首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
副热带高压脊线北跳日期预测及其与中国初台关系的研究   总被引:1,自引:0,他引:1  
基于西太平洋副热带高压(副高)变化与西北太平洋热带气旋(TC)活动的关系,利用1980—2013年NCEP/NCAR 再分析日平均、月平均数据,计算副高脊线第一次北跳至25 °N或以北,30 °N以南的副高北跳日期序列。选取超前于副高北跳日期的三个气候变量为预测因子,建立了1980—2008年的副高北跳日期的多元线性回归方程模型,并由此预测2009—2013年的副高北跳日期。模型的整体模拟能力较好,但在某些年份的模拟结果与实际偏差较大;模型的回报预测结果能较好地描述2009—2013年副高北跳日期的年际变化特征。进一步利用美国联合台风预警中心数据,分析显示中国初台的登陆日期与副高北跳日期显著正相关;在多数年份中,副高北跳后的1~7天内,有西北太平洋TC登陆中国。通过对比副高北跳早晚年的大气环流场发现:副高早(晚)跳年,5—7月平均的西太平洋季风槽较常年偏东(较常年不明显),季风槽南侧纬向风辐合异常(纬向风辐合异常中心偏东、偏北);同期的副高中心较常年偏北(偏南)。这些环流异常可能有利于(不利于)西北太平洋TC生成并向中国方向移动,从而造成中国初台登陆日期容易偏早(偏晚)。   相似文献   

2.
东亚夏季风环流和雨带的季节内变化   总被引:16,自引:9,他引:7  
苏同华  薛峰 《大气科学》2010,34(3):611-628
基于常规气象要素资料及变差度方法, 分析了东亚夏季风环流的演变特征, 发现东亚地区在夏季期间存在两次明显的次季节突变, 主要表现为西太平洋副热带高压 (副高) 的两次东退北跳, 第一次是在6月中旬, 第二次是在7月下旬。由于副高与雨带密切相关, 雨带在演进过程中也呈现出两次明显的突跳, 分别对应于江淮流域至日本一带梅雨期以及中国华北和东北雨季的开始。较第一次北跳而言, 副高的第二次北跳更为明显。副高的第一次北跳主要受南海地区对流活动加强的影响, 而第二次北跳则是暖池对流活动与高纬地区环流共同作用的结果。暖池地区向东北方向传播的Rossby波列以及高纬地区东传的Rossby波通过锁相作用使得副高强烈北跳。此外, 副高与其西部边缘凝结潜热的相互作用导致副高发生季节内的低频振荡。 风场变差度的分析表明, 高纬地区对流层中低层环流的调整随着夏季季节进程逐渐减弱, 这与中高纬地区温差的变化有关。而高纬地区高层环流的调整在夏季后半期随着高度的增加却逐渐增强, 这与高层环流从夏到冬的季节变化有关。从风场相似度的变化上还可以看到, 副高第二次北跳后东亚地区呈现出明显不同的环流状态。 南半球环流对于南海及暖池地区对流活动的增强有重要影响。6月中旬, 南海与暖池地区对流活动的增强是由于南海西边界西风加强并向东扩展造成的, 这与马斯克林高压 (马高) 的加强密切相关。而在7月中旬, 澳大利亚高压 (澳高) 的增强使其东北部的越赤道气流加强, 南半球大量冷空气侵入到暖池地区, 加强了暖池地区的不稳定性以及低层的辐合, 从而使暖池地区的对流活动增强。但在夏季前半期, 暖池对流活动也可调制澳高强度与其东北部越赤道气流强弱的关系, 使得二者呈现出相反的变化趋势。南半球冬季期间, 澳高在振荡中减弱, 这与澳洲大陆下垫面温度及上游马高的能量频散有关, 前者影响澳高的变化趋势 (减弱), 而后者影响澳高的低频振荡。  相似文献   

