首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Factors which control lava flow length are still not fully understood. The assumption that flow length as mainly influenced by viscosity was contested by Walker (1973) who proposed that the length of a lava flow was dependent on the mean effusion rate, and by Malin (1980) who concluded that flow length was dependent on erupted volume. Our reanalysis of Malin's data shows that, if short duration and tube-fed flows are eliminated, Malin's Hawaiian flow data are consistent with Walker's assertion. However, the length of a flow can vary, for a given effusion rate, by a factor of 7, and by up to 10 for a given volume. Factors other than effusion rate and volume are therefore clearly important in controlling the lengths of lava flows. We establish the relative importance of the other factors by performing a multivariate analysis of data for recent Hawaiian lava flows. In addition to generating empirical equations relating flow length to other variables, we have developed a non-isothermal Bingham flow model. This computes the channel and levee width of a flow and hence permits the advance rates of flows and their maximum cooling-limited lengths for different gradients and effusion rates to be calculated. Changing rheological properties are taken into account using the ratio of yield strength to viscosity; available field measurements show that this varies systematically from the vent to the front of a lava flow. The model gives reasonable agreement with data from the 1983–1986 Pu'u Oo eruptions and the 1984 eruption of Mauna Loa. The method has also been applied to andesitic and rhyolitic lava flows. It predicts that, while the more silicic lava flows advance at generally slower rates than basaltic flows, their maximum flow lengths, for a given effusion rate, will be greater than for basaltic lava flows.  相似文献   

2.
Surface-exposure dating (SED) methods typically rely on the measurement of a geochemical parameter that systematically changes with time. A pivotal task in the calibration of many of these techniques is to demonstrate that lava flow surfaces sampled for dating have not experienced erosion. Although criteria for identification of constructional basaltic lava flow surfaces have been published, no such criteria presently exist for the recognition of constructional silicic flows. Here we present several criteria for identifying constructional silicic lava flow features in the field. First, crease structures are fractures with easily identified, curved, striated walls that are commonly observed on recent and active silicic lava flows. Crease structures form during extrusion, and are resistant to mechanical disintegration because they expose dense material from the flow interior. Second, some crease structures break apart during formation, leaving a deposit of striated blocks on the flow surface. Crease structure blocks are striated on only one side, whereas blocks from internal columnar joints exposed through erosion are striated on two or more sides. Only the striated side of the crease structure block is definitively constructional. Finally, many silicic flow surfaces exhibit expanded or breadcrusted textures. These features consist of a dense, fractured rind, 1 –2cm thick, enclosing highly vesicular material. Breadcrust flow textures appear similar to breadcrust bombs produced during volcanic explosions, so it is imperative to demonstrate that they are part of the lava flow surface. These criteria should enable investigators to positively identify constructional silicic lava flow surfaces when calibrating an SED method.  相似文献   

3.
Multibeam bathymetry and bottom imaging (Simrad EM12D) studies on an area of about 9500 km2 were conducted over the Pitcairn hotspot near 25°10′S, 129° 20′W. In addition, 15 dives with the Nautile submersible enabled us to obtain ground-true observations and to sample volcanic structures on the ancient ocean crust of the Farallon Plate at 3500–4300 m depths. More than 100 submarine volcanoes overprint the ancient crust and are divided according to their size into large (>2000 m in height), intermediate (500–2000 m high) and small (<500 m high) edifices. The interpretation of seafloor backscatter imagery accompanied by submersible observations and sampling enabled us to infer that the total volume of submarine lava erupted during hotspot activity is about 5900 km3 within a radius of about 110 km. The most recent volcanic activities occur on both small and large edifices composed of a great variety of lava flows. These flows vary in composition, following a succession from picritic basalt to alkali basalt, trachybasalt, trachy-andesite and to trachyte. Their large range of SiO2 (48–62%), Na2O+K2O (2–11%), Ba (300–1300 ppm), MgO (1–11%), Nb (19–130 ppm), Ni (4–400 ppm) and rare earth elements suggests that crystal–liquid fractionation from basanite and/or picritic melt sources was a major process. The variation in composition between the least evolved basaltic rocks and the other more evolved silicic lava is marked by a difference in their flow morphology (pillow, giant tubes, tabular to blocky flows). The lava composition and field observation indicate that several magmatic pulses giving rise to cyclic eruptions are responsible for the construction of the edifices. The two larger edifices (>2000 m high) show more extensive eruptive events and a wider range in compositional variability than the smaller (<500 m high) ones. Several (five) submersible transects made along the slope of one of the largest edifices (Bounty) enabled us to observe at least nine successive eruptive cycles progressing from pillow and giant tubular basalt to tabular/blocky trachy-andesite and trachyte flows. Pyroclasts and hyaloclastites are often found with these eruptive sequences. The smaller edifices, forming individualized cones, are built mainly of evolved silicic (SiO2>53%) flows consisting essentially of alternating sequences of trachy-andesite and trachyte. The distribution and composition of the small edifices suggest that they are the result of sub-crustal forceful magma injection and channeling supplied from reservoirs associated with the large volcanoes.  相似文献   

