首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
G. T. M. 《测量评论》2013,45(19):289-299
Abstract

Introductory Remarks.—A line of constant bearing was known as a Rhumb line. Later Snel invented the name Loxodrome for the same line. The drawing of this line on a curvilinear graticule was naturally difficult and attempts at graphical working in the chart-house were not very successfuL Consequently, according to Germain, in 1318 Petrus Vesconte de Janua devised the Plate Carree projection (“Plane” Chart). This had a rectilinear graticule and parallel meridians, and distances on the meridians were made true. The projection gave a rectilinear rhumb line; but the bearing of this rhumb line was in general far from true and the representation of the earth's surface was greatly distorted in high latitudes. For the former reason it offered no real solution of the problem of the navigator, who required a chart on which any straight line would be a line not alone of constant bearing but also of true bearing; the first condition necessarily postulated a chart with rectilinear meridians, since a meridian is itself a rhumb line, and for the same reason it postulated rectilinear parallels. It follows, therefore, that the meridians also must be parallel inter se, like the parallels of latitude. The remaining desideratum—that for a true bearing—was attained in I569 by Gerhard Kramer, usually known by his Latin name of Mercator, in early life a pupil of Gemma Frisius of Louvain, who was the first to teach triangulation as a means for surveying a country. Let us consider, then, that a chart is required to show a straight line as a rhumb line of true bearing and let us consider the Mercator projection from this point of view.  相似文献   

3.
《测量评论》2013,45(64):52-70
Abstract

In the last instalment we were able to obtain most of the surveyor's projections in common use by applying simple scale conditions to the meridians and parallels. This method of approach naturally suggests that results of some value might be obtained by applying similar conditions to the plane co-ordinate lines. If we do so, we are immediately led to consider curves on the surface known as geodesics, which are the nearest approach to straight lines it is possible to draw on a curved surface. Accordingly, we give some account of these curves for the benefit of surveyors who have not hitherto made their acquaintance.  相似文献   

4.
《测量评论》2013,45(100):269-272
Abstract

The article “Notes on the Position Line” by B. Chiat (E.S.R., xiii, 97, 137) is very informative in the conclusions reached regarding the validity of drawing the position line straight, but it seems, to me at least, that the discussion involving the effects of the earth's non-sphericity is an academic labouring of a difficulty which, in fact, is non-existent.  相似文献   

5.
G. T. M. 《测量评论》2013,45(13):410-419
Abstract

A Fully equipped theodolite is provided with plate levels, an alidade level, and a striding level. An instrument not so equipped has no title to be considered a “Universal Instrument”, that is to say, an instrument designed for every kind of both terrestrial and celestial measurement. Without a striding level, for example, nothing beyond relatively rough astronomical measures can be expected in general. Modern instruments, capable of giving considerable refinement in terrestrial measures, are frequently not furnished with a striding level; and it is sometimes assumed, with the tacit approval of the makers, that such instruments are equally capable of giving refined astronomical results. On the older type of instrument a striding level—rarely not supplied—could have been, and sometimes was, extemporized; it seems as if ignorance of astronomy of position has led, at least in part, to the construction of theodolites in such a manner as actually to render such extemporization difficult.  相似文献   

6.
none 《测量评论》2013,45(86):363-371
Abstract

The constant K in equation (12) represents distance expended through time lags in the instrument itself, and, although the value of K can be calculated from electrical data, this would not be very satisfactory and it would be better to determine it directly by means of observations over a line of known length. In addition, the point from which K would be reckoned is not a convenient one for actual field measurements. Instead of this, it is more convenient to choose an index mark on the instrument itself and referall measurements to this and thence to the mark over which the instrument is set up.  相似文献   

7.
《测量评论》2013,45(61):264-267
Abstract

In adjusting a triangulation network it may happen that certain condition equations, of the existence of which we know a priori (by formulæ or by plotting the network point by point), cannot be established by simple inspection of the figure. This usually happens when some of the observations are missing in the otherwise continuous network. Such equations, not readily identifiable from the diagram, may be called “implicit” condition equations.  相似文献   

