (U–Th disequilibrium dating in zircon), through the centuries and decades required to assemble the eruptible magma body (textural and diffusion modelling in orthopyroxene), to the months, days, hours and minutes over which individual phases of the eruption occurred, identified through field observations tied to diffusion modelling in magnetite, olivine, quartz and feldspar. Tectonic processes, rather than any inherent characteristics of the magmatic system, were a principal factor acting to drive the rapid accumulation of magma and control its release episodically during the eruption. This work highlights the richness of information that can be gained by integrating multiple lines of petrologic evidence into a holistic timeline of field-verifiable processes.  相似文献   

10.
Magmas erupted at the Kane Springs Wash volcanic center record the buildup and decay of a silicic magma chamber within the upper crust between 14.1 and 13.2 Ma ago. Intrusion of a variety of mantle-derived basaltic magmas into the crust sustained the system thermally, but only alkali basalts appear to be parental. Fractionation of alkali basalt, together with 10–20% contamination by partial melts of the lower crust, generated trachyandesite magmas. Mafic trachytes, with magma temperatures of 1,000° C, were initially generated from trachyandesites at depths greater than 15 km. Continued fractionation combined with assimilation of upper crustal melts at a depth of 5–10 km produced more evolved trachytes and high-silica rhyolites. These silicic magmas erupted as the Kane Wash Tuff 14.1 Ma ago from a chamber zoned from fayalite-bearing alkali rhyolite near 820° C at the roof to a trachytic dominant volume. Initial ash flows of the Kane Wash Tuff, Member V1, are metaluminous, whereas later cooling units, Members V2 and V3, are mildly peralkaline and have higher Fe, Zr, and Hf and lower Ca, Th/Ta, Rb/ Zr, and LREE/HREE. Less than 1 % upper crustal component was involved in generation of Members V2 and V3 from trachytic magma. Eruption of 130 km3 of magma resulted in collapse of the Kane Springs Wash caldera. Trachytic magma from deeper levels of the system was extruded onto the caldera floor shortly afterward, forming a central trachyte/syenite complex. Replacement of this magma by hotter, more mafic magma may have induced additional melting of the already heated chamber walls, as high-silica rhyolites that erupted in the moat surrounding the central complex have a large crustal component. Early moat rhyolites had temperatures near 800° C and, in contrast to the Kane Wash Tuff, are ferroedenite-bearing, have higher Al, K/Na, Th/Ta, and Ba, and have lower Fe, REE, and Zr. Fractional crystallization of this magma within the cooling and crystallizing magma chamber formed biotite-bearing rhyolite in isolated pockets. The most evolved of these had temperatures near 700° C, elevated F contents, H2O contents of 5 wt.%, Rb> 500 ppm, chondrite-normalized LREE/HREE <1, and formed vapor-phase topaz. Declining temperatures and Cl/ F from the Kane Wash Tuff through the moat rhyolites may reflect decreasing basalt input into the base of the system and increasing proportions of upper crustal melts in the silicic magmas.  相似文献   

