首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodide and iodate concentrations are reported and discussed for the WOCE A23 transect from the Weddell Sea north to about 25°S. Iodide concentrations are very low in the surface waters of the Weddell Sea (20 nM) and increase steadily northwards to about 100 nM in the surface waters of the south Atlantic gyre. In deep waters iodide concentrations are low but detectable at 0.5–2 nM. There is no detectable total iodine depletion in the surface waters south of the polar front although there is a small depletion evident north of the front. The results are discussed in terms of the hydrography, nutrient concentrations and phytoplankton activity along the transect. In particular, a systematic change in the relationship between iodide and nitrate along the transect is discussed.  相似文献   

2.
This study was performed in order to obtain information on the influence of an acute anoxic event (September, 1997) on distribution and speciation of inorganic iodine in the water column of a small, intensely eutrophicated salt lake. The variations in iodate and iodide depth distributions during the investigated period (1998–2000) were in accord with seasonal changes in redox conditions. During the stratification period (spring and summer), the concentration ratio between iodate and iodide in the upper layers was high, whereas during late summer and autumn, as a result of water column de-stratification and mixing of highly reducing deep water with the oxic layer, lower ratios and more uniform depth distributions were observed.The massive mortality of lake organisms induced by anoxic conditions and sulphide presence throughout the water column was registered by the end of September 1997, when overturn of the lake occurred. The concentrations of iodate in the oxic upper layers were elevated for more than a year after the mass-mortality event (up to 0.55 μmol L−1), whereas iodide concentrations remained high for more than 2 years in deep anoxic water (up to 2.27 μmol L−1). These data suggest that biogeochemical renewal processes affecting the concentrations of inorganic iodine in the lake water are slow compared to those that govern the speciation of iodine. The role of sediment–water interactions and iodine-rich organic species in the production of iodide are discussed.  相似文献   

3.
The distributions of iodate, iodide and dissolved organic iodine (DOI) were determined in two deep sub-basins in the Chesapeake Bay, the shallow waters at the mouth of the Bay and the adjacent North Atlantic between the late spring and the early fall along the net flow-path of the water entering and exiting the Chesapeake Bay by using an improved analytical scheme designed for the quantitative recovery of DOI. The concentration of R-DOI found in the surface mixed layer in the upper Bay was about twice of those found at the same location in previous studies. (R-X was the concentration of a dissolved iodine species X that had been normalized to a constant salinity of 35.) Thus, DOI in estuarine waters might have been underestimated significantly in the earlier studies. Following the water along its net flow-path, iodate initially constituted more than 60% of total iodine (TI) in the source water in the Middle Atlantic Bight off the Delmarva Peninsula. As this water entered the Chesapeake Bay through the northern part of its mouth, the concentration of R-iodate decreased while that of R-iodide increased progressively until the former became undetectable in the surface mixed layer while the latter reached a maximum of 0.42 μM in the deep water in the upper Bay. Then, the concentration of R-iodate rebounded while that of R-iodide decreased in the outflowing water that exited through the southern part of the mouth of the Bay and was later entrained by the Gulf Stream. The concentration of R-DOI in the surface waters followed the same pattern as R-iodide and reached a maximum of 0.20 μM in the upper Bay. However, R-DOI was depleted in the deep water in the sub-basins. Its concentration dropped to around the detection limit in the suboxic waters in the upper Bay. R-TI in the Bay far exceeded that in the incoming Middle Atlantic Bight water and reached 0.55 μM in the upper Bay. These distributions of the iodine species suggest that, as water from the Middle Atlantic Bight intruded into the Chesapeake Bay, in the well oxygenated surface mixed layer, iodate was reduced to iodide, and the inorganic iodine species could also be converted to DOI. In the deep water, iodate and DOI were converted to iodide. Superimposed on these inter-conversions among the iodine species, dissolved iodine, possibly in the form of iodide, was also added to the water column from the underlying sediments and the process was especially significant in the suboxic deep water in the upper Bay. Mixing between the surface mixed layer and the deep water could also have increased the concentrations of iodide and total iodine in the former.  相似文献   

