首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With implications for the origin of ore deposits, redox state of the atmosphere, and effects of volcanic outgassing, understanding the sulfur cycle is vital to our investigation of Earth processes. However, the paucity of sulfur concentration measurements in silicate rocks and the lack of well‐calibrated reference materials with concentrations relevant to the rocks of interest have hindered such investigations. To aid in this endeavour, this study details a new method to determine sulfur concentration via high mass resolution solution inductively coupled plasma‐mass spectrometry (ICP‐MS). The method is based on an aqua regia leach, involving relatively rapid sample preparation and analysis, and uses small test portion masses (< 50 mg). We utilised two independently prepared standard solutions to calibrate the analyses, resulting in 4% accuracy, and applied the method to eight geochemical reference materials. Measurements were reproducible to within ~ 10%. Sulfur concentrations and isotopes of six reference materials were measured additionally by elemental analyser‐combustion‐isotope ratio mass spectrometry to independently evaluate the accuracy of the ICP‐MS method. Reference materials that yielded reproducible measurements identical to published values from other laboratories (JGb‐1, JGb‐2 and MAG‐1) are considered useful materials for the measurement of sulfur. Reference materials that varied between studies but were reproducible for a given test portion perhaps suffer from sample heterogeneity and are not recommended as sulfur reference materials.  相似文献   

2.
A method for the determination of total sulfur in geological materials by inductively coupled plasma‐optical emission spectrometry (ICP‐OES) is described. We show that good results were obtained using this method even for sample types with very low (< 20 μg g?1) sulfur concentration (e.g., peridotite). Sulfur was determined in fifteen geological reference materials with different sulfur contents. For reference materials with certified sulfur contents, the ICP‐OES method gave results in excellent agreement with certified values, and uncertainties better than 4% RSD. ICP‐OES results for sulfur in other reference materials yielded RSDs better than 10%, where S concentrations were > 100 μg g?1 (except for diabase W‐2a, 16% RSD). Reference materials with lower sulfur contents (< 40 μg g?1) showed much higher RSDs (17–18%). Except for RMs with certified values for sulfur, most data obtained by the combustion infrared detection method generally showed higher concentrations than those measured by ICP‐OES and a better RSD (≤ 8% for all materials except DTS‐2b).  相似文献   

3.
We report on an improved method for determining trace element abundances in seawater and other natural waters. The analytical procedure involves co‐precipitation on iron hydroxides after addition of a Tm spike, and measurement by inductively coupled plasma‐sector field mass spectrometry (ICP‐SFMS). The validity of the method was assessed through a series of co‐precipitation experiments, using ultra‐diluted solutions of a certified rock reference material (BIR‐1). Results obtained for four natural water reference materials (NASS‐5, CASS‐4, SLEW‐3, SLRS‐4) are in agreement with published working values for rare earth elements, yttrium, vanadium and, when available, for hafnium, zirconium, thorium and scandium. A set of proposed values with uncertainties typically better than 8% RSD is proposed for Hf, Zr and Th.  相似文献   

4.
Trace elements from samples of bauxite deposits can provide useful information relevant to the exploration of the ore‐forming process. Sample digestion is a fundamental and critical stage in the process of geochemical analysis, which enables the acquisition of accurate trace element data by ICP‐MS. However, the conventional bomb digestion method with HF/HNO3 results in a significant loss of rare earth elements (REEs) due to the formation of insoluble AlF3 precipitates during the digestion of bauxite samples. In this study, the digestion capability of the following methods was investigated: (a) ‘Mg‐addition’ bomb digestion, (b) NH4HF2 open vessel digestion and (c) NH4F open vessel digestion. ‘Mg‐addition’ bomb digestion can effectively suppress the formation of AlF3 and simultaneously ensure the complete decomposition of resistant minerals in bauxite samples. The addition of MgO to the bauxite samples resulted in (Mg + Ca)/Al ratios ≥ 1. However, adding a large amount of MgO leads to significant blank contamination for some transition elements (V, Cr, Ni and Zn). The NH4HF2 or NH4F open vessel digestion methods can also completely digest resistant minerals in bauxite samples in a short period of time (5 hr). Unlike conventional bomb digestion with HF/HNO3, the white precipitates and the semi‐transparent gels present in the NH4HF2 and NH4F digestion methods could be efficiently dissolved by evaporation with HClO4. Based on these three optimised digestion methods, thirty‐seven trace elements including REEs in ten bauxite reference materials (RMs) were determined by ICP‐MS. The data obtained showed excellent inter‐method reproducibility (agreement within 5% for REEs). The relative standard deviation (% RSD) for most elements was < 6%. The concentrations of trace elements in the ten bauxite RMs showed agreement with the limited certified (Li, V, Cr, Cu, Zn, Ga, Sr, Zr and Pb) and information values (Co, Ba, Ce and Hf) available. New trace element data for the ten RMs are provided, some of which for the first time.  相似文献   