11.
The 20 ka ~0.1 km3 Omega dacite, which erupted shortly after the 26.5 ka Oruanui super-eruption, compositionally stands out among Taupo Volcanic Zone (TVZ) magmas, which are overwhelmingly characterized by rhyolites (>90 % by volume). The previously reported presence of inherited zircons in this zircon-undersaturated magma has provided unequivocal evidence for the involvement of upper-crustal material in a 1–10 year timescale prior to the Omega eruption. However, whether this crustal involvement is characterized by wholesale, melting of preexisting crust or subordinate bulk assimilation into an already differentiated magma body remains unclear. To disentangle these processes, we describe the mineral chemistry of the major phases present in the Omega dacite and determine intensive parameters describing magma chamber conditions. Dominantly unimodal populations of plagioclase (An50–60), orthopyroxene (Mg# from 58 to 68), and clinopyroxene (Mg# from 65 to 73), along with coexisting equilibrium pairs of Fe–Ti oxides, constrain pre-eruptive temperatures to 850–950 °C, a pressure between ~3 and 7 kbars, and an oxygen fugacity of ~NNO. MELTS thermodynamic modeling suggests that this phase assemblage is in equilibrium with the bulk rock and glass compositions of the Omega dacite at these estimated PTfO2 pre-eruptive conditions. Combining these petrological observations with insights into conductive thermal models of magma–crust interactions, we argue that the Omega dacite more likely formed in the mid-to-lower crust via protracted processing through fractional crystallization coupled with some assimilation (AFC). Incorporation of crustal material is likely to have occurred at various stages, with the inherited zircons (and potentially parts of glomerocrysts) representing late and subordinate upper-crustal assimilants. This petrogenetic model is consistent with the presence of a differentiating crustal column, consisting of a polybaric fractional crystallization and assimilation history. On the basis of petrological, thermal, and geophysical considerations, upper-crustal reservoirs, which feed large-scale rhyolitic volcanism in the TVZ, most likely take the form of large, long-lived crystal mush zones. Following large eruptions, such as the Oruanui event, this mush is expected to crystallize significantly (up to 70–80 vol% crystals) due to syn-eruptive decompression. Hence, the Omega dacite, immediately post-dating the Oruanui event, potentially represents incoming deeper recharge of less-evolved magma that was able to penetrate the nearly solidified upper-crustal mush. Over the past 20,000 years, similar intermediate recharge magmas have incrementally reheated, reconstructed, and reactivated the upper-crustal mush zone, allowing a gradual return to rhyolitic volcanism at the Taupo Volcanic Center.  相似文献   

12.
《Lithos》1987,20(3):207-223
The late Quaternary phonolitic pumice deposits of Tenerife, Canary Islands, are the product of a periodically-tapped, periodically-replenished, zoned alkaline magma system. Nepheline syenite blocks occur as lithics in the deposits, and provide solidified representatives of the phonolite magmas. The blocks are considered to have crystallised in the roof zone of the active magma system at a depth of roughly 4 km beneath the Las Cañadas caldera. Conversion of highly-differentiated phonolitic magma to solid nepheline syenite was achieved between 770° and 680°C. Quenched glass of extreme composition in one erupted block provides a sample of the last interstitial liquid; comparison of this sample with phonolitic pumice, and with fully crystallised syenites, allows reconstruction of the magmatic, interstitial and subsolidus crystallisation histories of nepheline syenite. Phases represented by the phenocryst assemblage of the most differentiated phonolitic pumices (sanidine, sodalite, nepheline, Na-poor pyroxene, biotite, sphene and magnetite) formed an initial crystal “mush”, containing abundant trapped liquid, on the walls of the magma chamber. Interstitial crystallisation, involving the conversion of pyroxene to Na-rich compositions, continued growth of felsic phases, and partial to complete consumption of biotite, sphene, magnetite and apatite, was accompanied by extreme sodium enrichment in the residual liquid. Stellate aegirine, lavenite, loparite and Mn-rich ilmenite are among the final products of magmatic crystallisation. Modification of feldspar primocrysts persisted into subsolidus conditions.It is suggested that complete solidification of an open-system alkaline magma chamber results in the formation of an alkaline alkaline ring complex.  相似文献   

13.
The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W-Fall (130 +16/−14 ka) and I-Fall eruptions (56 +8.2/−7.7 ka), which under- and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for >80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI > 8), which confirms the LCY eruption as the first-ever recognized supereruption in Central America.  相似文献   