3.
夏季北极涡与副热带高压的联系及对华北降水的影响   总被引:17,自引:2,他引:17  
由于北极涡与副热带高压是两个影响我国天气气候变化的主要大气环流实体,两者紧密相联,且均对华北夏季降水有明显作用,本文使用NCEP/NCAR再分析资料、国家气候中心提供的74个大气环流因子及中国160 站月降水资料,利用合成分析、相关分析及SVD等方法讨论了夏季北极涡与北半球大气环流及副热带高压的相互关系,分析了夏季北极涡及副高对华北降水的共同作用.结果表明:(1) 北极涡的变化不仅与高纬高度场密切相关,而且与中、低纬度环流紧密联系,当极涡异常偏大偏强,中、低纬地区位势高度均明显偏低,北半球副高的面积和强度易偏小,北界位置易偏南,其中副高强度的变化最大.(2) 各分区极涡因子与副高因子之间基本呈显著的负相关,而与西太平洋和南海副高的北界、脊线位置呈正相关.(3) 极涡指数、副高脊线及北界指数与华北降水之间以正相关为主,副高面积、强度指数与华北降水基本呈负相关.当亚洲和欧洲区极涡异常南扩,北非、大西洋、北美副高显著收缩减弱,西太平洋和南海副高明显北抬时,华北降水易增加.  相似文献   

4.
该文首先采用合成分析的方法研究了江淮入梅前后大尺度大气环流的演变特征和西太平洋副热带高压西伸北跳的可能机制。研究结果表明, 江淮入梅前期的最显著的特征是:副热带高压首先在太平洋中部增强北跳, 而后向西扩展导致太平洋副高西部脊 (120°E) 的增强北跳。进一步分析表明, 在太平洋中部副热带高压的增强北跳和西伸之前, 副热带高压南侧ITCZ中对流和孟加拉湾北部的对流活动明显并且都经历了一次增强活跃过程, 这意味着热带ITCZ和孟加拉湾北部对流的异常活跃可能对副热带高压的增强北跳西伸产生影响。全球大气环流模式模拟结果表明, 赤道中太平洋ITCZ中对流异常活跃不仅可导致副热带高压的增强北移, 而且还可导致副热带高压西伸, 与诊断分析结果相一致。  相似文献   

5.
1980年和1981年夏季及其前期冬春季太平洋和印度洋海温均未出现显著异常。然而,这两年东亚夏季风环流的季节内变化却呈现显著异常,且截然不同,具体表征为:1980年西太平洋副热带高压(副高)第一次北跳异常偏早,第二次北跳异常偏晚,而1981年则相反,第一次北跳接近气候态,第二次北跳却异常偏早。就副高两次北跳过程而言,其直接原因也有显著差异:1980年副高两次北跳主要受热带西太平洋对流增强的影响,而1981年两次北跳则是由于热带西太平洋对流增强后所激发的极向传播的Rossby波列与中高纬度东传的Rossby波的锁相作用造成的。与北跳过程相比,副高北跳前后环流稳定维持的时间长短显得更为重要。研究表明,1980年夏季副高异常程度之所以堪比1983年和1998年强El Ni?o衰减年,主要是由于不同阶段南半球环流和北半球中高纬度环流的相互配合与接力,其中,6月和8月副高异常偏强对夏季平均副高异常偏强起到主要贡献,但二者的影响因子不同:6月主要受马斯克林高压(马高)偏强的影响,而8月则与澳大利亚高压(澳高)异常偏强有关。此外,7月和8月副高异常偏南是因为鄂霍茨克海阻塞高压长期维持。与1980年相比,1981年夏季马高和澳高均异常偏弱,因而南半球环流对副高异常的影响有限。北半球中高纬度环流的季节内变化对该年夏季副高的快速北进和南退起主导作用,特别是8月中高纬度盛行强烈的经向环流,使得副高异常偏东偏弱,从而导致夏季平均副高异常偏东偏弱。本文的个例分析表明,在无显著海温异常强迫的年份需要特别关注南半球环流和北半球中高纬度环流对副高及与之相关的东亚夏季风环流的季节内演变的影响,但是这些环流因子持续性较差,难以用于跨季度预测。  相似文献   

6.
根据1998年NCEP逐日资料和TBB逐日资料,探讨了低纬度对流活动和副高周边水汽输送及其对流活动对夏季西太平洋副热带高压季节性北跳、南撤的影响效应。研究表明:低纬热带对流加强,且110°-150°E地区的南北向垂直经圈环流下沉区北移,夏季西太平洋副热带高压有北跳现象。另外,诊断结果亦表明西太平洋副高周边纬向水汽输送的显著减弱亦预示将出现副高的北跳,而西太平洋地区低纬经向水汽输送减少一候之后,副高南撤。研究结果表明西太平洋副高北跳、南撤与低纬度的对流潜热释放、中纬西太平洋副高周边的水汽输送及其对流活动存在密切的关系。数值模拟结果进一步证实上述副高活动变异与前期水汽输送及其对流特征的相关关系。  相似文献   