4.
The Vinalhaven intrusion is a dominantly granitic pluton of probable Devonian age, located on Vinalhaven Island and adjacent islands, Maine. It consists of four main units: coarse-grained granite, fine-grained granite, a gabbro-diorite unit consisting of interlayered mafic, hybrid and granitic rocks, and a heterogeneous granitic unit. The gabbro-diorite unit occurs along the south and east coast of the island as a sheet-like body, hundreds of meters to more than 1 km thick, that dips beneath the central granitic units and rests on heterogeneous granitic rocks that form the base of the intrusion and are exposed on islands to the southeast. Load-cast and pipe structures at the bases of mafic sheets indicate that the gabbro-diorite unit represents a sequence of basaltic injections that ponded on crystal-rich mush at the base of a silicic magma chamber and variably interacted with overlying crystal-poor granitic magma. The pluton, therefore, represents a fossilized silicic magma chamber that was periodically replenished by basaltic magma. Near the base of the gabbro-diorite unit, some basaltic injections produced large mounds up to more than 10 m high and 100 m wide of tightly packed, meter-scale chilled basaltic pillows, tubes and sheets in a granitic matrix. The mounds appear to represent flow fronts of basaltic injections that entered and ponded on the floor of a silicic magma chamber. Although physical conditions differ significantly, these plutonic pillow mounds appear to share many characteristics with submarine pillow basalts and lava flows.  相似文献   

5.
Submarine lava flow morphology is commonly used to estimate relative flow velocity, but the effects of crystallinity and viscosity are rarely considered. We use digital petrography and quantitative textural analysis techniques to determine the crystallinity of submarine basaltic lava flows, using a set of samples from previously mapped lava flow fields at the hotspot-affected Galápagos Spreading Center. Crystallinity measurements were incorporated into predictive models of suspension rheology to characterize lava flow consistency and rheology. Petrologic data were integrated to estimate bulk lava viscosity. We compared the crystallinity and viscosity of each sample with its flow morphology to determine their respective roles in submarine lava emplacement dynamics. We find no correlation between crystallinity, bulk viscosity, and lava morphology, implying that flow advance rate is the primary control on submarine lava morphology. However, we show systematic variations in crystal size and shape distribution among pillows, lobates, and sheets, suggesting that these parameters are important indicators of eruption processes. Finally, we compared the characteristics of lavas from two different sampling sites with contrasting long-term magma supply rates. Differences between lavas from each study site illustrate the significant effect of magma supply on the physical properties of the oceanic upper crust.  相似文献   