14.
During the onset of caldera cluster volcanism at a new location in the Snake River Plain (SRP), there is an increase in basalt fluxing into the crust and diverse silicic volcanic products are generated. The SRP contains abundant and compositionally diverse hot, dry, and often low-δ18O silicic volcanic rocks produced through time during the formation of individual caldera clusters, but more H2O-rich eruptive products are rare. We report analyses of quartz-hosted melt inclusions from pumice clasts from the upper and lower Arbon Valley Tuff (AVT) to gain insight into the initiation of caldera cluster volcanism. The AVT, a voluminous, caldera-forming rhyolite, represents the commencement of volcanism (10.44 Ma) at the Picabo volcanic field of the Yellowstone hotspot track. This is a normal δ18O rhyolite consisting of early and late erupted members (lower and upper AVT, respectively) with extremely radiogenic Sr isotopes and unradiogenic Nd isotopes, requiring that ~50 % of the mass of these elements is derived from melts of Archean upper crust. Our data reveal distinctive features of the early erupted lower AVT melt including: variable F concentrations up to 1.4 wt%, homogenous and low Cl concentrations (~0.08 wt%), H2O contents ranging from 2.3 to 6.4 wt%, CO2 contents ranging from 79 to 410 ppm, and enrichment of incompatible elements compared to the late erupted AVT, subsequent Picabo rhyolites, SRP rhyolites, and melt inclusions from other metaluminous rhyolites (e.g., Bishop Tuff, Mesa Falls Tuff). We couple melt inclusion data with Ti measurements and cathodoluminescence (CL) imaging of the host quartz phenocrysts to elucidate the petrogenetic evolution of the AVT rhyolitic magma. We observe complex and multistage CL zoning patterns, the most critical being multiple truncations indicative of several dissolution–reprecipitation episodes with bright CL cores (higher Ti) and occasional bright CL rims (higher Ti). We interpret the high H2O, F, F/Cl, and incompatible trace element concentrations in the context of a model involving melting of Archean crust and mixing of the crustal melt with basaltic differentiates, followed by multiple stages of fractional crystallization, remelting, and melt extraction. This multistage process, which we refer to as distillation, is further supported by the complex CL zoning patterns in quartz. We interpret new Δ18O(Qz-Mt) isotope measurements, demonstrating a 0.4 ‰ or ~180 °C temperature difference, and strong Sr isotopic and chemical differences between the upper and lower AVT to represent two separate eruptions. Similarities between the AVT and the first caldera-forming eruptions of other caldera clusters in the SRP (Yellowstone, Heise and Bruneau Jarbidge) suggest that the more evolved, lower-temperature, more H2O-rich rhyolites of the SRP are important in the initiation of a caldera cluster during the onset of plume impingement.  相似文献   

15.
An array of samples from the eastern Upper Basin Member of the Plateau Rhyolite (EUBM) in the Yellowstone Plateau, Wyoming, were collected and analyzed to evaluate styles of deposition, geochemical variation, and plausible sources for low δ18O rhyolites. Similar depositional styles and geochemistry suggest that the Tuff of Sulphur Creek and Tuff of Uncle Tom’s Trail were both deposited from pyroclastic density currents and are most likely part of the same unit. The middle unit of the EUBM, the Canyon flow, may be composed of multiple flows based on a wide range of Pb isotopic ratios (e.g., 206Pb/204Pb ranges from 17.54 to 17.86). The youngest EUBM, the Dunraven Road flow, appears to be a ring fracture dome and contains isotopic ratios and sparse phenocrysts that are similar to extra-caldera rhyolites of the younger Roaring Mountain Member. Petrologic textures, more radiogenic 87Sr/86Sr in plagioclase phenocrysts (0.7134–0.7185) than groundmass and whole-rock ratios (0.7099–0.7161), and δ18O depletions on the order of 5‰ found in the Tuff of Sulphur Creek and Canyon flow indicate at least a two-stage petrogenesis involving an initial source rock formed by assimilation and fractional crystallization processes, which cooled and was hydrothermally altered. The source rock was then lowered to melting depth by caldera collapse and remelted and erupted. The presence of a low δ18O extra-caldera rhyolite indicates that country rock may have been hydrothermally altered at depth and then assimilated to form the Dunraven Road flow.  相似文献   