5.
Compared with solution ICP‐MS, LA‐ICP‐MS studies have thus far reported comparatively few external reference data for accuracy estimates of experiments. This is largely the result of a paucity of available reference materials of natural composition. Here, we report an evaluation of natural glass (obsidian) as an inexpensive and widely available external reference material. The homogeneity of over forty elements in six different obsidian samples was assessed by LA‐ICP‐MS. Accuracy was tested with two obsidian samples that were fully characterised by electron probe microanalysis and solution ICP‐MS. Laser ablation experiments were performed with a variety of ablation parameters (fluence, spot sizes, ablation repetition rates) and calibration approaches (natural vs. synthetic reference materials, and different internal standard elements) to determine the best practice for obsidian analysis. Furthermore, the samples were analysed using two different laser wavelengths (193 nm and 213 nm) to compare the effect of potential ablation‐related phenomena (e.g., fractionation). Our data indicate that ablation with fluences larger than 6 J cm?2 and repetition rates of 5 or 10 Hz resulted in the most accurate results. Furthermore, synthetic NIST SRM 611 and 612 glasses worked better as reference materials compared with lower SiO2 content reference materials (e.g., BHVO‐2G or GOR128‐G). The very similar SiO2 content of the NIST SRM glasses and obsidian (i.e., matrix and compositional match) seems to be the first‐order control on the ablation behaviour and, hence, the accuracy of the data. The use of different internal standard elements for the quantification of the obsidian data showed that Si and Na yielded accurate results for most elements. Nevertheless, for the analysis of samples with high SiO2 concentrations, it is recommended to use Si as the internal standard because it can be more precisely determined by electron probe microanalysis. At the scale of typical LA analyses, the six obsidian samples proved to be surprisingly homogenous. Analyses with a spot size of 80 μm resulted in relative standard deviations (% RSD) better than 8% for all but the most depleted elements (e.g., Sc, V, Ni, Cr, Cu, Cd) in these evolved glasses. The combined characteristics render obsidian a suitable, inexpensive and widely available, external quality‐control material in LA‐ICP‐MS analysis for many applications. Moreover, obsidian glass is suited for tuning purposes, and well‐characterised obsidian could even be used as a matrix‐matched reference material for a considerable number of elements in studies of samples with high SiO2 contents.  相似文献   

6.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   

7.
Isotope dilution (ID) mass spectrometry is a primary method of analysis suited for the accurate and precise measurement of several trace elements in geological matrices. Here we present mass fractions and respective uncertainties for Cr, Cu, Ni, Sn, Sr and Zn in 10 silicate rock reference materials (BCR‐2, BRP‐1, BIR‐1, OU‐6, GSP‐2, GSR‐1, AGV‐1, RGM‐1, RGM‐2 and G‐3) obtained by the double ID technique and measuring the isotope ratios with an inductively coupled plasma‐mass spectrometer equipped with collision cell. Test portions of the samples were dissolved by validated procedures, and no further matrix separation was applied. Addition of spikes was designed to achieve isotope ratios close to unity to minimise error magnification factors, according to the ID theory. Radiogenic ingrowth of 87Sr from the decay of 87Rb was considered in the calculation of Sr mass fractions. The mean values of our results mostly agree with reference values, considering both uncertainties at the 95% confidence level, and also with ID data published for AGV‐1. Considering all results, the means of the combined uncertainties were < 1% for Sr, approximately 2% for Sn and Cu, 4% for Cr and Ni and almost 6% for Zn.  相似文献   