6.
The Etendeka Igneous Province in NW Namibia forms the eastern most extent of the Paraná–Etendeka Flood Basalt Province and, despite only covering about 5% of the Paraná–Etendeka, has been the focus of much interest, due to its extremely well exposed nature. The Huab Basin in NW Namibia forms the focus of this study, and formed a connected basin with the Paraná throughout Karoo times (late Palaeozoic) into the Lower Cretaceous. It contains a condensed section of the Karoo deposits, which indicate early periods of extension, and Lower Cretaceous aeolian and volcanic Etendeka deposits, which have their correlatives in the Paraná. In the Huab Basin, the volcanic rocks of the Etendeka Group consists of the Awahab and Tafelberg Formations, which are separated by a disconformity. Detailed examination of the Awahab Formation reveals an additional disconformity, which separates olivine-phyric basalts (Tafelkop-type) from basalt/basaltic andesites (Tafelberg-type) marking out a shield volcanic feature which is concentrated in an area to the SE of the Huab River near to the Doros igneous centre. Early volcanism consisted of pahoehoe style flows of limited lateral extent, which spilled out onto aeolian sands of an active aeolian sand sea 133 million years ago. This sand sea is equivalent to the sands making up the Botucatu Formation in the Paraná basin. The early expression of flood volcanism was that of laterally discontinuous, limited volume, pahoehoe flows of Tafelkop-type geochemistry, which interleaved with the aeolian sands forming the Tafelkop–Interdune Member basalts. These basalts are on-lapped by more voluminous, laterally extensive, basalt/basaltic andesite flows indicating a step-up in the volume and rate of flood volcanism, leading to the preservation of the shield volcanic feature. These geochemically distinct basalts/basaltic andesites form the Tsuhasis Member, which are interbeded with the Goboboseb and Sprinkbok quartz latite flows higher in the section. The Tsuhasis Member basalts, which form the upper parts of the Awahab Formation, are of Tafelberg-type geochemistry, but are stratigraphically distinct from the Tafelberg lavas, which are found in the Tafelberg Formation above. Thus, the internal stratigraphy of the flood basalt province contains palaeo-volcanic features, such as shield volcanoes, and other disconformities and is not that of a simple layer-cake model. This complex internal architecture indicates that flood volcanism started sporadically, with low volume pahoehoe flows of limited lateral extent, before establishing the more common large volume flows typical of the main lava pile.  相似文献   

7.
天池火山东北侧造盾玄武岩可划分出8个流动单元,熔岩流的流动距离主要集中在30~50km,熔岩流宽度以5km左右为主。通过由野外调查获得的天池火山东北侧不同熔岩流单元的地表坡度、熔岩流厚度等,结合温度、密度与黏度等物理参数,按照熔岩流速度公式恢复的头道组和早白山组0.5m厚晶体含量5%的玄武岩熔岩流流速集中在0~1m/s之间。晶体含量为30%、厚度为0.5m的晚白山组和老房子小山组玄武岩熔岩流的流动速度集中在0~0.12m/s之间。厚度增大至2m左右,晶体含量不变的头道组和早白山组的玄武岩熔岩流流动速度可加快至11m/s。天池火山2m厚的碱性熔岩流在12h内达到或接近了它的最远距离,而各组内2m厚拉斑玄武岩熔岩流在20h内接近了最远距离。0.5m厚的熔岩流在10d内接近最大距离。50km是预计的熔岩流长度,在未来制定减灾措施时,可将此长度作为重要依据之一。天池火山熔岩流灾害主要表现为熔岩流动时对房屋建筑、农田、道路、林地、电站的毁坏,火灾及大量的人口伤亡  相似文献   

8.
Forty new K-Ar and 40Ar/39Ar isotopic ages from the northern Main Ethiopian Rift (MER)–southern Afar transition zone provide insights into the volcano-tectonic evolution of this portion of the East African Rift system. The earliest evidence of volcanic activity in this region is manifest as 24–23 Ma pre-rift flood basalts. Transition zone flood basalt activity renewed at approximately 10 Ma, and preceded the initiation of modern rift margin development. Bimodal basalt–rhyolite volcanism in the southern Afar rift floor began at approximately 7 Ma and continued into Recent times. In contrast, post-subsidence volcanic activity in the northern MER is dominated by Mio-Pliocene silicic products from centers now covered by Quaternary volcanic and sedimentary lithologies. Unlike other parts of the MER, Mio-Pliocene silicic volcanism in the MER–Afar transition zone is closely associated with fissural basaltic products. The presence of Pliocene age ignimbrites on the plateaus bounding the northern MER, whose sources are found in the present rift, indicates that subsidence of this region was gradual, and that it attained its present physiography with steep escarpments only in the Plio-Pleistocene. Large 7–5 Ma silicic centers along the southern Afar and northeastern MER margins apparently formed along an E–W-oriented regional structural feature parallel to the already established southern escarpment of the Afar. The Addis Ababa rift embayment and the growth of 4.5–3 Ma silicic centers in the Addis Ababa area are attributed to the formation of a major cross-rift structure and its intersection with the same regional E–W structural trend. This study illustrates the episodic nature of rift development and volcanic activity in the MER–Afar transition zone, and the link between this activity and regional structural and tectonic features.  相似文献   

