首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《测量评论》2013,45(65):131-134
Abstract

1. In geodetic work a ‘Laplace Point’ connotes a place where both longitude and azimuth have been observed astronomically. Geodetic surveys emanate from an “origin” O, whose coordinates are derived from astronomical observations: and positions of any other points embraced by the survey can be calculated on the basis of an assumed figure of reference which in practice is a spheroid formed by the revolution of an ellipse about its minor axis. The coordinates (latitude = ?, longitude = λ and azimuth = A) so computed are designated “geodetic”.  相似文献   

2.
《测量评论》2013,45(43):274-284
Abstract

Recently the writer of this article became interested in the conical orthomorphic projection and wanted to see a simple proof of the formula for the modified meridian distance for the projection on the sphere. Owing to the exigencies of the war, however, he has been separated from the bulk of his books, and, consequently, has had to evolve a proof for himself. Later, this proof was shown to a friend who told him that he had some memory of a mistake in the sign of the spheroidal term in m4given in “Survey Computations”, perhaps the first edition. Curiosity therefore suggested an attempt to verify this sign, which meant extending his work to the spheroid. This has now been done, with the result that the formula given in “Survey Computations”, up to the terms of the fourth order at any rate, is found correct after all.  相似文献   

3.
由于地球是弹滞体,根据牛顿理论,由于地球的自转作用,地球应该呈扁椭球状。18世纪,法国科学院派遣了两支测量队分赴拉普兰和秘鲁对地球的子午线弧长进行了实测,最终证实了地球是扁椭球。本文分别讨论了子午弧长随地心、大地、归化纬度的变化规律,数值计算结果表明:以大地纬度和归化纬度而论.1°子午线弧长随着纬度的增大而逐渐变长;但以地心纬度而论,1°子午线弧长随着纬度的增大而逐渐变短。  相似文献   

4.
《测量评论》2013,45(7):24-28
Abstract

Measured deviations of the vertical have been used in support, or in destruction, of such pleasant little diversions as the theory of isostasy. They have also been used to adjust a triang~lation for swing, by methods which may fairly be criticized; but they have not, as far as I know, been used for reducing the horizontal measures of a triangulation to the standard conventional level of the spheroid of reference. In most cases such corrections would, of course, be too small to worry about, but it by no means follows that they are always small. In the case of a continental arc of meridian traversing a very disturbed mountainous region exhibiting certain constant tendencies, it should at least be demonstrated that they are small before the question can be considered finally settled.  相似文献   

5.
《测量评论》2013,45(60):217-219
Abstract

Map Projections.—A matter that should have been mentioned in the original article under this title (E.S.R., vii, 51, 190) is the definition of a map projection. In the list of carefully worded “Definitions of Terms used in Surveying and Mapping” prepared by the American Society of Photogrammetry (Photogrammetrie Engineering, vol. 8,1942, pp. 247–283), a map projection is defined as “a systematic drawing of lines on a plane surface to represent the parallels of latitude and the meridians of longitude of the earth or a section of the earth”, and most other published works in which a definition appears employ a somewhat similar wording. This, however, is an unnecessary limitation of the term. Many projections are (and all projections can be) plotted from rectangular grid co-ordinates, and meridians and parallels need not be drawn at all; but a map is still on a projection even when a graticule is not shown. Objection could be raised also to the limitation to “plane surface”, since we may speak of the projection of the spheroid upon a sphere, or of the sphere upon a hemisphere. Hence, it is suggested that “any systematic method of representing the whole or a part of the curved surface of the Earth upon another (usually plane) surface” is an adequate definition of a map projection.  相似文献   

6.
《测量评论》2013,45(14):464-472
Abstract

The Mythical Spheroid.—The preceding article dealt with the fact that the spheroid of reference is a myth and that, even if it were not, we could not get hold of it at any given place. In order to apply corrections to observed quantities or, more generally, to operate upon them mathematically, we must make some assumption such as that of the spheroidal level surface. Probably a lot of harm has been done by attaching the notion of too concrete a thing to the spheroid. Disputes and misconceptions have arisen. People talk of“putting the spheroid down at a point” and imagine that the obedient thing is still at their feet when they get to another point, perhaps distant, in their system of triangulation or what not. Actually the spheroid may be disobedient not only as regards the direction of the vertical but also because it is above their heads or below their feet. What happens is that at each point afresh the computer treats the observations as if they were made there on the surface of a spheroid. In the same way, but travelling still farther along the road of hypothesis, he may treat observations for astronomical positions as if the compensation for visible elevations were uniformly distributed as a deficiency of density down to a depth of 122·2 kilometres. That was the depth which happened to give the smallest sum of squares of residuals in a certain restricted area, but nobody imagines that it corresponds with a physical reality, especially the ·2! It was a convenient mathematical instrument which, once the theory was to be given a trial, had to be fashioned out of some assumption or another. All this has little to do with geodetic levelling but is meant to try to banish the spheroid out of the reader's mind or at least to the back of his mind. In what follows we shall be compelled to make a certain amount of use of the family of spheroids but always with the above strictures in view.  相似文献   