4.
The distributions of iodide, iodate and total iodine were determined along a transect from the Sargasso Sea and across the Gulf Stream to the continental shelf of the South Atlantic Bight during November 1990. The western boundary of the Gulf Stream at the outer shelf-upper slope was characterized by steeply sloping isotherms and isopleths of iodide and iodate, resulting from a dome of cold water that was rich in iodate and nearly devoid of iodide at the slope. Both the mid and the inner shelf were relatively well mixed vertically. The concentration of iodate in the surface waters decreased shoreward from >0.3 μM in the Sargasso Sea/Gulf Stream/outer shelf, to 0.29 μM in the midshelf, 0.19 μM in the outer-inner shelf and 0.11 /IM in the inner-inner shelf. Concomitantly, the concentration of iodide increased from <161 nM to 175 nM, 257 nM and 300 nM. The concentration changes were more abrupt in the inner-inner shelf within about 30 km from the shore. There was no evidence of significant concentrations of organic iodine. These distributions of iodide and iodate suggest that the South Atlantic Bight may act as a geochemical processor of dissolved iodine. Iodate is added to the shelf during topographically induced upwelling and frontal exchange with the Gulf Stream. In the shelf waters, iodate is reduced to iodide in situ. Iodide is exported from the shelf to the Gulf Stream which may eventually further transport it to the ocean interior. A ☐ model calculation suggests that 28% and 43% of the iodate added to the Bight and the inner shelf, respectively, are converted to another form in these waters, almost all of which is iodide. About a third of the reduction of iodate to iodide in the Bight occurs in the inner shelf. Thus, the inner shelf may be the most geochemically active zone within the Bight. The residence times of iodide relative to its production and that of iodate relative to its removal are 3.1 and 3.6 months in the Bight and 0.9 and 1.8 months in the inner shelf.  相似文献   

5.
A study of inorganic iodine speciation in the water column of a naturally eutrophicated anchialine pond (Rogoznica Lake, East Adriatic Coast) was conducted in a period between April and July 2004 to obtain information how close the inorganic iodine system is to that of inorganic nutrients during spring, when phytoplankton activity is at maximum, and how the system changes up to summer, when highly reducible redox-conditions prevail in deep water.  相似文献   

6.
Victor W. Truesdale   《Marine Chemistry》2007,104(3-4):266-281
Aerated solutions of potassium iodide in de-ionised water, of between 5–20% (w/v), were exposed to ambient spring sunlight to estimate the rate of photochemical production of molecular iodine from iodide and oxygen in seawater. This rate cannot be measured directly as other reactions, for example the reduction of molecular iodine by organic matter, interfere. Also, a parallel photo-oxidation, initiated by organic matter in real seawater, may also occur. The experiments yield a half-life for iodide in tropical surface waters of about 29 months suggesting that the reaction is insignificant. At this rate it will not compete effectively against the reduction of molecular iodine by organic matter, and hence molecular iodine should not appear. The experiments also consider the photo-oxidation by nitrate, and iodate, a combination of nitrite and oxygen, and eliminate significant interference by chloride, bromide and the phosphate buffer. The rate of photo-oxidation with each of the first three oxidations is found to be first order with respect to oxidant concentration. The variation of photo-oxidation rate with pH is also studied, with a brief investigation without conventional oxidant, where electron cage complexes still promote photo-oxidation. The photochemical action spectrum for these reactions in sunlight is shown to extend between 300 and 425 nm. The photo-oxidation of iodide by iodate is more interesting to marine chemistry as the photo-reduction of iodate. Nevertheless, the reduction-rate is judged to be several orders too low to be significant in seawater. The mechanism of the reactions are discussed and lessons drawn on the stability of potassium iodide solutions used in iodate analysis. The KI actinometer is recommended to those studying other photochemical systems activated by UV-A light as it is linear and very simple and reliable.  相似文献   

