首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The squeezing potential of rocks around tunnels; Theory and prediction   总被引:7,自引:4,他引:7  
Summary The deformational behaviour of tunnels, which underwent large deformations, socalled squeezing, have been recently receiving great attention in the field of rock mechanics and tunnelling. Contrary to rockbursting phenomenon in which the deformation of the medium takes place instantaneously, the deformation of the surrounding rock in squeezing phenomenon takes place slowly and gradually when the resulting stress state following the excavation exceeds the strength of the surrounding medium. Although there are some proposals for the definition of squeezing rocks and prediction of their squeezing potential and deformations of tunnels in literature, it is difficult to say that they are concise and appropriate.In the first half of this paper, the squeezing phenomenon of rock about tunnels and its mechanism and associated factors are clarified by studying carefully observed failures in-situ and laboratory model tests. Then, an extensive survey of tunnels in squeezing rocks in Japan is presented and the results of this survey are summarised. In the second half of the paper, a new method is proposed to predict the squeezing potential and deformations of tunnels in squeezing rock. Then, the method is applied to actual tunnelling projects, where squeezing problems have been encountered, to check its validity and applicability. As a concrete example, an application of the method to predict the squeezing potential and deformations of the rock along a 300 m long section of an actual tunnel was made.  相似文献   

2.
高地应力条件下,深埋隧道破碎围岩容易发生挤压大变形。挤压变形量的预测对于工程的设计与施工至关重要。经验预测方法因其形式简单、使用方便得到广泛应用,现有隧道挤压变形预测的经验法具有以下特点:(1)考虑的影响因素较少,多数仅能对挤压变形进行分级,无法给出挤压变形量;(2)现有经验变形预测方法多基于围岩Q分级系统,不能直接应用于国内的BQ分级系统。因此,基于对国内外100多条隧道变形监测数据的分析,提出一种新的适用于国内岩体基本质量指标修正值[BQ]的挤压变形预测方法。该方法综合考虑了隧道埋深、跨度、围岩强度应力比、地下水、岩体结构面等影响岩体挤压变形的多种因素。通过与多条大变形隧道监测结果的对比分析,验证了预测方法的合理性,研究成果对高地应力软岩隧道确定支护强度及提前采取超前加固措施具有十分重要的指导作用。  相似文献   

3.
Summary Some comments are presented on the finite element analysis of the time dependent effects that develop when a tunnel is driven in a rock mass characterized by a viscous behaviour. First, the so called swelling and squeezing phenomena are described considering in particular rocks containing clay minerals. Subsequently the discussion is focused on the squeezing behaviour, i.e. on the time dependent increase of the shear deformation which develops with minor volume changes. Some linear and non-linear viscous constitutive laws are discussed, as well as their use in the solution of boundary value problems. Finally, the effects taking place around tunnels driven into squeezing rocks are illustrated through some numerical analyses based on these constitutive models.  相似文献   

4.
A Completely 3D Model for the Simulation of Mechanized Tunnel Excavation   总被引:2,自引:1,他引:1  
For long deep tunnels as currently under construction through the Alps, mechanized excavation using tunnel boring machines (TBMs) contributes significantly to savings in construction time and costs. Questions are, however, posed due to the severe ground conditions which are in cases anticipated or encountered along the main tunnel alignment. A major geological hazard is the squeezing of weak rocks, but also brittle failure can represent a significant problem. For the design of mechanized tunnelling in such conditions, the complex interaction between the rock mass, the tunnel machine, its system components, and the tunnel support need to be analysed in detail and this can be carried out by three-dimensional (3D) models including all these components. However, the state-of-the-art shows that very few fully 3D models for mechanical deep tunnel excavation in rock have been developed so far. A completely three-dimensional simulator of mechanised tunnel excavation is presented in this paper. The TBM of reference is a technologically advanced double shield TBM designed to cope with both conditions. Design analyses with reference to spalling hazard along the Brenner and squeezing along the Lyon–Turin Base Tunnel are discussed.  相似文献   

5.
Summary Squeezing rock conditions have posed and continue to pose a major obstacle to the construction of tunnels through mountains, as experience dating back more than a century shows. The paper deals with the study of past experiences in the light of present geotechnical engineering knowledge. Many of the transalpine tunnels were constructed before geotechnical engineering had been developed, and the principles underlying squeezing were not yet understood. Also construction techniques have changed with time. By studying past experience in the light of our present knowledge in geotechnical engineering (rock and soil mechanics), one may gain more insight into the nature and causes of squeezing ground behaviour. Here, a number of older and newer case histories are summarised, providing substantial insight into the phenomenon of squeezing rock. Squeezing rock behaviour is influenced by rock type and structure. Usually, in squeezing zones the rock is strongly jointed and fractured and has low strength. Overburden has also a significant effect and squeezing behaviour may occur abruptly in a tunnel once a limiting overburden has been exceeded. Water pressures in strongly jointed and often crushed rock are important and so are the adopted construction procedures and sequences. A support of substantial structural strength may be necessary to prevent long-term deformations and to withstand increased loading on the tunnel liner from the rock mass surrounding the tunnel.  相似文献   