7.
《测量评论》2013,45(24):79-85
Abstract

Except in the sphere of geodetic surveys, there seems to be a lamentable lack of helpful publications for the field surveyor. Comparative methods and standards of accuracy to be expected according to the type of instrument used are rarely to be found in print, and that is the only excuse for the following critical summary of some observations made during the winter of 1933–4.  相似文献   

8.
《测量评论》2013,45(84):264-268
Abstract

In the last instalment of this article I showed how, by computing the difference in height between the spheroid and the sphere at the mid-point of the line, the third order term could be obtained and a more accurate correction to the spherical length applied. This allows the formula to be used for the determination of distances and azimuths for lines far exceeding 1,000 kilometres in length.  相似文献   

9.
《测量评论》2013,45(12):329-330
Abstract

Major Hotine (E.S.R., No. II, pp. 264–8) still finds the location of a reference spheroid to offer insuperable difficulties. I confess that my difficulty is to see his! In my previous article (E.S.R., No. 8) at the foot of page 76, I used the word “coincidence” in error for “parallelism”. This harmonizes the article and I am glad that Major Hotine has directed attention to the error.  相似文献   

10.
《测量评论》2013,45(72):90-92
Abstract

When developing the argument leading to the stereographic solution of the spherical triangle and its application to field astronomy (Empire Survey Review, Vol. 2, No. 10, October, 1933, p. 226) A. J. Potter rendered a very useful service in demonstrating how proofs of the two practically useful properties of the stereographic projection can be provided along lines that demand no more than simple geometry in their development. The proof advanced for the unique property that any circle on the. sphere remains a circle in projection is at once simple and complete; but in the attempt to prove that the projection is orthomorphic in the sense that angles everywhere remain true there is the difficulty that the argument was developed for what must be regarded as a special case in that the point was located on the great circle through the origin of the projection normal to the plane of the projection. Treatment of the problem along similar lines for other points away from the central meridian does not seem to admit of such ready solution and the alternative approach suggested here, while still not demanding. anything beyond simple geometry for its understanding, affords a proof for a general case.  相似文献   

11.
The Everest spheroid, 1830, in general use in the Survey of India, was finally oriented in an arbitrary manner at the Indian geodetic datum in 1840; while the international spheroid, 1924, in use for scientific purposes; was locally fitted to the Indian geoid in 1927. An attempt is here made to obtain the initial values for the Indian geodetic datum in absolute terms on GRS 67 by least-square solution technique, making use of the available astro-geodetic data in India, and the corresponding generalised gravimetric values at the considered astro-geodetic points, as derived from the mean gravity anomalies over1°×1° squares of latitude and longitude in and around the Indian sub-continent, and over equal area blocks covering the rest of the earth’s surface. The values obtained independently by gravimetric method, were also considered before actual finalization of the results of the present determination.  相似文献   

12.
引入地球向径积分平均值和地球平均曲率半径积分平均值的概念,借助计算机代数系统推导出了两者的符号表达式,并将它们表示为偏心率e的幂级数形式。将地球向径积分平均值和地球平均曲率半径积分平均值分别与平均球半径、等面积球半径、等距离球半径、等体积球半径这4种常用球体半径进行比较,研究表明地球向径积分平均值与4种常用球体半径间的差异更小。由于地球是一个旋转椭球体,向径与曲率半径是背离的,向径最大时,曲率半径最小, 向径最小时,曲率半径最大,传统思维所认为的曲率半径并不能准确地代表地球半径平均值,因此在一定程度上,地球向径的积分平均值更能代表地球半径平均值。这些研究结果可为地球科学、空间科学、导航定位提供基础理论依据。  相似文献   

13.
《测量评论》2013,45(54):314-327
Abstract

Considering first of all the general case of a triangle ABC with base AB and apex angle C, the assumption is made that at A and at B only one orienting ray has been observed at each point besides the forward rays to C and that at Conly B and A have been observed. In other words, the three angles of the triangle have been observed. The adoption of General Schreiber's rule with regard to the weights of forward and back directions is valid here, since it may easily be shown that, when the weight of a forward ray is one-half of the weight of a back ray, the adjusted angles of a triangle conform to the condition of least squares.  相似文献   

