首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use a composite galaxy model consisting of a disk-halo, bulge, nucleus and dark-halo components in order to investigate the motion of stars in ther-z plane. It is observed that high angular momentum stars move in regular orbits. The majority of orbits are box orbits. There are also banana-like orbits. For a given value of energy, only a fraction of the low angular momentum stars — those going near the nucleus — show chaotic motion while the rest move in regular orbits. Again one observes the above two kinds of orbits. In addition to the above one can also see orbits with the characteristics of the 2/3 and 3/4 resonance. It is also shown that, in the absence of the bulge component, the area of chaotic motion in the surface of section increases, significantly. This suggests that a larger number of low angular momentum stars are in chaotic orbits in galaxies with massive nuclei and no bulge components.  相似文献   

2.
We have obtained an analytical solution to the equation of motion in the guiding center approximation for nonrelativistic charged particles in a reconnecting current sheet with a three-component magnetic field. Given the electric field attributable to magnetic reconnection, the solution describes stable and unstable three-dimensional particle orbits. We have found the domain of input parameters at which the motion is stable. A physical interpretation of the processes affecting the stability of the motion is given. Charge separation is shown to take place in the sheet during the motion: oppositely charged particles are localized mostly in different regions of the current sheet. A formula is derived for the particle energy in stable and unstable orbits. The results obtained by numerical and analytical methods are compared.  相似文献   

3.
We have extend Stormer’s problem considering four magnetic dipoles in motion trying to justify the phenomena of extreme “orderlines” such as the ones observed in the rings of Saturn; the aim is to account the strength of the Lorentz forces estimating that the Lorentz field, co-acting with the gravity field of the planet, will limit the motion of all charged particles and small size grains with surface charges inside a layer of about 200 m thickness as that which is observed in the rings of Saturn. For this purpose our interest feast in the motion of charged particles with neglected mass where only electromagnetic forces accounted in comparison to the weakness of the Newtonian fields. This study is particularly difficult because in the regions we investigate these motions there is enormous three dimensional instability. Following the Poincare’s hypothesis that periodic solutions are ‘dense’ in the set of all solutions in Hamiltonian systems we try to calculate many families of periodic solutions and to study their stability. In this work we prove that in this environment charged particles can trace planar symmetric periodic orbits. We discuss these orbits in details and we give their symplectic relations using the Hamiltonian formulation which is related to the symplectic matrix. We apply numerical procedures to find families of these orbits and to study their stability. Moreover we give the bifurcations of these families with families of planar asymmetric periodic orbits and families of three dimensional symmetric periodic orbits.  相似文献   

4.
In the present paper the effect of a sinusoidal modulation of an electromagnetic field on the invariance of the magnetic moment is studied. Such a generalized invariant plays an important role in problems concerning the motion of charged particles in the non-uniform magnetic field of the magnetosphere or the solar wind. In order to find an adiabatic invariant J, a canonical transformation is introduced, and J is expanded in an asymptotic series in the relative modulation amplitude. We are studying the first and second order terms of this expansion. It is further shown that the curves J = constant closely fit the results obtained by a numerical integration of the system of differential equations governing the motion of the particles.  相似文献   

5.
In this work we reveal for the first time that in the three dipole problem only asymmetric periodic orbits exist.For these periodic orbits — planar and three dimensional — of a charged particle moving under the influence of the electromagnetic field of the three dipoles we give their symplectic relations using the Hamiltonian formulation which is related to the symplectic matrix. Also we study the properties of the symplectic matrix and we give the relations there are among the variations of a periodic solution. These relations have been used to check the accuracy of numerical integration of equations of first order variations.  相似文献   

6.
We apply a numerical searching method to investigate three-dimensional periodic orbits of charged dust particles in planetary magnetospheres. A classic generalized Stormer model of magnetic planets along with the parameters of Saturn is employed. More periodic orbits are found, besides the already known circular periodic orbits in or parallel to the equatorial plane. We divide all these orbits into six categories based on their appearances. By calculating the characteristic multipliers of the orbits, we investigate the stabilities of these periodic orbits.  相似文献   

7.
The equations for the viscous motion of a mixture of gas and dust in a gravitational field are derived from the statistics of particle orbits and radiative processes in a general form which gives the Navier-Stokes equation as a special case. Diffusion, partially elastic collisions and — for larger bodies — the gravitational encounters are included. The results are applied to the evolution of circumstellar discs.  相似文献   

8.
The radial motion along null geodesics in static charged black hole space–times, in particular, the Reissner–Nordström and stringy charged black holes, are studied. We analyzed the properties of the effective potential. The circular photon orbits in these space–times are investigated. We found that the radius of circular photon orbits in both charged black holes are different and differ from that given in Schwarzschild space–time. We studied the physical effects of the gravitational field between two test particles in stringy charged black hole and compared the results with that given in Schwarzschild and Reissner–Nordström black holes.  相似文献   