8.
We present a revised alkali fusion method for the determination of trace elements in geological samples. Our procedure is based on simple acid digestion of powdered low‐dilution (flux : sample ≈ 2 : 1) glass beads where large sample dilution demanded by high total dissolved solids, a main drawback of conventional alkali fusion, could be circumvented. Three geological reference materials (G‐3 granite, GSP‐2 granodiorite and SGD‐1a gabbro) decomposed by this technique and routine tabletop acid digestion were analysed for thirty trace elements using a quadrupole ICP‐MS. Results by conventional acid digestion distinctly showed poor recoveries of Zr, Hf and rare earth elements due to incomplete dissolution of resistant minerals. On the other hand, results obtained by our method were in reasonable agreement with reference data for most analytes, indicating that refractory minerals were efficiently dissolved and volatile loss was insignificant.  相似文献   

9.
Concentrations of halogens (fluorine, chlorine, bromine and iodine) were determined in six geochemical reference materials (BHVO‐2, GS‐N, JG‐1, JR‐1, JB‐1b, JB‐2). Halogens were first extracted from powdered samples using a pyrohydrolysis technique, then hydrolysis solutions were analysed by ion chromatography for F and Cl and inductively coupled plasma‐mass spectrometry for Br and I. The detection limits in solutions were 100 μg l?1 for both F and Cl and 10 ng l?1 for Br and I. Considering the extraction procedure, performed on a maximum of 500 mg of sample and producing 100 ml of pyrohydrolysis solution, detection limits in rock samples were 20 mg kg?1 for F and Cl and 2 μg kg?1 for Br and I. The mean analytical errors on the studied composition ranges were estimated at 10 mg kg?1 for F and Cl, 100 μg kg?1 for Br and 25 μg kg?1 for I. The concentration values, based on repeated (generally > 10) sample analysis, were in good agreement generally with published values and narrowed the mean dispersion around mean values. Large dispersions are discussed in terms of samples heterogeneity and contaminations during sample preparation. Basaltic RMs were found to be more suitable for studies of halogen compositions than differentiated rock material, especially granites – the powders of which were heterogeneous in halogens at the 500 mg level.  相似文献   

10.
Gold and copper concentrations were determined in natural pyrite by near‐infrared femtosecond LA‐ICP‐QMS, using both sulfide reference materials (pyrrhotite Po‐726 and in‐house natural chalcopyrite Cpy‐RM) and NIST SRM 610 as external calibrators. Firstly, using NIST SRM 610 as the external calibrator, we calculated the Au concentration in Po‐726 and the Cu concentration in Cpy‐RM. The calculated concentration averages for Au and Cu were similar to the values published for Po‐726 and Cpy‐RM, respectively. Secondly, we calculated Au and Cu concentrations taking NIST SRM 610 as an unknown sample and using Po‐726 and Cpy‐RM as external calibrators. Again, the average values obtained closely reflected the preferred concentrations for NIST SRM 610. Finally, we calculated Au and Cu concentrations in natural pyrite using sulfide and silicate reference materials as external calibrators. In both cases, calculated concentrations were very similar, independent of the external calibrator used. The aforementioned data, plus the fact that we obtained very small differences in relative sensitivity values (percentage differences are between 5% and 17% for 57Fe, 63Cu and 197Au) on analyses of silicate and sulfide RMs, indicate that there were no matrix effects related to the differences in material composition. Thus, it is possible to determine Au and Cu in natural sulfides using NIST silicate glasses as an external calibrator.  相似文献   

11.
This article presents new boron concentrations for nine geochemical reference materials (GS‐N, FK‐N, GL‐O, BX‐N, DT‐N, AN‐G, GH, Mica‐Fe, Mica‐Mg). After extraction by a modified pyrohydrolysis technique, boron concentrations were measured by ICP‐MS. The blank levels for the whole procedure were 0.091 ± 0.020 ng ml?1 or 14 ± 5 ng of boron in total. The method was first validated by measuring nine reference materials with known boron concentrations. The determined boron concentrations are all within the range of recommended or published values, which means that the yields were 100%, and show precisions below 10% for samples containing over 2 μg g?1 of boron.  相似文献   