14.
《测量评论》2013,45(32):85-89
Abstract

The necessity of transforming rectangular co-ordinates from one system of projection to another may arise from, various causes, One case, for example, with which the present writer is concerned involves the transformation, to the standard belt now in use, of the co-ordinates of some hundreds of points of a long existing triangulation projected a quarter of a, century ago on a, belt of Transverse Mercator projection, In this case conversion is complicated by the fact that the spheroid used in the original computation differs from that now adopted, and, also, the geodetic datums are not the same, The case in fact approaches the most general that can occur in practice, One step in one solution of this problem, however, is of perhaps wider Interest: that is, the transformation from one belt of Transverse Mercator projection to another when the spheroids and datums are identical. It is this special case which will be discussed here.  相似文献   

15.
A method for filtering of geodetic observationwhich leaves the final result normally distributed, is presented. Furthermore, it is shown that if you sacrifice100.a% of all the observations you may be (1−β).100% sure that a gross error of the size Δ is rejected. Another and, may be intuitively, more appealing method is presented; the two methods are compared and it is shown why Method 1 should be preferred to Method 2 for geodetic purposes. Finally the two methods are demonstrated in some numerical examples.  相似文献   

16.
G. T. M. 《测量评论》2013,45(35):285-296
Abstract

In January 1938 the writer decided against holding up for more years some work on the Transverse Mercator Projection (E.S.R., 27, 275). The extension to the spheroid was not then complete, nor is the present paper to be regarded as a logical continuance. It is first proposed to show the results of “transplanting” orthomorphically upon the spheroid a spherical configuration forming a graticule.  相似文献   

17.
《测量评论》2013,45(78):366-368
Abstract

The method of reducing circummeridian altitudes or zenith distances to the meridian, using the factors m and n as tabulated by Chauvenet, is well known. The following method, which does not use these factars, has been faund both more convenient and more accurate in practice. The formula can be easily obtained by expanding m and n in powers of t, but far the sake af campleteness the derivatian is here given from the beginning.  相似文献   

18.
《测量评论》2013,45(59):191-194
Abstract

When we require the distance between two points on a spheroid, there are at least six different lines between the points which might be taken.  相似文献   

19.
The Gauss conformal mappings (GCMs) of an oblate ellipsoid of revolution to a sphere are those that transform the meridians into meridians, and the parallels into parallels of the sphere. The infinitesimal-scale function associated with these mappings depends on the geodetic latitude and contains three parameters, including the radius of the sphere. Gauss derived these constants by imposing local optimum conditions on certain parallel. We deal with the problem of finding the constants to minimize the Chebyshev or maximum norm of the logarithm of the infinitesimal-scale function on a given ellipsoidal segment (the region contained between two parallels). We show how to solve this minimax problem using the intrinsic function fminsearch of Matlab. For a particular ellipsoidal segment, we get the solution and show the alternation property characteristic of best Chebyshev approximations. For a pair of points relatively close in the ellipsoid at different latitudes, the best minimax GCM on the segment defined by these points is used to approximate the geodesic distance between them by the spherical distance between their projections on the corresponding sphere. This approach, combined with the best locally GCM if the points are on the same parallel, is illustrated by applying it to some case studies but specially to a 10° × 10° region contained between portions of two parallels and two meridians. In this case, the maximum absolute error of this spherical approximation is equal to 2.9 mm occurring at a distance about 1,360 km. This error decreases up to 0.94 mm on an 8° × 8° region of this type. So, the spherical approximation to the solution of the inverse geodesic problem by best GCM can be acceptable in many practical geodetic activities.  相似文献   

20.
《测量评论》2013,45(84):268-274
Abstract

In the E.S.R., viii, 59, 191–194 (January 1946), J.H. Cole gives a very simple formula for finding the length of long lines on the spheroid (normal section arcs), given the coordinates of the end points. In the course of the computation the approximate azimuth of one end of the line is found, the error over a 500-mile line being of the order of 3″ or 4″. If the formula is amended so that the azimuth at the other end of the line is used in computing the length of the arc, the error is then less than 0″·1 over such a distance. An extra term is now given which makes this azimuth virtually correct over any distance. Numerical tests show that Cole's formula for length and the new one for azimuth are very accurate and convenient in all azimuths and latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号