9.
The problem of the attitude dynamics of a triaxial gyrostat under no external torques and one constant internal rotor, is a three degrees-of-freedom system, although thanks to the existence of integrals of motion it can be reduced to only one degree-of-freedom problem. We introduce coordinates to represent the orbits of constant angular momentum as a flow on a sphere. This representation shows that the problem is equivalent to a quadratic Hamiltonian depending on two parameters. We find the exact solution of the orbits in terms of elliptic functions. By making use of properties of elliptic functions we find the solution at each region of the parametric partition from the solution of one region. We also prove that heteroclinic orbits are planar curves.  相似文献   

10.
The critical inclination in artificial satellite theory   总被引:1,自引:0,他引:1  
Certain it is that the critical inclination in the main problem of artificial satellite theory is an intrinsic singularity. Its significance stems from two geometric events in the reduced phase space on the manifolds of constant polar angular momentum and constant Delaunay action. In the neighborhood of the critical inclination, along the family of circular orbits, there appear two Hopf bifurcations, to each of which there converge two families of orbits with stationary perigees. On the stretch between the bifurcations, the circular orbits in the planes at critical inclinmation are unstable. A global analysis of the double forking is made possible by the realization that the reduced phase space consists of bundles of two-dimensional spheres. Extensive numerical integrations illustrate the transitions in the phase flow on the spheres as the system passes through the bifurcations.A delicacy so very susceptible of offence...—Hester Lynch PIOZZI,Observations and Reflections made in the Course of a Journey through France, Italy and Germany (1789)NAS/NRC Postgraduate Research Associate in 1984–1985.  相似文献   

11.
The motion of artificial satellites in the gravitational field of an oblate body is discussed in the post — Newtonian framework using the technique of canonical Lie transformations. Two Lie transformations are used to derive explicit results for the longperiodic and secular perturbations for satellite orbits in the Einstein case.  相似文献   

12.
An Abelian Higgs model of sunspot generalized in a Chern-Simons-like fashion is discussed. It is shown, in particular, that both themagnetic andelectric fields are present inside the sunspot, and that the latterrotates. One demonstrates that the total angular momentum of a static, cylindrically symmetric sunspot is proportional top 2, wherep — an integer — stands for the number of magnetic fluxquanta carried by the spot. Finally, the behaviour of the Higgs field amplitude, magnetic and electric field strengths are illustrated for the spots carrying one to five flux quanta, all having the penumbra-to-umbra radius ratio of the value .  相似文献   

13.
The aim of the present paper will be to give a mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum — an evolution activated by viscous friction of dynamical tides raised by the two components on each other. The first section contains a general outline of the problem; and in Section 2 we shall establish the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure. In Section 3 we shall investigate the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for given amount of total momentum; while in Section 4 we shall compare these results with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known to us from evidence furnished by the observed rates of apsidal advance.The results show that all such systems — be these of detached or semi-detached type — disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than a percent of the total — a situation characteristic of a state close to the minimum energy for given total momentum. This appears, moreover, to be true not only of the systems with both components on the Main Sequence, but also of those possessing evolved components in contact with their Roche limits.Under such conditions, a synchronism between rotation and revolution (characteristic of both extreme states of maximum and minimum energy) is not only possible, but appears to have been actually approached — if not attained — in the majority of cases. In other words, it would appear that — in at least a large majority of known cases — the existing close binaries have already attained orbits of maximum distension consistent with their momenta; and tidal evolution alone can no longer increase the present separations of the components to any appreciable extent.The virtual absence, in the sky, of binary systems intermediate between the stages of maximum and minimum energy for given momentum leads us to conjecture that the process of dynamical evolution activated by viscous tides may enroll on a time-scale which is relatively short in comparison with their total age — even for systems like Y Cygni or AG Persei, whose total age can scarcely exceed 107 yr. A secular increase of the semi-major axes of relative orbits is dynamically coupled with a corresponding variation in the velocity of axial rotation of both components through the tidal lag arising from the viscosity of stellar material. The differential equations of so coupled a system are given in Section 5; but their solution still constitutes a task for the future.The Lunar Science Institute Contribution No. 90. The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

14.
A spacecraft that generates an electrostatic charge on its surface in a planetary magnetic field will be subject to a perturbative Lorentz force. Active modulation of the surface charge can take advantage of this electromagnetic perturbation to modify or to do work on the spacecraft’s orbit. Lagrange’s planetary equations are derived using the Lorentz force as the perturbation on a Keplerian orbit, incorporating orbital inclination and true anomaly for the first time for an electrostatically charged vehicle. The planetary equations reveal that orbital inclination is a second-order effect on the perturbation, explaining results found in earlier studies through numerical integration. All of the orbital elements are coupled, but the coupling notably does not depend on the magnitude of the electrostatic charge or on the strength of the magnetic field. Analytical expressions that characterize this coupling are tested with a propellantless escape example at Jupiter. A closed-form solution exists that constrains the set of equatorial orbits for which planetary escape is possible, and a sufficient condition is identified for escape from inclined orbits. The analytical solutions agree with results from the numerically integrated equations of motion to within a fraction of a percent.  相似文献   