7.
利用NCEP/NCAR再分析资料、日本气象厅提供的TBB资料研究了 1 998年 7月西太平洋副热带高压突然偏南的原因。结果表明 ,西太平洋副高脊线突然“南撤”有其一定局限性 ,事实上应是副热带高压脊线在南侧的一次“重建”过程。针对这次重建 ,发现 1 998年 7月上中旬在西太平洋副热带地区存在南北两个高压脊 ,据此本文提出了副热带高压双脊线的概念 ,并着重揭示了这次西太平洋副热带高压双脊线的基本演变特征、环流场和温湿场结构、可能的形成机制及其对 1 998年夏季长江流域“二度梅”的影响。分析表明西太平洋副热带高压双脊线时期具有与单脊线时期明显不同的环流特征和温湿场结构 ,其北侧脊线附近的特征与传统上单脊线副热带高压的特征较一致 ,但南侧脊线附近则更多的具有低纬度系统的特点 ;这次双脊线过程与赤道缓冲带北上并与副热带高压打通合并变性及热带对流云团的演变有密切关系。此外 ,文中还通过中国台站降水资料探讨了副热带高压双脊线的维持对中国东部雨型的影响 ,指出西太平洋副热带高压双脊线的出现改变了原有的水汽输送路径 ,从而在中国东部出现两条雨带 ,呈倒 7字型 ,分别与副热带高压北、南侧脊线相对应。这些结果为西太平洋副热带高压演变规律和机制的研究提供了新的线索  相似文献   

8.
根据1998年NCEP逐日资料和TBB逐日资料,探讨了低纬度对流活动和副高周边水汽输送及其对流活动对夏季西太平洋副热带高压季节性北跳、南撤的影响效应.研究表明:低纬热带对流加强,且110°-150°E地区的南北向垂直经圈环流下沉区北移,夏季西太平洋副热带高压有北跳现象.另外,诊断结果亦表明西太平洋副高周边纬向水汽输送的显著减弱亦预示将出现副高的北跳,而西太平洋地区低纬经向水汽输送减少一候之后,副高南撤.研究结果表明西太平洋副高北跳、南撤与低纬度的对流潜热释放、中纬西太平洋副高周边的水汽输送及其对流活动存在密切的关系.数值模拟结果进一步证实上述副高活动变异与前期水汽输送及其对流特征的相关关系.  相似文献   

9.
刘芸芸  王永光  柯宗建 《气象》2021,47(1):117-126
2020年夏季我国天气气候极为异常,全国平均降水量为373.0 mm,较常年同期偏多14.7%,为1961年以来次多;季节内阶段性特征显著,6—7月多雨带主要位于江南大部—江淮地区,8月则主要在东北、华北及西南地区,致使2020年夏季雨型分布异常,不是传统认识上的四类雨型分布。通过对同期大气环流和热带海温等异常特征分析发现,6—7月,欧亚中高纬环流表现为"两脊一槽"型,东亚副热带夏季风异常偏弱,西太平洋副热带高压(以下简称西太副高)较常年同期显著偏强、偏西,第一次季节性北跳偏早,第二次北跳明显偏晚,且表现出明显的准双周振荡特征;使得来自西北太平洋的转向水汽输送偏强,并与中高纬不断南下的冷空气活动相配合,水汽通量异常辐合区主要位于长江中下游地区,导致江淮梅雨异常偏多。热带印度洋持续偏暖对维持6—7月西太副高偏强偏西及东亚夏季风异常偏弱起到了重要作用。8月,欧亚中高纬环流调整为"两槽一脊"型,蒙古低压活跃;西太副高也由前期偏纬向型的带状分布转为"块状"分布,脊线位置偏北;沿西太副高外围的异常西南风水汽输送延伸至华北一东北南部,形成自西南到东北的异常多雨带,与6—7月江淮流域降水异常偏多的空...  相似文献   