7.
Iodide oxidation to iodate in near-surface waters of the open oceans is an elusive process, and an unequivocal demonstration of it would simplify modelling of the marine iodine system. In the open ocean, the upward advection of iodate complicates any mathematical treatment of the problem. In this context, the high concentration (0.1 μM) of iodate in the Black Sea surface waters suggested that this Sea might be a place where oxidation might be demonstrated. Hydrologically, the surface waters of the Black Sea appear to be downstream of the deeper waters and, given the latter's anoxicity, the surface waters seemed likely to gain most of their iodine as iodide by upward advection. To test this further, prior to experimentation, an iodine budget for the near-surface waters, based upon the latest hydrological model of the Sea was prepared; this predicts a minimum oxidation flux of 3.89×10−4 mol I m−2 a−1. The chemistry of this oxidation is discussed in the light of existing knowledge of the sulfide system. It is argued that as the redox potential of the IO3/I and I2/I couples at pHs typical of the Black Sea (7.75) are much higher than that of the sulfate–sulfide couple, iodide is probably oxidized in the near-surface domain. This contrasts with sulfide oxidation in the suboxic zone. The possible role of nitrifying bacteria in the oxidation is discussed.  相似文献   

8.
Aerosol (soluble and total) iron and water-column dissolved (DFe, < 0.2 μm) and total dissolvable (TDFe, unfiltered) iron concentrations were determined in the Canary Basin and along a transect towards the Strait of Gibraltar, in order to sample across the Saharan dust plume. Cumulative dust deposition fluxes estimated from direct aerosol sampling during our one-month cruise are representative of the estimated deposition fluxes based on near surface water dissolved aluminium concentrations measured on board. Iron inventories in near surface waters combined with flux estimates confirmed the relatively short residence time of DFe in waters influenced by the Saharan dust plume (6–14 months). Enhanced near surface water concentrations of DFe (5.90–6.99 nM) were observed at the Strait of Gibraltar mainly due to inputs from metal-rich rivers. In the Canary Basin and the transect towards Gibraltar, DFe concentrations (0.07–0.76 nM) were typical of concentrations observed in the surface North Atlantic Waters, with the highest concentrations associated with higher atmospheric inputs in the Canary Basin. Depth profiles showed that DFe and TDFe were influenced by atmospheric inputs in this area with an accumulation of aeolian Fe in the surface waters. The sub-surface minimum of both DFe and TDFe suggests that a simple partitioning between dissolved and particulate Fe is not obvious there and that export may occur for both phases. At depths of around 1000–1300 m, both regeneration and Meddies may explain the observed maximum. Our data suggest that, in deep waters, higher particle concentrations likely due to dust storms may increase the scavenging flux and thus decrease DFe concentrations in deep waters.  相似文献   

9.
Iodate (IO3) is the predominant dissolved species of iodine in the oxygenated waters of the Mediterranean Sea. Iodide (I) is present in significant quantities (up to 65 nM) in oxygenated waters in the photic zone and near the interface above the anoxic and saline Bannock Basin. Lesser quantities of I (< 10 nM) are found throughout the rest of the oxic water column. An additional unidentified dissolved iodine species is present immediately above the anoxic interface.Total dissolved iodine (ΣI) increases dramatically across the seawater/brine interface. Part of this increase is undoubtedly the result of the dissolution of iodine-rich evaporites during formation of the brine bodies at the Tyro and Bannock Basins. The vertical distribution of ΣI and other dissolved chemical species (particularly PO43−) in the Bannock Basin brine, however, suggests an additional, present-day, diagenetic source of dissolved iodine to the brine. Based on the increase in the concentration of the most soluble major ions across the seawater/brine interface, 5–7 μM of the 11.5-μM increase in ΣI concentration must be attributed to diagenesis.  相似文献   