15.
16.
The circular restricted problem of three bodies is investigated analytically with respect to the problem of deriving a second integral of motion besides the well known Jacobian Integral. The second integral is searched for as a correction the angular momentum integral valid in the two body case. A partial differential equation equivalent to the problem is derived and solved approximately by an asymptotic Fourier method assuming either sufficiently small values for the dimensionless mass parameter or sufficiently large distances from the barycentre. The solution of the partial equation then leads to a function of the coordinates, velocities and time being nearly constant, which means that its variation with time is about 40–300 times less than that of the pure angular momentum. By averaging over the remaining fluctuating part of the quasi-integral we are able to integrate the first order equations using a renormalization transformation. This leads to an explicit expression for the approximate solution of the circular problem which describes the motion of the third body orbiting both primaries with nonvanishing initial eccentricity (eccentric planetary type orbits). One of the main results is an explicit formula for the frequency of the perihelion motion of the third body which depends on the mass parameter, the initial distance of the third body from the barycentre and the initial eccentricity. Finally we study orbits of the P-Type, being defined as solutions of the restricted problem with circular initial conditions (vanishing initial eccentricity).  相似文献   

17.
We examine the effects of rotation about a vertical axis on thermal convection with a simple model in which an inviscid, incompressible fluid of zero thermal conductivity and electrical resistivity is contained in a thin annulus of rectangular cross-section. The initial steady state assumed is one of no motion relative to the rotating frame with constant (unstable) vertical temperature gradient and uniform toroidal magnetic field. Small periodic disturbances are then introduced and the linearized perturbation equations solved. We also determine the second-order mean circulations and magnetic fields that are forced by non-zero Reynolds and thermal stresses and magnetic field transports.The solutions have several properties which are relevant to large-scale solar phenomena if giant long-lived convection cells exist on the sun. In particular, the convective cells are tilted in latitude in the same sense as bipolar magnetic regions, and induce vertical magnetic fields with the same tilt. They transport momentum across latitude circles through Reynolds stresses and induced meridional circulations thus setting up a differential rotation. Cells which grow slowly compared to the rotation rate and have comparable dimensions in latitude and longitude transport momentum toward the equator. The cells also form a poloidal magnetic field from initial toroidal field, in a manner similar to that put forth by Parker.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
A study is made of axisymmetric, low sonic-Mach-number flows of a viscous fluid with angular momentum outside of a black-hole. The viscosity is an eddy viscosity due to turbulence in the sheared flows. Self-similar solutions arise naturally, reducing the Navier-Stokes equations to a set of nonlinear ordinary differential equations. These equations are solved analytically for flows of constant specific angular momentum and numerically for more general flows. For flows with non-constant specific angular momentum, the momentum flux density includes a planar discontinuity which is interpreted as an accretion disc. In general, two flow regions appear on each side of the disk, corresponding to accretion onto the disk and jet-like outflows along the ±z-axes. Physical interpretations of the solutions show that these flows arise in response to point sources of axial momentum at the origin directed in the ±z-directions. The power needed to maintain this momentum input is assumed to come from the mass accretion onto the black hole.The hydrodynamic flows are generalized to include a magnetic field. In the limit of infinite electrical conductivity, the possible types of flow patterns are the same as in hydrodynamic case. The magnetic field alters the relative amounts of reversible and irreversible momentum and angular momentum transport by the flow. For a flow with turbulent viscosity, the magnetic field acts to reduce the level of the turbulence and the effective value of the eddy viscosity.  相似文献   

19.
In this article the generalization of the motion of a particle in a central field to the case of a constant curvature space is investigated. We found out that orbits on a constant curvature surface are closed in two cases: when the potential satisfies Iaplace-Beltrami equation and can be regarded as an analogue of the potential of the gravitational interaction, and in the case when the potential is the generalization of the potential of an elastic spring. Also the full integrability of the generalized two-centre problem on a constant curvature surface is discovered and it is shown that integrability remains even if elastic forces are added.  相似文献   

20.
We discuss the dynamics of a charged nonrelativistic particle in electromagnetic field of a rotating magnetized celestial body. The equations of motion of the particle are obtained and some particular solutions are found. Effective potential energy is defined on the base of the first constant of motion. Regions accessible and inaccessible for a charged particle motion are studied and depicted for different values of a constant of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号