12.
We report high‐precision iron isotopic data for twenty‐two commercially available geological reference materials, including silicates, carbonatite, shale, carbonate and clay. Accuracy was checked by analyses of synthetic solutions with known Fe isotopic compositions but different matrices ranging from felsic to ultramafic igneous rocks, high Ca and low Fe limestone, to samples enriched in transition group elements (e.g., Cu, Co and Ni). Analyses over a 2‐year period of these synthetic samples and pure Fe solutions that were processed through the whole chemistry procedure yielded an average δ56Fe value of ?0.001 ± 0.025‰ (2s, n = 74), identical to the expected true value of 0. This demonstrates a long‐term reproducibility and accuracy of < 0.03‰ for determination of 56Fe/54Fe ratios. Reproducibility and accuracy were further confirmed by replicate measurements of the twenty‐two RMs, which yielded results that perfectly match the mean values of published data within quoted uncertainties. New recommended values and associated uncertainties are presented for interlaboratory calibration in the future.  相似文献   

13.
Due to intensive research into selenium isotopes in recent years, the increasing requirement for reliable and comparable measurement results has created a strong demand for selenium isotopic certified reference materials (iCRM) that were previously not available. To address this, eleven selenium iCRMs were developed, including ten synthetic iCRMs (GBW 04447–GBW 04456) and one natural iCRM (GBW 04457). The synthetic iCRMs were prepared with 76Se, 78Se, 80Se and 82Se solutions and a natural selenium solution; the natural iCRM was prepared with highly pure selenium material. The property values of isotope ratios in these iCRMs were certified by calibrated mass spectrometry with a collision cell multi‐collector ICP‐MS. The mass discrimination effect of the instrument was corrected with corresponding 78Se/76Se isotope mixtures and 82Se/76Se isotope mixtures, which were gravimetrically prepared with purified, isotopically enriched selenium materials. Homogeneity and stability tests were performed, and no significant influences were found. The uncertainty of the property values of the iCRMs was evaluated according to the Guide to the Expression of Uncertainty in Measurement (GUM) of ISO/BIPM and ISO Guide 35. The δ82/76Se value of GBW 04457 relative to NIST SRM 3149 was also calculated. These iCRMs are intended for use in calibration of instruments and evaluation of methods for the determination of selenium isotope ratios.  相似文献   

14.
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP‐MS, electron probe microanalysis (EPMA) and solution ICP‐MS to determine the concentration of twenty‐four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium‐in‐quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA‐ICP‐MS laboratories, three EPMA laboratories and one solution‐ICP‐MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g?1), Al (154 ± 15 μg g?1), Li (30 ± 2 μg g?1), Fe (2.2 ± 0.3 μg g?1), Mn (0.34 ± 0.04 μg g?1), Ge (1.7 ± 0.2 μg g?1) and Ga (0.020 ± 0.002 μg g?1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.  相似文献   

15.
Previous laser ablation‐ICP‐MS bulk analyses have been confined to volcanic glasses and glass disks or powder pellets similar to those used for XRF analysis. This study proposes a method to determine twenty trace elements (fourteen rare earth elements, Sc, Y, Zr, Nb, Hf and Ta) by LA‐ICP‐MS directly from polished thick sections and rock slabs of six fine‐grained crystalline and aphanitic rocks (five volcanic rocks and one pelitic tillite). Laser scanning of eight to ten 20 mm long linear tracks using a spot size of 160 μm, with a total ablated area of 26–32 mm2, was performed. Quantification was carried out by (a) internal standardisation using Si and (b) without applying internal standardisation. In the latter method, external determination of one element in conventional LA‐ICP‐MS quantification is no longer needed. Although the fine‐grained rocks studied contained variable amounts of volatiles (up to 4%), this method gave results that agree within 10% relative with those obtained by internal standardisation using Si. Two USGS basalt glass reference materials (BCR‐2G and BHVO‐2G) were used for external calibration. The results and the associated trace element patterns and ratios of elemental pairs obtained from both methods of quantification showed good agreement with the results from solution nebulisation ICP‐MS within 20% (mostly within 10%) relative. Fine‐grained rocks are common and include volcanic, sedimentary and low‐grade metamorphic rocks (e.g., basalt, andesite, rhyolite, shale, mudstone, tillite, loess, pelite and slate) and their trace element contents and associated ratios are important geochemical tracers in studies focusing on the composition and evolution of the crust and mantle. Our method provides a simple and quantitative way to determine trace elements in fine‐grained rocks even with those displaying complex textures.  相似文献   