10.
The speciation of dissolved iodine and the distributions of the iodine species in the deep Chesapeake Bay underwent seasonal variations in response to changes in the prevailing redox condition. In the deep water, the ratios of iodate to iodide and iodate to inorganic iodine decreased progressively from the Winter through the Summer as the deep water became more poorly oxygenated before they rebounded in the Fall when the deep water became re-oxygenated again. The composition of the surface water followed the same trend. However, in this case, the higher biological activities in the Spring and the Summer could also have enhanced the biologically mediated reduction of iodate to iodide by phytoplankton and contributed to the lower ratios found during those seasons. Superimposed on this redox cycle was a cycle of input and removal of dissolved iodine probably as a result of the interactions between the water column and the underlying sediments. Iodine was added to the Bay during the Summer when the deep water was more reducing and removed from the Bay in the Fall when the deep water became re-oxygenated. A third cycle was the inter-conversion between inorganic iodine and ‘dissolved organic iodine’, or ‘‘DOI’’. The conversion of inorganic iodine to ‘DOI’ was more prevalent in the Spring. As a result of these biogeochemical reactions in the Bay, during exchanges between the Bay and the North Atlantic, iodate-rich and ‘DOI’-poor water was imported into the Bay while iodide- and ‘DOI’-rich water was exported to the Atlantic. The export of iodide from these geochemically reactive systems along the land margins contributes to the enrichment of iodide in the surface open oceans.  相似文献   

11.
Measurements of zinc and zinc complexation by natural organic ligands in the northeastern part of the Atlantic Ocean were made using cathodic stripping voltammetry with ligand competition. Total zinc concentrations ranged from 0.3 nM in surface waters to 2 nM at 2000 m for open-ocean waters, whilst nearer the English coast, zinc concentrations reached 1.5 nM in the upper water column. In open-ocean waters zinc speciation was dominated by complexation to a natural organic ligand with conditional stability constant (log KZnL′) ranging between 10.0 and 10.5 and with ligand concentrations ranging between 0.4 and 2.5 nM. The ligand was found to be uniformly distributed throughout the water column even though zinc concentrations increased with depth. Organic ligand concentrations measured in this study are similar to those published for the North Pacific. However the log KZnL′ values for the North Atlantic are almost and order of magnitude lower than those reported by Bruland [Bruland, K.W., 1989. Complexation of zinc by natural organic-ligands in the central North Pacific. Limnol. Oceanogr., 34, 269–285.] using anodic stripping voltammetry for the North Pacific. Free zinc ion concentrations were low in open-ocean waters (6–20 pM) but are not low enough to limit growth of a typical oceanic species of phytoplankton.  相似文献   

12.
The chemical speciation of copper in the estuarine waters of the Vigo Ria was determined by titrations with salicylaldoxime (reverse copper titrations) and with copper (forward titrations). The forward titrations quantified the concentrations of ligands present in excess whereas the reverse titrations demonstrated the presence of low concentrations of very strong binding ligands, approximately matching the copper concentration. The data obtained by the reverse titrations indicated that copper was about 10× stronger bound than data based on the usual forward titrations.The copper concentration in these ria waters was low at 5 nM with a minor mid-estuarine maximum of 8 nM. These copper levels are amongst the lowest reported for estuarine waters and therefore represent uncontaminated waters. The concentration of inorganic copper was very low across the ria at  10–100 fM, except at Bouzas harbour (salinity 35.5) where it was raised to  1 pM due to copper contamination, in waters affected by the port facilities, to total levels of 15 to 20 nM copper, exceeding the concentration of the very strong ligand detected by the reverse titrations.  相似文献   

13.
A new method for the direct determination of reduced and oxidized Mo species (Mo (V) and Mo (VI)) in seawater was developed and used for the first time. The method includes the complexation of Mo (V) with tartrate, solid phase extraction of the Mo (V)–tartrate complex by a XAD 7HP resin, followed by elution with acidic acetone. In this study, the eluted Mo (V) was quantified by graphite furnace atomic absorption spectrometry. The detection limit of this protocol was on the order of 0.2 nM. The analytical precision was 10% of ~ 10 nM. This method was successfully applied to the determination of Mo (V) and Mo (VI) in surface and bottom waters at the head of Peconic River Estuary. Total Mo (Mo (V) + Mo (VI)) ranged from 100–120 nM in most bottom saline waters, and 2.5–15 nM for surface fresher waters. Concentrations of Mo (V) in these environments ranged from 0 nM to ~ 15 nM, accounting for 0%–15% of the total dissolved Mo pool. The time series experiments showed that the Mo speciation changed within 1 h after the water collection, and therefore it is strongly suggested that speciation analysis be carried out within the first 15 min. However, since these are the first Mo speciation data in concentration ranges typical of normal marine and coastal waters, additional research may be required to optimize the methodology and further explore Mo cycling mechanisms.  相似文献   