9.
A long-standing question in lava flow studies has been how to infer emplacement conditions from information preserved in solidified flows. From a hazards perspective, volumetric flux (effusion rate) is the parameter of most interest for open-channel lava flows, as the effusion rate is important for estimating the final flow length, the rate of flow advance, and the eruption duration. The relationship between effusion rate, flow length, and flow advance rate is fairly well constrained for basaltic lava flows, where there are abundant recent examples for calibration. Less is known about flows of intermediate compositions (basaltic andesite to andesite), which are less frequent and where field measurements are limited by the large block sizes and the topographic relief of the flows. Here, we demonstrate ways in which high-resolution digital topography obtained using Light Detection and Ranging (LiDAR) systems can provide access to terrains where field measurements are difficult or impossible to collect. We map blocky lava flow units using LiDAR-generated bare earth digital terrain models (DTMs) of the Collier Cone lava flow in the central Oregon Cascades. We also develop methods using geographic information systems to extract and quantify morphologic features such as channel width, flow width, flow thickness, and slope. Morphometric data are then analyzed to estimate both effusion rates and emplacement times for the lava flow field. Our data indicate that most of the flow outline (which comprises the earliest, and most voluminous, flow unit) can be well explained by an average volumetric flux ~14–18?m3/s; channel data suggest an average flux ~3?m3/s for a later, channel-filling, flow unit. When combined with estimates of flow volume, these data suggest that the Collier Cone lava flow was most likely emplaced over a time scale of several months. This example illustrates ways in which high-resolution DTMs can be used to extract and analyze morphologic measurements and how these measurements can be analyzed to estimate emplacement conditions for inaccessible, heavily vegetated, or extraterrestrial lava flows.  相似文献   

10.
The lobate distal margins of lava flows provide a useful source of morphological information on the rheology of the lava if the lobes are assumed to represent the arrest of free-flowing isothermal Bingham fluids on a slope. The widths of lobes are a more useful practical index than lobe thicknesses because they are about an order of magnitude larger and can be more accurately measured from aerial photographs and other remote images. Lobes do not suffer from the changes in morphology that channels undergo during the course of eruptions. A terrestrial data set of flow lobe and ancillary measurements from lavas throughout the range alkali olivine basalt to rhyolite shows some features that are predicted by the isothermal Bingham fluid model. These are correlation of width and thickness over more than two orders of magnitude and essentially no correlation of aspect ratio with slope. There is a positive correlation of lobe width with silica content of the lava. From a data set of measurements on lava flow lobes from the Martian volcano Olympus Mons the mean value of aspect ratio (0.07) was found to be significantly less than that for the terrestrial data set (0.19). Higher general levels of effusion rate on Olympus Mons are probably the factor responsible. After normalisation, lobe widths on Olympus Mons are found to be largely equivalent to those expected for terrestrial flows with andesitic/basaltic silica contents.  相似文献   

