共查询到3条相似文献,搜索用时 15 毫秒
1.
M. A. Halim R. K. Majumder S. A. Nessa K. Oda Y. Hiroshiro B. B. Saha S. M. Hassain Sk. A. Latif M. A. Islam K. Jinno 《Environmental Geology》2009,58(1):73-84
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples
in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl−, NO3
−, SO4
2−, HCO3
−, PO4
3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical
data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3
−) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from
0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation
and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater.
Low concentrations of NO3
− and SO4
2−, and high concentrations of DOC, HCO3
− and PO4
3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct
relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along
with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers
studied herein. 相似文献
2.
Shashank Shekhar 《Hydrogeology Journal》2006,14(7):1330-1338
The future availability and sustainability of fresh groundwater resources in the South West district of the national capital territory (NCT) Delhi, India, have been projected. Due to a rapid decline in groundwater level and quality, the district has been required by the Government of India to regulate development of groundwater resources. Shallow groundwater is mostly saline and water resources in the area are limited. The methodology applied here involves microzonation of the district in terms of thickness of fresh groundwater and then quantification of present and future availability of freshwater in different freshwater zones, including tentative timescales. The calculation method has been aided by data on historic trends in water level at representative groundwater monitoring stations, located either in fresh groundwater zones or near to them. It is estimated that the presently available 481 million m3 of resources will be reduced to 374 million m3 by year 2007 and to 303 million m3 by the year 2012, and by the year 2022 the district will have only 176 million m3 of available fresh groundwater resources. 相似文献
3.
Arsenic is a carcinogen known for its acute toxicity to organisms.Geothermal waters are commonly high in arsenic,as shown at the Bjarnarflag Power Plant,Iceland(~224 μg/kg of solvent).Development of geothermal energy requires adequate disposal of arsenic-rich waters into groundwater/geothermal systems.The outcome of arsenic transport models that assess the effect of geothermal effluent on the environment and ecosystems may be influenced by the sensitivity of hydraulic parameters.However,previous such studies in Iceland do not consider the sensitivity of hydraulic parameters and thereby the interpretations remain unreliable.Here we used the Lake Myvatn basaltic aquifer system as a case study to identify the sensitive hydraulic parameters and assess their role in arsenic transport.We develop a one-dimensional reactive transport model(PHREEQC ver.2.),using geochemical data from Bjarnarflag,Iceland.In our model,arsenite(H_3 ASO_3)was predicted to be the dominant species of inorganic arsenic in both groundwater and geothermal water.Dilution reduced arsenic concentration below~5 μg/kg.Adsorption reduced the residual contamination below~0.4μg/kg at 250 m along transect.Based on our modelling,we found volumetric input to be the most sensitive parameter in the model.In addition,the adsorption strength of basaltic glass was such that the physical hydrogeological parameters,namely:groundwater velocity and longitudinal dispersivity had little influence on the concentration profile. 相似文献