6.
Visco-Plastic Behaviour around Advancing Tunnels in Squeezing Rock   总被引:3,自引:1,他引:2  
Summary  The visco-plastic behaviour of rocks plays a relevant role in the tunnelling works, especially for deep tunnels subjected to large initial stresses for which squeezing conditions may develop. A rheological model is discussed that accounts for visco-elastic (primary) and visco-plastic (secondary) contributions to rock creep. The effects of tertiary creep are included in the model by way of a gradual mechanical damage governed by the cumulated visco-plastic strains. The parameters of the intact rock are first identified based on laboratory test results presented in the literature. Then, after scaling them to those of the rock mass, the potential applicability of the model is tested through axisymmetric and plane strain finite element analyses of the full face excavation of a deep circular tunnel. The results are discussed with particular reference to the short term redistribution of stresses around the opening and to its convergence. The analyses show the relevant influence of tertiary creep on the tunnel closure. In addition, those based on an axisymmetric scheme turn out to be crucial for the correct long term prediction of the interaction between the rock mass and the supporting structure of the opening.  相似文献   

7.
隧道的超欠挖对衬砌结构稳定性影响较大,研究其规律,对于掌握围岩受力,确保施工安全,具有深远意义.隧道断面轮廓超欠挖序列具有统计自相似性,根据小波分析的多分辨率的特点,本文给出了利用小波理论估计分维数的方法.选定恰当的小波函数和分解层数,对隧道围岩断面的整体轮廓、拱顶和边墙的超欠挖序列分别进分形维数的小波分析估算,结果安...  相似文献   

8.
软弱围岩隧道洞口段失稳机制分析与处置技术   总被引:1,自引:0,他引:1  
刘小军  张永兴  高世军  黄达  杨超 《岩土力学》2012,33(7):2229-2234
隧道洞口围岩大多为软弱围岩,加之浅埋、偏压等不良地质地形因素的影响,洞口施工过程中易发生边仰坡的滑塌。厦蓉高速公路水都线的瑞坡隧道在进洞后不久就发生围岩失稳,致使仰坡开裂滑塌和洞内支护变形很大。利用FLAC3D软件模拟了隧道施工全过程,从围岩塑性区分布以及位移情况结合现场实际状况分析了隧道仰坡坍塌和支护变形发生的原因,并通过数值模拟优化了CRD法的开挖工序。最后参考数值分析结果结合工程实际提出了有效的治理措施,得到的结论可供今后类似工程参考与借鉴。  相似文献   

9.
海底隧道最小岩石覆盖厚度的位移收敛法   总被引:5,自引:0,他引:5  
关于岩体稳定评判准则至今尚未达到成熟的阶段,从稳定的定义、量化的判断到分析的理论、准则和方法等一系列基本问题尚未形成明确的系统。目前比较常用的方法就是利用塑性区来判断围岩的稳定范围。但塑性区主要用来确定围岩的破坏范围,对于确定海底隧道的最小覆盖层厚度有些过于危险,因为一般海底隧道主要修建于硬岩中,其开挖引起的塑性区很小。因此,有必要建立确定海底隧道最小岩石覆盖厚的方法。应用适合模拟岩土大变形的数值分析方法FLAC3D,运用围岩变形量或变形率判据,建立确定海底隧道最小岩石覆盖厚度的位移收敛判据,并将该判据用于确定某海底隧道的最小岩石覆盖厚度,以说明该方法用于确定海底隧道最小岩石覆盖厚度的正确性和有效性。  相似文献   

10.
Summary Although hard rock is not usually associated with large creep deformation, data collected from the tunnels and stopes of the deep South African gold mines illustrates significant time-dependent behaviour. Apart from application in mining, a better understanding of the time-dependent behaviour of crystalline rock is required to analyse the long term stability of nuclear waste repositories and to design better support for deep civil engineering tunnels in these rock types. To illustrate the subtle problems associated with using viscoelastic theory to simulate the time-dependent behaviour of hard rock, a viscoelastic convergence solution for the incremental enlargement of a tabular excavation is discussed. Data on the time-dependent deformation of a tunnel developed in hard rock further illustrates the limitations of the theory, as it is unable to simulate the fracture zone around these excavations. To simulate the rheology of the fracture zone, a continuum viscoplastic approach was developed and implemented in a finite difference code. This proved more successful in modelling the time-dependent closure of stopes and squeezing conditions in hard rock tunnels. A continuum approach, however, has limitations in areas where the squeezing behaviour is dominated by the time-dependent behaviour of prominent discontinuities such as bedding planes. To overcome this problem, a viscoplastic displacement discontinuity technique was developed. This, combined with a tessellation approach, leads to more realistic modelling of the time-dependent behaviour of the fracture zone around excavations. Received January 15, 2002; accepted June 3, 2002 Published online September 2, 2002  相似文献   