10.
西太平洋副热带高压的年际变率受热带多个关键海区的海-气相互作用过程调控, 但彼此间的因果关联和影响机制尚不清楚。为揭示西太平洋副热带高压的年际变率与热带海温及大气环流异常之间的内在关联特性, 定义了三个关键海区以及赤道纬向西风区的特征指数, 并分别与西太平洋副热带高压强度、脊线指数进行了交叉小波和相干小波分析。研究发现:西太平洋副热带高压指数存在显著的2~3年和准5年的周期振荡, 20世纪八九十年代后, 由于暖池区海温及赤道纬向西风区的Hadley环流强迫加强, 致使副热带高压特征指数的2~3年周期振荡加强; 从位相关系看, 先是西太平洋副热带高压减弱南撤导致纬向西风加强, 其后影响赤道东太平洋海温升高, 同时暖水向东传, 使赤道中太平洋以及暖池区海温逐渐升高, 在Hadley环流作用下使副高加强北抬。基于上述西太平洋副热带高压的年际变率与热带海温及大气环流异常变化相关性诊断研究, 进一步探讨了造成这种相关性的影响机理和因果关联, 为揭示西太平洋副热带高压年际变率与热带海温及大气环流异常的相关性做探索研究。   相似文献   

11.
叶茵  余清 《贵州气象》2004,28(4):37-38
我局从1999~2003年,测报工作连续4年未出现错情,在此期间共有1个250个班,9个百班无错通过上级业务部门验收.在仪器保管、使用、维护上符合要求,对外报送的各种表、簿都能做好出门合格.  相似文献   

12.
13.
Summary ?Some features of the climate system that can be considered predictors of the onset and end of the convective season over the Amazon were identified using one-month lag correlations and field composites. The fields analyzed were sea surface temperature (SST), outgoing long-wave radiation (OLR), vertical velocity and upper tropospheric winds. Warm (cold) anomalies in the SST in the tropical North Atlantic and the Caribbean Sea tend to be associated with delayed (early) onsets. Likewise, there is a tendency towards a delayed (early) end of the convective season with cold (warm) anomalies in these ocean regions. In addition, the SST in the cold tongue region of the equatorial Pacific is negatively, though weakly correlated with the onset date. The signal of this SST is more evident in the case of the end date, which is earlier with respect to its mean date in most of El Ni?o cases. The convective activity intensity itself conditions the onset and the end of the convective season, as it is evidenced by the behavior of the OLR and the vertical velocity fields. The more (less) intense the convective activity over South America during the preceding month, the earlier the onset and the later the end of the convective season on the Amazon region. The prediction of the onset and end dates of the convective season in the Amazon region was explored using a simple multiple regression technique based on the variables that have shown precursor signals with respect to these dates. The correlation coefficient between the predicted and the observed onset date is 0.81, and in the case of the end date, it is 0.76. The skill to predict early, delayed and normal categories was high, since in more than two thirds of the cases the category was successfully predicted, and there were no predictions of categories opposed to those observed. Received July 23, 2001; revised February 22, 2002; accepted April 26, 2002  相似文献   

14.
2005 is the bicentenary of the Beaufort Scale and its wind-speed codes: the marine version in 1805 and the land version later. In the 1920s when anemometers had come into general use, the Beaufort Scale was quantified by a formula based on experiment. In the early 1970s two tornado wind-speed scales were proposed: (1) an International T-Scale based on the Beaufort Scale; and (2) Fujita's damage scale developed for North America. The International Beaufort Scale and the T-Scale share a common root in having an integral theoretical relationship with an established scientific basis, whereas Fujita's Scale introduces criteria that make its intensities non-integral with Beaufort. Forces on the T-Scale, where T stands for Tornado force, span the range 0 to 10 which is highly useful world wide. The shorter range of Fujita's Scale (0 to 5) is acceptable for American use but less convenient elsewhere. To illustrate the simplicity of the decimal T-Scale, mean hurricane wind speed of Beaufort 12 is T2 on the T-Scale but F1.121 on the F-Scale; while a tornado wind speed of T9 (= B26) becomes F4.761. However, the three wind scales can be uni-fied by either making F-Scale numbers exactly half the magnitude of T-Scale numbers [i.e. F′half = T / 2 = (B / 4) − 4] or by doubling the numbers of this revised version to give integral equivalence with the T-Scale. The result is a decimal formula F′double = T = (B / 2) − 4 named the TF-Scale where TF stands for Tornado Force. This harmonious 10-digit scale has all the criteria needed for world-wide practical effectiveness.  相似文献   