14.
Dissolved iodine in waters overlying and in the Orca Basin,Gulf of Mexico   总被引:1,自引:0,他引:1  
The distribution and speciation of iodine, a biophilic redox-sensitive trace element, in waters overlying and in the Orca Basin, Gulf of Mexico, which contains hypersaline, anoxic and yet non-sulfide-bearing brine have been determined. The distribution of iodate and iodide in the oxic waters overlying the anoxic brine are similar to those reported in other oceans. However, in the oxic-anoxic mixing zone, iodate disappears while the concentration of iodide reaches a maximum of 8.1 μM, the highest concentration ever reported in open oceans. There is also a maximum in specific iodine of 30.7 nM‰?1 at this depth. Specific iodine in oxic seawater is only about 10–14 nM ‰?1. These features may be explained by the preferential dissolution of biogenic particles that have accumulated in a strong pycnocline. In the anoxic brine proper, the concentration of iodide is 3.8 μM and can be explained almost entirely by the simultaneous mobilization of chloride and iodide during the dissolution of evaporite beds as the specific iodine of 14.5 nM‰?1 is only slightly higher than those observed in the oxic waters.  相似文献   

15.
The species of iodine in the water samples collected from the west Pacific Ocean and its adjacent seas were analysed. Results show that the concentration of total inorganic iodine appears higher in the south than that in the north of the Equator. The iodide concentration is distributed symmetrically on both sides of the Equator in tropic and subtropic zones and it decreases away from the Equator. Around the Antarctic Divergence iodide concentration approaches its minimum in the surface waters .which only accounts for 10% of the total iodine. The dissolved organic iodine concentration keeps constant generally either in horizontal or in vertical. Discussions on the relationships of iodine with chemical, biological and hydrological factors reveal that iodine has a transitional behavior between conservative and biodepleting elements; I/S ratio is of a certain stability on a vast scale, however, it may be largely affected by organism activity in some zones. Besides, evidence shows that iodine is adsorbed by  相似文献   

16.
Shipboard incubations from the US JGOFS cruise to the Arabian Sea (TN045) March, 1995 showed evidence of iodate reduction in 0.45 μ (Gelman Supor membrane) filtered seawater samples collected from intermediate depths (200–600 m) within the oxygen minimum zone (OMZ). Inorganic chemical reduction of iodate in these samples was ruled out as no free sulfide was measurable and concentrations of ammonia and nitrite were found to be less than 5 μM. To examine whether the reduction of iodate observed at sea could have been the result of bacterial metabolism, reduction of iodate (IO3) to iodide (I) by Shewanella putrefaciens strain MR-4 was studied in artificial seawater using electrochemical methods. MR-4 is a ubiquitous marine bacterium which may be of considerable importance when considering redox zonation in the water column because it is a facultative anaerobe and may switch amongst a suite of electron acceptors to support metabolism. In all experiments MR-4 reduced all iodate to iodide. The rate of formation of [I]in the culture followed pseudo-first order kinetics. This is the first report of the marine bacterial reduction of iodate where the concentrations of iodide and iodate were measured directly. Our results may help to explain the depth distribution of iodine speciation reported in productive waters like the Arabian Sea and for the first time couple iodine speciation with bacterial productivity in the ocean.  相似文献   

17.
Dissolved iodate and total iodine were studied in St Helena Bay, South Africa, during a period of acute hypoxia, following upwelling off Cape Columbine. Despite the generally high concentrations of chlorophyll α (10–30 mg m−3) total iodine concentration was essentially constant in the main part of the Bay, and similar to that found elsewhere in the oceans. Occasional, lower concentrations of total iodine (0·28 to 0·42 μM) were found with exceptionally high chlorophyll α concentrations (500 mg m−3) in shallow waters. In contrast, iodate was found to be reduced to iodide at both the surface and the bottom of the Bay. The implications of these changes are discussed, given that the surface waters reflect sustained eutrophication while the bottom waters are hypoxic as a result of the organic-rich sediment from the waters above.  相似文献   