11.
梅子沟联拱隧道处于复杂的浅埋地层环境中,其穿越地层多数为强风化与全风化地层.根据联拱隧道动态设计施工的实质内容和新奥法施工原理,采用三维有限元差分法(FLAC)对梅子沟隧道中导洞锚喷支护设计进行了力学响应动态模拟,并分析了锚喷支护机理以及围岩体应力场和位移变形状况,由此提出了联拱隧道合理的施工工序.  相似文献   

12.
因长期遭受地质作用和构造力的改造作用,地下岩体中存在大量的软弱破碎带,隧道开挖穿越这一地带很容易出现较大的变形,甚至出现塌方等事故。论文采用TGP超前地质预报与掌子面围岩调查相结合的方法进行隧道掌子面及前方未开挖岩体的精细化地质调查,获取了隧道围岩的Hoek-Brown参数。采用FLAC3D数值模拟方法,分析了破碎带围岩在既定支护条件下的稳定性,并与现场监测数据进行对比,验证此方法的正确性。研究结果表明,数值模拟结果与实际监测结果较为吻合,可以将此方法用于指导未开挖段隧道的稳定性预测,以确保隧道掘进过程的施工安全。  相似文献   

13.
Time-dependent response of deep tunnels is studied considering the progressive degradation of the mechanical properties of the rock mass. The constitutive model is based on a rock-aging law for the uniaxial strength of the rock and for the Young’s modulus. A semi-analytical solution is developed for the stresses and displacements around a deep circular tunnel taking into account the face advance. The evolution of the plastic and damage zones over time is determined. Numerical examples are presented for the case of Saint-Martin-La-Porte access adit in France of the Lyon–Turin Base Tunnel. The computed results which are compared with the field data in terms of the convergence of tunnel wall and of the displacements inside the rock mass monitored by multi-point extensometers show the efficiency of the approach to simulate the time-dependent deformation of a tunnel excavated in squeezing ground. Simple relationships are proposed to evaluate the parameters of the constitutive model directly from those of the empirical convergence law presented in previous work.  相似文献   

14.
Underground structures are currently widely used and are built as urbanism develops. The interactions between perpendicularly crossing and parallel tunnels in the Tehran region are investigated by using a full three-dimensional (3D) finite difference analysis with elastic-plastic material models. Special attention is paid to the effect of subsequent tunneling on the support system, i.e., the shotcrete lining and rock bolts of the existing tunnel. Eventually, as the tunnels are excavated at certain levels, the interaction between the tunnels will certainly have a significant influence on both stress distribution and consequently deformations. Since multilayer tunneling is a three-dimensional phenomenon in nature, 3D numerical solutions must be utilized for analyzing effect of perpendicularly crossing tunnels at various levels. As Tohid twin tunnels and Line 7 pass beneath the Line 4 metro tunnel, changes in stress distribution, deformations, and surface settlements are studied for various conditions and the results are presented in this paper. Consequently, it is shown that there is a significant interaction between tunnels that necessitate certain preventive measures to maintain a stable tunneling operation.  相似文献   

15.
Summary Excessive rock pressure may cause the failure of the tunnel support resulting in large rock deformations. This phenomenon is referred to as squeezing rock behaviour. After discussion of the factors affecting squeezing the relation between rock deformation and rock pressure is described. The paper further deals with widely applied methods of excavation and support measures in squeezing rock.  相似文献   