16.
Understanding the mechanisms responsible for the generation of chemical gradients in high-volume ignimbrites is key to retrieve information on the processes that control the maturation and eruption of large silicic magmatic reservoirs. Over the last 60 ky, two large ignimbrites showing remarkable zoning were emplaced during caldera-forming eruptions at Campi Flegrei (i.e., Campanian Ignimbrite, CI, ~?39 ka and Neapolitan Yellow Tuff, NYT, ~?15 ka). While the CI displays linear compositional, thermal and crystallinity gradients, the NYT is a more complex ignimbrite characterized by crystal-poor magmas ranging in composition from trachy-andesites to phonolites. By combining major and trace element compositions of matrix glasses and mineral phases from juvenile clasts located at different stratigraphic heights along the NYT pyroclastic sequence, we interpret such compositional gradients as the result of mixing/mingling between three different magmas: (1) a resident evolved magma showing geochemical characteristics of a melt extracted from a cumulate mush dominated by clinopyroxene, plagioclase and oxides with minor sanidine and biotite; (2) a hotter and more mafic magma from recharge providing high-An plagioclase and high-Mg clinopyroxene crystals and (3) a compositionally intermediate magma derived from remelting of low temperature mineral phases (i.e., sanidine and biotite) within the cumulate crystal mush. We suggest that the presence of a refractory crystal mush, as documented by the occurrence of abundant crystal clots containing clinopyroxene, plagioclase and oxides, is the main reason for the lack of erupted crystal-rich material in the NYT. A comparison between the NYT and the CI, characterized by both crystal-poor extracted melts and crystal-rich magmas representing remobilized portions of a “mature” (i.e., sanidine dominated) cumulate residue, allows evaluation of the capability of crystal mushes of becoming eruptible upon recharge.  相似文献   

17.
We determined Ar/Ar eruption ages of eight extrusions from the Pleistocene Coso volcanic field, a long-lived series of small volume rhyolitic domes in eastern California. Combined with ion-microprobe dating of crystal ages of zircon and allanite from these lavas and from granophyre geothermal well cuttings, we were able to track the range of magma-production rates over the past 650 ka at Coso. In ≤230 ka rhyolites we find no evidence of protracted magma residence or recycled zircon (or allanite) from Pleistocene predecessors. A significant subset of zircon in the ~85 ka rhyolites yielded ages between ~100 and 200 Ma, requiring that generation of at least some rhyolites involves material from Mesozoic basement. Similar zircon xenocrysts are found in an ~200 ka granophyre. The new age constraints imply that magma evolution at Coso can occur rapidly as demonstrated by significant changes in rhyolite composition over short time intervals (≤10’s to 100’s ka). In conjunction with radioisotopic age constraints from other young silicic volcanic fields, dating of Coso rhyolites highlights the fact that at least some (and often the more voluminous) rhyolites are produced relatively rapidly, but that many small-volume rhyolites likely represent separation from long-lived mushy magma bodies.  相似文献   

18.
In this study, we present 87Rb/86Sr and 230Th/238U isotope analyses of glasses and phenocrysts from postcaldera rhyolites erupted between 150 to 100 ka from the Long Valley magmatic system. Both isotope systems indicate complex magma evolution with preeruptive mineral crystallization and magma fractionation, followed by extended storage in a silicic magma reservoir. Glass analyses yield a Rb-Sr isochron of 257 ± 39 ka, which can be explained by a feldspar-fractionation event ∼150 ky before eruption. Individual feldspar-glass pairs confirm this age result. A mineral 230Th-238U isochron in a low-silica rhyolite from the Deer Mountain Dome defines an age of 236 ± 1 ka, but the glass and whole rock do not lie on the isochron. U-Th fractionation of the rocks is controlled by the accessory minerals zircon and probably allanite, which crystallized at 250 ± 3 ka and 187 ± 9 ka, respectively. All major mineral phases contain accessory mineral phases; therefore, the mineral isochron represents a mixture of zircon and allanite populations. A precision of ±1 ka for the mixing array implies that the minor phases must have crystallized within this timescale. Longer periods of crystal growth would cause the mixing array to be less well defined. U-series data from other low- and high-silica rhyolites indicate younger accessory mineral crystallization events at ∼200 and 140 ka, probably related to the thermal evolution of the magma reservoir. These crystallization events are, however, only documented by the accessory minerals and had no further influence on bulk magma compositions. We interpret the indistinguishable age results from both isotope systems (∼250 ka) to record the fractionation of small magma batches by filter pressing from a much larger underlying magma volume, followed by physical isolation and extended storage at the top of the magma reservoir for up to 150 ky.  相似文献   