11.
Geologic mapping on a scale of 1:10000 and detailed stratigraphic studies of lava flows and tephra deposits of the Arenal-Chato volcanic system reveal a complex and cyclic volcanic history. This cyclicity provides insight into the evolution of magma batches during the growth of the andesitic volcanic system. The Arenal and Chato volcanoes have a central zone comprised of a lava armor and a distal zone comprised of a tephra apron. During Arenal's last two eruptive periods major craters formed near intersections of regional fractures at the lava armortephra apron transition. We suggest that such intersections are potential sites for future major explosions. The earliest rocks, i.e., the Chato lava flows, range in composition from basaltic andesite to andesite. These rocks, except for the andesitic domes of Chatito and La Espina, appear to have evolved from a common parental magma. The last active period of Chato volcano occurred 3550 B. P. The earliest known activity of Arenal volcano is 2900 B. P. Arenal lava flows have 54–56 wt% SiO2 and may be subdivided into a high-alumina group (HAG, Al2O3 = 20 wt%) and a low-alumina group (LAG, Al2O3 = 19 wt%). Compared to the HAG, the LAG also has smaller amounts of incompatible elements and higher amounts of FeO and MgO. Arenal tephra deposits were emplaced by Plinian-Sub-Plinian explosions occurring at 300±150-yr intervals. These deposits are compositionally zoned and alternate between dacite and basalt. The stratigraphy reveals an apparent magmatic cycle consisting of (a) dacitic-andesitic tephra, (b) HAG lava flows, (c) LAG lava flows, and (d) andesitic-basaltic tephra. This magmatic cycle is repeated four times during Arenal's history and is interpreted to have developed by the crystal fractionation and crystal redistribution of a single magma batch. The period of this cycle, and consequently the life of a magma batch, is about 800 years. If the cyclic pattern continues, a basaltic explosive phase may occur in the next 250 years.  相似文献   

12.
The contribution of intrusive complexes to volcano growth is attested by field observations and by the monitoring of active volcanoes. We used numerical simulations to quantitatively estimate the relative contributions to volcano growth of elastic dislocations related to dyke intrusions and of the accumulation of lava flows. The ground uplift induced by dyke intrusions was calculated with the equations of Okada (Bull. Seismol. Soc. Am., 75 (1985) 1135). The spreading of lava flows was simulated as the flow of a Bingham fluid.With realistic parameters for dyke statistics and lava-flow rheology we find the contribution of dyke intrusions to the growth of a basaltic shield archetype to be about 13% in terms of volume and 30% in terms of height. The result is strongly dependent on the proportion of dykes reaching the surface to feed a lava flow. Systematic testing of the model indicates that edifices tend to be high and steep if dykes are thick and high, issued from a small and shallow magma chamber, and if they feed lava flows of high yield strength.The simulation was applied to Ko'olau (O'ahu Is., Hawai'i) and Piton de la Fournaise (Réunion Is.) volcanoes. The simulation of Ko'olau with dyke parameters as described by Walker (Geology, 14 (1986) 310; U.S. Geol. Surv. Prof. Pap., 1350 (1987) 961) and with lava-flow characteristics collected at Kilauea volcano (Hawai'i Is.) results in an edifice morphology very close to that of the real volcano. The best fit model of the Piton de la Fournaise central cone, with its steep slope and E–W elongation, is obtained by the intrusion of 10 000 short and thick dykes issued from a very small and shallow magma chamber and feeding only 700 low-volume lava flows. The same method may be applied to the growth of basaltic shields and other volcano types in different environments, including non-terrestrial volcanism.  相似文献   

13.
Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.  相似文献   

14.
Long-lived basaltic eruptions often produce structurally complex, compound `a`ā flow fields. Here we reconstruct the development of a compound flow field emplaced during the 2001 eruption of Mt. Etna (Italy). Following an initial phase of cooling-limited advance, the reactivation of stationary flows by superposition of new units caused significant channel drainage. Later, blockages in the channel and effusion rate variations resulted in breaching events that produced two new major flow branches. We also examined small-scale, late-stage ‘squeeze-up’ extrusions that were widespread in the flow field. We classified these as ‘flows’, ‘tumuli’ or ‘spines’ on the basis of their morphology, which depended on the rheology, extrusion rate and cooling history of the lava. Squeeze-up flows were produced when the lava was fluid enough to drain away from the source bocca, but fragmented to produce blade-like features that differed markedly from `a`ā clinker. As activity waned, increased cooling and degassing led to lava arriving at boccas with a higher yield strength. In many cases this was unable to flow after extrusion, and laterally extensive, near-vertical sheets of lava developed. These are considered to be exogenous forms of tumuli. In the highest yield strength cases, near-solid lava was extruded from the flow core as a result of ramping, forming spines. The morphology and location of the squeeze-ups provides insight into the flow rheology at the time of their formation. Because they represent the final stages of activity of the flow, they may also help to refine estimates of the most advanced rheological states in which lava can be considered to flow. Our observations suggest that real-time monitoring of compound flow field evolution may allow complex processes such as channel breaching and bocca formation to be forecast. In addition, documenting the occurrence and morphology of squeeze-ups may allow us to determine whether there is any risk of a stalled flow front being reactivated. This will therefore enhance our ability to track and assess hazard posed by lava flow emplacement.  相似文献   