8.
《测量评论》2013,45(16):72-80
Abstract

It was suggested some time ago in the Review (E.S.R., vol. ii, no. 9, p. 182) that observing procedure in a ruling triangulation should be made the subject of a discussion at the forthcoming Empire Survey Conference. I hope it will be. We shall perhaps learn why India finds thirty measures necessary, as no doubt they are necessary in India, whereas South Africa and Southern Rhodesia are able to secure much the same degree of accuracy from the same instrument with only eight; why Canada, again with the same instrument, prefers the golden mean of sixteen; why some of us still prefer the measurement of angles to directions vvhile others would insist entirely on the measurement of directions from a “close” R.O. It is only by pooling the experiences gained in diverse circumstances that we can avoid being overborne by our own successes or failures, encountered possibly in very exceptional circumstances which may not recur.  相似文献   

9.
《测量评论》2013,45(14):496-498
Abstract

In the Empire Survey Review for April 1934 (No. 12, pp. 382–4), the Editor has raised the question of the function of the cadastral map. As he remarks, the question is not simple, but it is easier to say what the function of the map is than to decide of what the map should consist in order that it may fulfil its function. Broadly speaking we may state that the function of the map is to record the boundaries of landed property in such a manner as not only to afford a pictorial representation but also to supply data for the identification of these boundaries on the ground when occasion requires. Apart from this the map should show the areas of properties, as this information may be required for taxation purposes.  相似文献   

10.
《测量评论》2013,45(14):472-484
Abstract

Choice of Beacon.—The general question as to whether luminous or opaque signals should be used in ruling triangulation has recently been discussed in the Empire Survey Review (No.9, pp. 151–2 and No. 12, pp. 335–6). It may here be summarized that opaque beacons of suitable design are sufficiently accurate and offer the considerable advantages of being immediately available for subsequent work, of requiring little or no attention, and of being visible from all directions without rearrangement. Moreover, if of the tripod or quadripod type, they need not be dismounted during occupation of the station for observing, so that 0bservations by more than one observer are not interrupted. The only occasion for using luminous beacons arises from bad visibility, whether through atmospheric haze or lack of a suitable background or through the economic necessity of completing observations at night. These conditions are not peculiar to ruling triangulation. An ”all-round” type of luminous beacon—a pressure oil lamp or a rotating mirror system—can be used for nightwork or against a dark background, but single-direction luminous beacons are necessary to overcome haze.  相似文献   

11.
《测量评论》2013,45(60):217-219
Abstract

Map Projections.—A matter that should have been mentioned in the original article under this title (E.S.R., vii, 51, 190) is the definition of a map projection. In the list of carefully worded “Definitions of Terms used in Surveying and Mapping” prepared by the American Society of Photogrammetry (Photogrammetrie Engineering, vol. 8,1942, pp. 247–283), a map projection is defined as “a systematic drawing of lines on a plane surface to represent the parallels of latitude and the meridians of longitude of the earth or a section of the earth”, and most other published works in which a definition appears employ a somewhat similar wording. This, however, is an unnecessary limitation of the term. Many projections are (and all projections can be) plotted from rectangular grid co-ordinates, and meridians and parallels need not be drawn at all; but a map is still on a projection even when a graticule is not shown. Objection could be raised also to the limitation to “plane surface”, since we may speak of the projection of the spheroid upon a sphere, or of the sphere upon a hemisphere. Hence, it is suggested that “any systematic method of representing the whole or a part of the curved surface of the Earth upon another (usually plane) surface” is an adequate definition of a map projection.  相似文献   

12.
《测量评论》2013,45(14):464-472
Abstract

The Mythical Spheroid.—The preceding article dealt with the fact that the spheroid of reference is a myth and that, even if it were not, we could not get hold of it at any given place. In order to apply corrections to observed quantities or, more generally, to operate upon them mathematically, we must make some assumption such as that of the spheroidal level surface. Probably a lot of harm has been done by attaching the notion of too concrete a thing to the spheroid. Disputes and misconceptions have arisen. People talk of“putting the spheroid down at a point” and imagine that the obedient thing is still at their feet when they get to another point, perhaps distant, in their system of triangulation or what not. Actually the spheroid may be disobedient not only as regards the direction of the vertical but also because it is above their heads or below their feet. What happens is that at each point afresh the computer treats the observations as if they were made there on the surface of a spheroid. In the same way, but travelling still farther along the road of hypothesis, he may treat observations for astronomical positions as if the compensation for visible elevations were uniformly distributed as a deficiency of density down to a depth of 122·2 kilometres. That was the depth which happened to give the smallest sum of squares of residuals in a certain restricted area, but nobody imagines that it corresponds with a physical reality, especially the ·2! It was a convenient mathematical instrument which, once the theory was to be given a trial, had to be fashioned out of some assumption or another. All this has little to do with geodetic levelling but is meant to try to banish the spheroid out of the reader's mind or at least to the back of his mind. In what follows we shall be compelled to make a certain amount of use of the family of spheroids but always with the above strictures in view.  相似文献   