18.
The spatial distributions of dissolved manganese and nutrients were examined in the Columbia River plume off Oregon and Washington during the summer of 2004 and 2005 as part of the River Influence on Shelf Ecosystems (RISE) program. Factors influencing the hydrochemical characteristics of the freshly formed and aged Columbia River plume were investigated. Hydrographic data and nutrient concentrations were used to delineate three distinct water sources for the Columbia River Plume: California Current surface water, coastal upwelled water, and Columbia River water. The warm, intermediate salinity, nutrient poor California Current water contains low levels of dissolved manganese (< 5 nM) and silicic acid (< 5 μM), and is depleted in nitrate. The cold, high salinity, nutrient rich, freshly upwelled water is highly variable (2–20 nM) in dissolved manganese and can be as high as  45 μM in silicic acid and  30 μM nitrate. The variable Columbia River has summer temperatures ranging from  13 to 24 °C, high silicic acid concentrations (ranging from  120 to 200 μM), and lower nitrate concentrations (ranging from  2 to 20 μM). During the summer, the concentrations of silicic acid and dissolved manganese can exceed 100 μM and 200 nM, respectively, in near-field Columbia River plumes. These values are markedly greater than those of surface coastal waters (even during upwelling conditions). As the plume advects and mixes, the concentrations of these two constituents remain relatively high within plume waters. The concentrations of dissolved manganese in the near-field plume vary with tidal amplitude, exhibiting much higher concentrations for a given salinity during spring tides than during neap tides. For example, the Columbia River plume at a salinity of 20 has a concentration of dissolved manganese of  240 nM during spring tides, as compared to only  60 nM during low amplitude tides. Silicic acid concentrations in the near-field plume remain relatively constant throughout the tidal month. Calculations indicate there is roughly an equivalent yearly delivery of dissolved manganese and silicic acid to the coastal waters off Oregon and Washington by upwelled waters and by the Columbia River plume.  相似文献   

19.
Metazoan/microbial bioconstructions, or biostalactites (BSTs), discovered in submarine caves of Apulia c. 20 years ago—and later found in several shallow‐water Mediterranean caves—are receiving increasing attention in the last years. Examination of a single BST from the “lu Lampiùne” cave (Apulia), at the limit between the Adriatic and the Ionian seas, has been addressed for the first time in this paper. The BST started growing at c. 6,000 years ago with a rapid accretion of large‐sized serpulids (Protula), slowing down since about 3,000–4,000 years ago with a shift in main bioconstructors, probably caused by environmental changes. The present‐day community on the outer BST surface is dominated by skeletonised epibionts, mostly small‐sized serpulids, bryozoans and foraminifers, which contribute carbonate to the BST growth, by encrusting sponges, and by a few endobionts, including boring bivalves and insinuating sponges. New data remarkably increase biodiversity known for the “lu Lampiùne” cave and the cave habitat in the region. Thirty‐five taxa (16 bryozoans, 10 serpulids, 3 brachiopods, 2 foraminifers, 2 sponges, 1 bivalve and 1 cirriped) are recorded for the first time from Apulian marine caves, highlighting the need for further research in the area. In addition, the BST‐associated community seems to differ from those of individual BSTs from other Mediterranean caves, revealing the individuality of these communities.  相似文献   

20.
Total dissolved selenium and selenium species have been measured in the Rhône river delta and the Gulf of Lions within the framework of the EROS-2000 project. The Rhône river concentration of total selenium averages 2.30 nM with important variations related to river discharge. During estuar-ine mixing, the concentrations of total dissolved selenium, selenite and selenate (calculated as the difference between total dissolved and selenite) decrease linearly with increasing salinity, without significant interconversion between selenium species. In the open Mediterranean waters of the Gulf of Lions the total dissolved selenium increases from 0.5 nM in the surface waters to 0.9 nM in the deep waters. Organic selenium has been observed in Mediterranean deep water, an observation which is different from those from the Atlantic and the Pacific Oceans. The distributions of total inorganic selenium (Σ5e), selenite and selenate are strongly related to phosphate and silicate concentrations as observed previously for the major oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号