19.
We have studied the chemical zoning of plagioclase phenocrysts from the slow-spreading Mid-Atlantic Ridge and the intermediate-spreading rate Costa Rica Rift to obtain the time scales of magmatic processes beneath these ridges. The anorthite content, Mg, and Sr in plagioclase phenocrysts from the Mid-Atlantic Ridge can be interpreted as recording initial crystallisation from a primitive magma (~11 wt% MgO) in an open system. This was followed by crystal accumulation in a mush zone and later entrainment of crystals into the erupted magma. The initial magma crystallised plagioclase more anorthitic than those in equilibrium with any erupted basalt. Evidence that the crystals accumulated in a mush zone comes from both: (1) plagioclase rims that were in equilibrium with a Sr-poor melt requiring extreme differentiation; and (2) different crystals found in the same thin section having different histories. Diffusion modelling shows that crystal residence times in the mush were <140 years, whereas the interval between mush disaggregation and eruption was ≤1.5 years. Zoning of anorthite content and Mg in plagioclase phenocrysts from the Costa Rica Rift show that they partially or completely equilibrated with a MgO-rich melt (>11 wt%). Partial equilibration in some crystals can be modelled as starting <1 year prior to eruption but for others longer times are required for complete equilibration. This variety of times is most readily explained if the mixing occurred in a mush zone. None of the plagioclase phenocrysts from the Costa Rica Rift that we studied have Mg contents in equilibrium with their host basalt even at their rims, requiring mixing into a much more evolved magma within days of eruption. In combination these observations suggest that at both intermediate- and slow-spreading ridges: (1) the chemical environment to which crystals are exposed changes on annual to decadal time scales; (2) plagioclase crystals record the existence of melts unlike those erupted; and (3) disaggregation of crystal mush zones appears to precede eruption, providing an efficient mechanism by which evolved interstitial melt can be mixed into erupted basalts.  相似文献   

20.
 Cerro Panizos, a large caldera in the central Andes Mountains, produced two large dacitic ignimbrites at 7.9 Ma and 6.7 Ma and many andesitic and dacitic lava flows and domes. The older rhyodacitic Cienago Ignimbrite represents the most silicic magma erupted by the system. The younger, much larger volume dacitic Cerro Panizos Ignimbrite is very crystal-rich, containing up to 50% biotite, plagioclase, and quartz crystals in the pumice. It is weakly zoned, with most of the zoning apparent between two main cooling units. Major and most trace elements show little variation through the Cerro Panizos Ignimbrite, but the small range of composition is consistent with typical fractionation trends. Sr, Nd, and Pb isotopic ratios are very “crustal”, with initial 87Sr/86Sr values of 0.711 to 0.715, ɛNd values of –7.5 to –10.2, and nearly invariant Pb isotopic ratios (206Pb/204Pb=18.85, 207Pb/204Pb=15.67, and 208Pb/204Pb=38.80). The limited zonation observed in the Cerro Panizos Ignimbrite is explained by impeded crystal settling due to high crystal content. The magma body was a crystal-liquid mush before ascent to the pre-eruption crustal levels. Crystals formed, but did not separate easily from the magma. Limited fractionation of plagioclase and biotite may have occurred, but the composition was largely controlled by lower crustal MASH processes. AFC modeling shows that the Cerro Panizos magmas resulted from a mixture of roughly equal proportions of late Miocene mantle-derived basalts and melts from ∼1.0 Ga (Grenville age) lower crust. This occurred in a MASH zone in the lower crust, and set the crustal isotopic ratios observed in the Cerro Panizos magmas. The great thickening of the crust beneath the central Andes Mountains sent upper and middle crustal rock types to lower crustal (and deeper) depths, and this explains the “upper crustal” isotopic signatures of the Cerro Panizos rocks. Minor upper crustal assimilation of early Miocene volcanic or subvolcanic rocks produced much of the isotopic variation seen in the system. The nearly invariant high Pb isotopic values and high Pb concentrations indicate that Pb came almost entirely from the crustal source, and was little altered by any subsequent upper crustal assimilation. This Pb signature is isotopically similar to that of the southern Bolivian Tin Belt, suggesting a widely distributed Pb source. The great difference between compositions of Miocene and Quaternary central Andean volcanic rocks is explained by crustal thickening in early Miocene time leading to abundant lower crustal water and associated fluxed melting during the time of the earlier eruptions. The lower crust dried out considerably by Quaternary time, so less crustal component is present. Received: 22 December 1994 / Accepted: 13 September 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号