15.
Understanding how the strength of basaltic rock varies with the extrinsic conditions of stress state, pressure and temperature, and the intrinsic rock physical properties is fundamental to understanding the dynamics of volcanic systems. In particular it is essential to understand how rock strength at high temperatures is limited by fracture. We have collated and analysed laboratory data for basaltic rocks from over 500 rock deformation experiments and plotted these on principal stress failure maps. We have fitted an empirical flow law (Norton’s law) and a theoretical fracture criterion to these data. The principal stress failure map is a graphical representation of ductile and brittle experimental data together with flow and fracture envelopes under varying strain rate, temperature and pressure. We have used these maps to re-interpret the ductile–brittle transition in basaltic rocks at high temperatures and show, conceptually, how these failure maps can be applied to volcanic systems, using lava flows as an example.  相似文献   

16.
During the 1969–1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970–1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12–13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes.  相似文献   

17.
Tertiary volcanic rocks of Carriacou occupy two-thirds of the island. The volcanics include volcaniclastics, lava flows and dome lavas and range in composition from basalts to andesites. Carriacou basalts fall into two petrographic types (a) clinopyroxene-plagioclase-phyric basalts and (b) olivine microphyric basalts; the latter having higher MgO and lower Al2O3 than the clinopyroxene basalts. Both types are unusually rich in mafic minerals compared with Lesser Antilles basalts in general, although similar types have been reported from the nearby island of Grenada. The potash to silica ratios are relatively high and confirm the similarity between Carriacou and Grenada basalts and the differences between these basalts and basalts from other islands of the Lesser Antilles. The basaltic andesites and andesites from Carriacou correspond closely in mineralogical and chemical composition with typical andesites found elsewhere in the Lesser Antilles. The geochemistry of the volcanics shows that the olivine microphyric basalts display tholeiitic affinities whereas the clinopyroxeneplagioclase-phyric basalt, basaltic andesites and andesites are calcalkaline. The compositional gradation in both the geochemistry and mineralogy of these volcanics suggests that fractional crystallization played an important role in the derivation of the various magma.  相似文献   

18.
 The Badlands rhyolite, on the Owyhee Plateau of southwestern Idaho, can be demonstrated to be a large lava flow on the basis of its geometry of large and small flow lobes, its well-exposed near-vent features, and its response to pre-existing topography. However, samples of the dense upper vitrophyre of the unit reveal a range of annealed fragmental textures, including material which closely resembles the compressed, welded glass shards which are characteristic of ignimbrites. Formation of these tuff-like textures involved processes probably common to emplacement of most silicic lava flow units. Decompression upon extrusion causes inflation of pumice at the surface of the lava flow; some of this pumice is subsequently comminuted, producing loose bubble-wall shards, bits of pumice, chips of dense glass, and fragments of phenocrysts. This debris sifts down around loose blocks and into open fractures deeper in the flow, where it can be reheated, compressed, and annealed to varying degrees. The end result is a dense vitrophyre layer (beneath the true upper, non-welded carapace breccia) which can be extremely texturally heterogeneous, with areas of flow-foliated lava occurring very near lava which in many aspects looks like welded ignimbrite, complete with flattened pumices. Identical textures in other silicic units have been cited by previous workers as evidence that those units erupted as pyroclastic flows which then underwent sufficient rheomorphism to create a flow-foliated rock which otherwise appears to be lava. The textures described herein indicate that lava flows can come to mimic rheomorphic ignimbrites, at least at scales ranging from thin sections to outcrops. Voluminous silicic units with scattered fragmental textures, but with otherwise lava-like features, are probably true effusive lava flows. Received: January 30, 1995 / Accepted: January 22, 1996  相似文献   