16.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

17.
We present the first measurements of vanadium (V) stable isotopes for six reference materials – USGS PCC‐1, BHVO‐2, BCR‐2, BIR‐1a, GSP‐2 and AGV‐2 – plus the widely available carbonaceous chondrite Allende. We present standard addition and matrix spiking tests to assess the robustness and reproducibility of our data. Standard addition utilised an enriched 50V solution designated VISSOX (Vanadium Isotope Standard Solution OXford). We further assessed the veracity of the method by spiking collected sample matrices with the same amount of a V standard solution, whose isotopic composition was defined as 0‰. Standard addition and matrix spiking tests recorded no appreciable artificial isotope fractionation. We estimate that the best currently attainable long‐term reproducibility of stable 51V/50V isotope measurements in complex matrices is 0.15‰, which is in the same order as the reproducibility achievable with standard solutions. Finally, a large range of ~ 1.2‰ in stable V isotopic composition was documented, with ~ 0.5‰ of that variation in high temperature igneous materials alone. The range and resolving power of V stable isotopes, with respect to igneous material, compared favourably with the magnitude of fractionation reported for other non‐traditional stable isotope systems, which bodes well for the utility of this new system.  相似文献   

18.
Advances in the quantification of rare earth elements (REE) at the micrometric scale in uranium oxides by laser ablation‐inductively coupled plasma‐mass spectrometry are described. The determination of the best analytical conditions was tested using a uranium oxide (Mistamisk) the concentrations of REE in which were previously estimated by other techniques. Comparison between the use of U or Pb as an internal standard clearly showed a diameter‐dependent fractionation effect related to Pb at small crater diameters (16 and 24 μm), which was not found for U. The quantification of REE contents in uranium oxide samples using both matrix‐matched (uranium oxide) and non‐matrix‐matched (NIST SRM 610 certified glass) external calibrators displayed no significant difference, demonstrating a limited matrix effect for REE determination by LA‐ICP‐MS. Moreover, no major interferences on REEs were detected. The proposed methodology (NIST SRM 610 as external calibrator and U as internal standard) was applied to samples from uranium deposits from around the world. The results showed that LA‐ICP‐MS is a suitable analytical technique to determine REE down to the μg g?1 level in uranium oxides at the micrometre scale and that this technique can provide significant insights into uranium metallogeny.  相似文献   

19.
The influence of the mixtures HF‐HNO3 and HF‐NH4F‐HNO3 in bomb digestion for trace element determination from different rock types was studied using ICP‐MS. It is shown that the HF concentration, not the ratio of reagents in the decomposing mixture, controls the digestion process of a rock. Data for Zr in the granite G‐2 as a function of HF concentration gave the same results as reaction mixtures of various compositions. A complete digestion in 50‐mg sample bombs was achieved by 1.0 ml of HF alone, or with a mixture of other acids at a HF concentration of at least 35% m/m at 196 °C over 18 h. The results of the analysis of basalts BCR‐1, BIR‐1, mica schist SDC‐1, shale SBC‐1, granites G‐2, SG‐1A, garnet‐biotite plagiogneiss GBPg‐1, rhyolite RGM‐1, granodiorite GSP‐1, trachyandesite MTA‐1 and rhyolite MRh‐1 are given and compared against available data. The reproducibility of the element determinations by ICP‐MS and XRF as an independent non‐destructive analysis for a quality check in the range of concentrations typical for routine rock samples is given.  相似文献   

20.
Iron formations (IFs) typically contain low mass fractions of most trace elements, including the rare earth elements (REE), and few publications describe analytical methods dedicated to this matrix. In this study, we used bomb and table‐top acid dissolution procedures and ICP‐MS to determine the mass fractions of trace elements in IF reference materials FER‐1, FER‐2, FER‐3, FER‐4 and IF‐G. The full digestion of the IF samples with the bomb procedure required the addition of a small amount of water together with the acids. The results obtained by this method mostly agreed statistically with published values. The most remarkable exception was the higher values obtained for the heavy REE in FER‐3. The recoveries of the REE obtained with the table‐top procedure were slightly higher than those of the bomb digestion, except for the values of the heavy REE in FER‐3 and FER‐4, which were up to 30% lower than published values. Sintering of the samples with sodium peroxide was performed to determine the REE, but the results tended to be lower than those derived following acid digestion. On the whole, the recoveries showed dependence on the conditions of digestion, but subtle differences in trace mineral composition between samples also exerted influence on the analytical results for trace elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号