15.
准两年振荡对大气中微量气体分布的影响   总被引:11,自引:5,他引:6  
张弘  陈月娟  吴北婴 《大气科学》2000,24(1):103-110
NCAR的包含化学、辐射、动力相互作用的两维模式(SOCRATES)移植回国后进行了初步的模拟试验,用以研究某些对环境问题重要的微量气体的化学、辐射、动力传输过程。在不考虑极地平流层云和气溶胶表面非均相化学等情况下,模式积分多年,计算结果稳定,模拟的风场、温度场显示出正常的季节变化,模拟的微量气体分布与卫星实测资料对照,结果也比较一致。为了探讨热带平流层风场的准两年周期振荡(QBO)对平流层微量气体分布的影响,我们做了QBO强迫的数值试验,即在模式中加入QBO强迫,并与不考虑QBO强迫的模拟结果对比。结果表明,QBO与其相关的次级环流所引起动力输送的变化,使平流层微量气体分布发生变化。  相似文献   

16.
Here, we analyze the characteristics and the formation mechanisms of low-level jets(LLJs) in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth generation of the European Centre for Medium-Range Weather Forecasts(ERA5) reanalysis dataset. Our results show that the vertical structure of LLJs is characterized by a predominance of boundary layer jets(BLJs) concentrated at heights of 900–1200 m.The BLJs occur most frequently at 230...  相似文献   

17.
The impact of high resolution modern vegetation cover on the West African climate is examined using the International Centre for Theoretical Physics Regional Climate Model implementing the NCAR Community Land Model. Two high resolution 25 km long-term simulations driven by the output from a coarser 50-km resolution simulation are performed for the period 1998–2010. One high resolution simulation uses an earlier and coarser-resolution version of plant functional type distribution and leaf area index, while the other uses a more recent, higher-quality, and finer-resolution version of the data. The results indicate that the new land cover distribution substantially alters the distribution of temperature with warming in Central Nigeria, northern Gulf of Guinea and part of the Sahel due to the replacement of C4 grass with corn; and cooling along the coastlines of the Gulf of Guinea and in Central Africa due to the replacement of C4 grass with tropical broadleaf evergreen trees. Changes in latent heat flux appear to be largely responsible for these temperature changes with a net decrease (increase) in regions of warming (cooling). The improved land cover distribution also results in a wetter monsoon season. The presence of corn tends to favor larger precipitation amounts via more intense events, while the presence of tropical broadleaf evergreen trees tends to favor the occurrence of both more intense and more frequent events. The wetter conditions appear to be sustained via (1) an enhanced soil moisture feedback; and (2) elevated moisture transport due to increased low-level convergence in regions south of 10N where the most substantial land cover differences are present. Overall the changes induced by the improved vegetation cover improve, to some extent, the performance of the high resolution regional climate model in simulating the main West African summer monsoon features.  相似文献   

18.
19.
由中国历史气候记录对季风导致唐朝灭亡说的质疑   总被引:1,自引:0,他引:1  
2007年1月4日杂志发表了Yancheva等10人的题为"Influence of the intertropical convergence zone on the East-Asian monsoon"(热带辐合带对东亚季风的影响)的论文[1],这是德国波兹坦地学研究中心气候动力与沉积学科的主管豪格(G.H.Haug)率领的科研小组的一项成果,认为是季风的变化引起的长期干旱导致了唐朝的灭亡.  相似文献   

20.
流场配置及地形对西南低涡形成的动力作用   总被引:10,自引:8,他引:10  
高守亭 《大气科学》1987,11(3):263-271
本文采用定常二层模式讨论较小地形及高、低层流场配置对西南低涡形成的动力作用。指出了西南低涡的形成是与盆地、河谷以及其上气流分层有关的一种定常态.在上、下为西风分层时期,低层的浅薄暖湿西风有利于西南低涡的形成.在上、下为东、西风分层时期,上层浅薄东风亦有利于西南低涡的形成.小型的凸起山脉对西南低涡的形成没有作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号