19.
This paper presents a new method of analysing lava flow deposits which allows the velocity, discharge rate and rheological properties of channelled moving lavas to be calculated. The theory is applied to a lava flow which was erupted on Kilauea in July 1974. This flow came from a line of fissures on the edge of the caldera and was confined to a pre-existing gully within 50 m of leaving the vent. The lava drained onto the floor of the caldera when the activity stopped, but left wall and floor deposits which showed that the lava banked up as it flowed around each of the bends. Field surveys established the radius of curvature of each bend and the associated lava levels, and these data, together with related field and laboratory measurements, are used to study the rheology of the lava. The results show the flow to have been fast moving but still laminar, with a mean velocity of just over 8 m s–1; the lava had a low or negligible yield strength and viscosities in the range 85–140 Pa s. An extension of the basic method is considered, and the possibility of supercritical flow discussed.  相似文献   

20.
The Torfajökull central volcano in south-central Iceland contains the largest volume of exposed silicic extrusives in Iceland (225 km3). Within SW-Torfajökull, postglacial mildly alkalic to peralkalic silicic lavas and lava domes (67–74 wt.% SiO2) have erupted from a family of fissures 1–2.5 km apart within or just outside a large caldera (12×18 km). The silicic lavas show a fissure-dependent variation in composition, and form five chemically distinct units. The lavas are of low crystallinity (0–7 vol.%) and contain phenocrysts in the following order of decreasing abundance: plagioclase (An10-40), Na-rich anorthoclase (<Or23), clinopyroxene (Fs37-20), FeTi oxides (Usp32-60; Ilm93-88), hornblende (edenitic–ferroedenitic) and olivine (Fo22-37), with apatite, pyrrhotite and zircon as accessory phases. The phenocryst assemblage (0.2–4.0 mm) consistently exhibits pervasive disequilibrium with the host melt (glass). Xenoliths include sparse, disaggregated, and partially fused leucocratic fragments as well as amphibole-bearing rocks of broadly intermediate composition. The values of the silicic lavas are in the range 3.6–4.4, and these are lower than the values of comagmatic, contemporaneous basaltic extrusives within SW-Torfajökull, implying that the former can not be derived from the latter by simple fractional crystallization. FeTi-oxide geothermometry reveals temperatures as low as 750–800°C. To explain the fissure-dependent chemical variations, depletions, low FeTi-oxide temperatures and pervasive crystal-melt disequilibrium, we propose the extraction and collection of small parcels of silicic melt from originally heterogeneous basaltic crustal rock through heterogeneous melting and wall rock collapse (solidification front instability, SFI). The original compositional heterogeneity of the source rock is due to (1) silicic segregations, in the form of pods and lenses characteristically formed in the upper parts of gabbroic intrusives, and (2) extreme isostatic subsidence of the earlier, less differentiated lavas of the Torfajökull central volcano. Ridge migration into older crustal terranes, coupled with establishment of concentrated volcanism at central volcanoes like Torfajökull due to propagating regional fissure swarms, supplies the heat source for this overall process. Continued magmatism in these fissures promotes extensive prograde heating of older crust and the progressive vitality and rise of the central volcano magmatic system that leads to, respectively, SFI and subsidence melting. The ensuing silicic melts (with relict crystals) are extracted, collected and extruded before reaching complete internal equilibrium. Chemically, this appears as a two-stage process of crystal fractionation. In general, the accumulation of high-temperature basaltic magmas at shallow depths beneath the Icelandic rift zones and major central volcanoes, coupled with unique tectonic conditions, allows large-scale reprocessing and recycling of the low- , hydrothermally altered Icelandic crust. The end result is a compositionally bimodal proto-continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号