16.
In all kinds of tunnel excavations, especially those excavated in cities, it is important to control surface settlements and prevent damage to the surface and subsurface structures. For this purpose, in weak rocks and soils, the umbrella arch method (UAM) has been used in addition to the new Austrian tunneling method (NATM). NATM and UAM are the best-known classical methods used in tunnel excavation. In classical tunneling, NATM is usually preferred in normal rocks. However, in some cases, NATM may be insufficient. UAM is a very effective alternative especially in soils and weak rocks. In soil and weak rocks, UAM is especially necessary to prevent excessive deformations. Selection of UAM or NATM is based on the following factors: cost comparison of NATM and UAM, allowable deformations, quality of rock or soil, application time of NATM and UAM, availability of skilled workers, and qualification level of the workers. Therefore, selecting the excavation method in these kinds of grounds is vital in terms of achieving the project goals in time, managing the project costs effectively, and controlling the probable deformations on nearby structures. A critical issue in successful tunneling application is the ability to evaluate and predict the deformations, costs, and project time. In this paper, application times, costs, and deformation effects are compared between NATM and UAM in sensitive regions at the Uskudar-Umraniye-Cekmekoy metro project (UUCMP). Also, efficiency of the deformation control of UAM is demonstrated by using the 2D numerical analysis method. UUCMP is part of the Istanbul metro network. The tunnels have a cross section of 75.60 m2 for NATM and 83.42 m2 for UAM. Geology in this section is composed of weak sandstone. Diabase and andesite dykes are also rarely observed. This study shows that the construction cost of UAM are 1.7 times more expensive than NATM. Although application time of UAM is 2.5 times longer than NATM, it is 2.5 times more efficient in controlling the deformations. This efficiency in controlling the deformations is confirmed via two-dimensional numerical analyses.  相似文献   

17.
不同围岩类别小间距隧道施工过程模拟研究   总被引:20,自引:6,他引:20  
从不同围岩类别出发,对3车道小间距隧道采用典型双侧导坑法的开挖施工过程进行了数值模拟研究。给出了不同围岩类型下的3车道小间距隧道在施工过程中的围岩破坏特征及其变形规律和变形规律的相似性,获得了洞周最大变形量值之间的相对比值关系。通过中隔墙的变形与塑性破坏规律分析,比选出了3车道隧道中隔墙最小间距的工程设计参考值。分析表明:II类围岩合理间距不应小于0.45B,III类围岩应在0.35~0.45B之间,IV,V类围岩可在0.2~0.35B之间选择,对信息化反馈施工,指出了必须重点监控与关注的位置。为小间距隧道的发展和施工设计提供了较确切的参考数据和理论依据。  相似文献   

18.
Optimization of the support used when constructing tunnels in soft surrounding rock has long been a hotspot in engineering. To control the deformation of soft rock and ensure construction safety, this paper proposes a support scheme involving weakening the anchor bolts while enhancing the rigidity and strength of the primary supports. This was realized by combining the large deformations that often occurred during the construction of the Youfangping tunnel of the Gucheng-Zhuxi expressway. Moreover, the scheme was analyzed and compared with the original scheme and one involving weakening the anchor bolts. In addition, the displacement deformations, force conditions on the anchor bolts, development of plastic zones, stress on the shotcrete, and force conditions on the secondary lining structure were analyzed via numerical simulation for the different support schemes. Concomitantly, three groups of experimental sections were selected on-site to monitor and measure the deformations and force conditions of the surrounding rock for these three support schemes. The numerical simulations and field-monitoring results show that weakening the anchor bolts has a small effect on the overall support provided by the support system. However, it can simply the process and reduce engineering costs. Moreover, increasing the rigidity and strength of the initial supports can effectively control the large deformations in the surrounding rock. Therefore, a support scheme in which anchor bolts are weakened while the rigidity and strength of the initial supports are enhanced, as presented in this paper, proves to be feasible method of support optimization. It also provides a useful reference for optimizing other similar tunnels along the expressway.  相似文献   

19.
隧道围岩大变形是目前公路、铁路隧道建设中遇到的重要科学问题。工程实践中,隧道围岩大变形主要是由于围岩遭受剪切破坏而产生了流变而导致的,部分隧道的围岩大变形是由于围岩成分中的亲水矿物遇水发生水化学反应而发生体积膨胀产生的,故隧道围岩大变形可以分为应力型、材料性和结构型3类。通过全面分析前人的研究成果,可以将隧道围岩相对变形3%作为划分隧道内是否发生大变形的定量评价指标。而对于应力型围岩大变形,Hoek提出的隧道围岩径向变形和掌子面变形预测公式较好地预测了施工现场的围岩变形量,其现实意义较为明显,但需要针对不同的工程条件调整原地应力的估算公式或者考虑围岩二次应力场的赋存状态。对于材料型和结构型围岩大变形的变形量预测,目前仍然是一块研究的空白区,需要进一步开展相关工作。  相似文献   

20.
Foliated rocks such as micaceous schists are particularly prone to anisotropic creep. This fact may cause severe problems of squeezing when driving deep tunnels, especially when the tunnel axis is not perpendicular to the foliation planes. A rational approach to the prediction and assessment of squeezing as a process in time and, therefore, also pertinent experimental results are still missing. Starting from a simple approach to anisotropic creep/relaxation we show its implications for tunnelling by means of numerical simulations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号