13.
《测量评论》2013,45(79):24-28
Abstract

The weakest point in a straight traverse between two fixed points is well known to be in the middle. The uncertainty or p.e. perpendicular to the general direction of the traverse can be shown to be a maximum at the midpoint. Yet subsidiary traverses are usually tied in at or near this point, and consequently may show closing errors which are well in excess of what may be expected. A rigorous least squares solution would overcome this difficulty but only at the cost of a very laborious computation if the network is at all extensive. A compromise between rigour and labour can be achieved, however, which retains the major advantage of a fully rigorous solution, namely that the subsidiary traverses are not tied in at the weakest points of the main traverse system.  相似文献   

14.
《测量评论》2013,45(78):366-368
Abstract

The method of reducing circummeridian altitudes or zenith distances to the meridian, using the factors m and n as tabulated by Chauvenet, is well known. The following method, which does not use these factars, has been faund both more convenient and more accurate in practice. The formula can be easily obtained by expanding m and n in powers of t, but far the sake af campleteness the derivatian is here given from the beginning.  相似文献   

15.
《测量评论》2013,45(38):480-481
Abstract

In a letter published in a recent issue of Nature, Prof. L. F. Bates and Mr J. C. Wilson, of University College, Nottingham, have described a new and novel method of determining the coefficient of thermal expansion of invar. Although this method is hardly likely to be applied to the measurement of the coefficient of expansion of long invar tapes, such as are used by surveyors, yet it is so novel and ingenious in itself that a short reference to it may not be out of place in this Review. One extremely interesting thing about it is that no measurements of a length, or of changes of length, are involved.  相似文献   

16.
《测量评论》2013,45(30):462-466
Abstract

The fixation of Minor Triangulation in a Primary system does not, in general, warrant rigorous adjustments of figures; less laborious methods are desirable. For Secondary work a least square adjustment to approximate coordinates is quite sufficient, while, for Tertiary, graphical solutions are amply accurate. Apart from that, cases may arise to which a figure adjustment is not applicable, as in the small net shown in Fig. 2, p. 464. The line BC cannot be equated to the line AB in the ordinary way since it is not the side of a triangle. In this case an adjustment to approxima te coordina tes will overcome the difficulty.  相似文献   

17.
《测量评论》2013,45(72):90-92
Abstract

When developing the argument leading to the stereographic solution of the spherical triangle and its application to field astronomy (Empire Survey Review, Vol. 2, No. 10, October, 1933, p. 226) A. J. Potter rendered a very useful service in demonstrating how proofs of the two practically useful properties of the stereographic projection can be provided along lines that demand no more than simple geometry in their development. The proof advanced for the unique property that any circle on the. sphere remains a circle in projection is at once simple and complete; but in the attempt to prove that the projection is orthomorphic in the sense that angles everywhere remain true there is the difficulty that the argument was developed for what must be regarded as a special case in that the point was located on the great circle through the origin of the projection normal to the plane of the projection. Treatment of the problem along similar lines for other points away from the central meridian does not seem to admit of such ready solution and the alternative approach suggested here, while still not demanding. anything beyond simple geometry for its understanding, affords a proof for a general case.  相似文献   

18.
《测量评论》2013,45(63):25-35
Abstract

The reader will play this round better if he remembers to bring the bag of clubs provided in the last instalment. On the assumption that he will do so, we proceed straight to the first tee without further explanation or recapitulation.  相似文献   

19.
《测量评论》2013,45(40):76-93
Abstract

In two previous articles (E.S.R., vol. iv, nos. 23 and 25) it was shown that, at the time of maximum diurnal temperature in the tropics, a definite relationship exists in the lower layers of the atmosphere between the magnitude of the coefficient of terrestrial refraction at a point and the height of that point above plain level, provided the weather is fine and clear. In fact the coefficient K increases with the height h, within certain limits which are probably defined by the condensation layer.  相似文献   

20.
none 《测量评论》2013,45(55):28-29
Abstract

The volume of this Review which has just been completed commenced with a memoir of the first Editor, the late Captain G. T. McCaw, C.M.G., O.B.E., M.A., who died in October 1942, and, in view of his great services to the Review and to the survey world in general, it is thought to be not in-appropriate that this, the first number of a new volume, should contain a list of his contributions to the Review. The power and versatility that they display are remarkable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号